1
|
Xu H, Olivier C, Sajidy H, Pallu S, Portier H, Peyrin F, Chappard C. Cell quantification at the osteochondral interface from synchrotron radiation phase contrast micro-computed tomography images using a deep learning approach. Sci Rep 2024; 14:29619. [PMID: 39609521 PMCID: PMC11604923 DOI: 10.1038/s41598-024-81333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Osteochondral interface consists of two tissues: the calcified cartilage (CC) containing chondrocytes, and subchondral bone (SCB) containing osteocytes that interact with each other. In this study, we propose a new method for the three-dimensional (3D) segmentation of chondrocyte and osteocyte lacunae in CC and SCB from human knees, imaged using high resolution (650 nm) synchrotron radiation phase contrast micro-computed tomography (SR phase contrast micro-CT). Our approach is based on marker-controlled watershed (MCW) algorithm combined with a deep learning method (nnU-Net). We demonstrate that incorporating nnU-Net into the MCW process improves the identification and segmentation of cell lacunae. Using this method, we analyzed a subsample of fifteen cores extracted from the central area of the medial tibial plateaus. Several quantitative parameters (lacunar volume fraction, number density, volume, anisotropy and structure model index of cell lacunae) were measured to compare 10 control and 5 osteoarthritic knees. While no significant differences were observed in chondrocytes, osteocytes showed lower anisotropy (width/depth) and a tendency toward more spherical shapes in the osteoarthritic group compared to the control group. The phase contrast underlying the chondro-osseous border allowed to analyze separately CC from SCB in SR phase contrast micro-CT images. This new method may help to better understand the cellular behavior at the osteochondral interface in osteoarthritis.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Innovation Science and Technology, Shenyang University, Dadong District, Wanghua South Street No. 21, Shenyang, 110044, China.
- Paris Cité University CNRS INSERM, B3OA, UMR 7052, U 1271, 10 avenue de Verdun, Paris, 75010, France.
| | - Cecile Olivier
- Grenoble Alpes University, INSERM STROBE, UA 7, 2280 rue de la piscine, Saint Martin d'Hères, 38400, France
| | - Hajar Sajidy
- Grenoble Alpes University, INSERM STROBE, UA 7, 2280 rue de la piscine, Saint Martin d'Hères, 38400, France
| | - Stéphane Pallu
- Paris Cité University CNRS INSERM, B3OA, UMR 7052, U 1271, 10 avenue de Verdun, Paris, 75010, France
| | - Hugues Portier
- Paris Cité University CNRS INSERM, B3OA, UMR 7052, U 1271, 10 avenue de Verdun, Paris, 75010, France
| | - Francoise Peyrin
- Lab CREATIS, Univ Lyon, INSA Lyon, CNRS UMR 5220, INSERM U1206, 21 avenue Jean Capelle, Lyon, France
| | - Christine Chappard
- Paris Cité University CNRS INSERM, B3OA, UMR 7052, U 1271, 10 avenue de Verdun, Paris, 75010, France
- Sorbonne University, CNRS, INSERM, LIB UMR 7371, 15 rue de l'Ecole de Médecine, Paris, U 1146, 75006, France
| |
Collapse
|
2
|
Dejea H, Pierantoni M, Orozco GA, B Wrammerfors ET, Gstöhl SJ, Schlepütz CM, Isaksson H. In Situ Loading and Time-Resolved Synchrotron-Based Phase Contrast Tomography for the Mechanical Investigation of Connective Knee Tissues: A Proof-of-Concept Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308811. [PMID: 38520713 DOI: 10.1002/advs.202308811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Articular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously. Time-resolved synchrotron-based X-ray phase-contrast tomography (SR-PhC-µCT) allows to capture the tissue dynamics. This proof-of-concept study presents a rheometer setup for simultaneous in situ unconfined compression and SR-PhC-µCT of connective knee tissues. The microstructural response of bovine cartilage (n = 16) and meniscus (n = 4) samples under axial continuously increased strain, or two steps of 15% strain (stress-relaxation) is studied. The chondrocyte distribution in cartilage and the collagen fiber orientation in the meniscus are assessed. Variations in chondrocyte density reveal an increase in the top 40% of the sample during loading, compared to the lower half. Meniscus collagen fibers reorient perpendicular to the loading direction during compression and partially redisperse during relaxation. Radiation damage, image repeatability, and image quality assessments show little to no effects on the results. In conclusion, this approach is highly promising for future studies of human knee tissues to understand their microstructure, mechanical response, and progression in degenerative diseases.
Collapse
Affiliation(s)
- Hector Dejea
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
- MAX IV Laboratory, Lund University, Lund, 224 84, Sweden
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
| | - Gustavo A Orozco
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
| | | | - Stefan J Gstöhl
- Swiss Light Source, Paul Scherrer Institute, Villigen PSI, 5232, Switzerland
| | | | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, Lund, 221 00, Sweden
| |
Collapse
|
3
|
Drevet S, Favier B, Lardy B, Gavazzi G, Brun E. New imaging tools for mouse models of osteoarthritis. GeroScience 2022; 44:639-650. [PMID: 35129777 PMCID: PMC9135906 DOI: 10.1007/s11357-022-00525-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by a disruption of articular joint cartilage homeostasis. Mice are the most commonly used models to study OA. Despite recent reviews, there is still a lack of knowledge about the new development in imaging techniques. Two types of modalities are complementary: those that assess structural changes in joint tissues and those that assess metabolism and disease activity. Micro MRI is the most important imaging tool for OA research. Automated methodologies for assessing periarticular bone morphology with micro-CT have been developed allowing quantitative assessment of tibial surface that may be representative of the whole OA joint changes. Phase-contrast X-ray imaging provides in a single examination a high image precision with good differentiation between all anatomical elements of the knee joint (soft tissue and bone). Positron emission tomography, photoacoustic imaging, and fluorescence reflectance imaging provide molecular and functional data. To conclude, innovative imaging technologies could be an alternative to conventional histology with greater resolution and more efficiency in both morphological analysis and metabolism follow-up. There is a logic of permanent adjustment between innovations, 3R rule, and scientific perspectives. New imaging associated with artificial intelligence may add to human clinical practice allowing not only diagnosis but also prediction of disease progression to personalized medicine.
Collapse
Affiliation(s)
- S. Drevet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- University Hospital Grenoble Alpes, Orthogeriatric Unit, Clinic of Geriatric Medicine, 38 000 Grenoble, France
| | - B. Favier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - B. Lardy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- Laboratoire de Biochimie des Enzymes et des Protéines, Centre Hospitalier Universitaire Grenoble Alpes, 38 000 Grenoble, France
| | - G. Gavazzi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- University Hospital Grenoble Alpes, Clinic of Geriatric Medicine, 38 000 Grenoble, France
| | - E. Brun
- Univ. Grenoble Alpes, Inserm, UA7, STROBE Laboratory, 38 000 Grenoble, France
| |
Collapse
|
4
|
Xin X, Xu H, Jian J, Lv W, Zhao Y, Li Y, Zhao X, Hu C. A method of three-dimensional branching geometry to differentiate the intrahepatic vascular type in early-stage liver fibrosis using X-ray phase-contrast CT. Eur J Radiol 2022; 148:110178. [DOI: 10.1016/j.ejrad.2022.110178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
|
5
|
Drevet S, Favier B, Brun E, Gavazzi G, Lardy B. Mouse Models of Osteoarthritis: A Summary of Models and Outcomes Assessment. Comp Med 2022; 72:3-13. [PMID: 34986927 DOI: 10.30802/aalas-cm-21-000043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease. It has a substantial impact onpatient quality of life and is a common cause of pain and mobility issues in older adults. The functional limitations, lack of curative treatments, and cost to society all demonstrate the need for translational and clinical research. The use of OA models in mice is important for achieving a better understanding of the disease. Models with clinical relevance are needed to achieve 2 main goals: to assess the impact of the OA disease (pain and function) and to study the efficacy of potential treatments. However, few OA models include practical strategies for functional assessment of the mice. OA signs in mice incorporate complex interrelations between pain and dysfunction. The current review provides a comprehensive compilation of mousemodels of OA and animal evaluations that include static and dynamic clinical assessment of the mice, merging evaluationof pain and function by using automatic and noninvasive techniques. These new techniques allow simultaneous recordingof spontaneous activity from thousands of home cages and also monitor environment conditions. Technologies such as videographyand computational approaches can also be used to improve pain assessment in rodents but these new tools must first be validated experimentally. An example of a new tool is the digital ventilated cage, which is an automated home-cage monitor that records spontaneous activity in the cages.
Collapse
|
6
|
Horng A, Stroebel J, Geith T, Milz S, Pacureanu A, Yang Y, Cloetens P, Lovric G, Mittone A, Bravin A, Coan P. Multiscale X-ray phase contrast imaging of human cartilage for investigating osteoarthritis formation. J Biomed Sci 2021; 28:42. [PMID: 34098949 PMCID: PMC8182937 DOI: 10.1186/s12929-021-00739-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background The evolution of cartilage degeneration is still not fully understood, partly due to its thinness, low radio-opacity and therefore lack of adequately resolving imaging techniques. X-ray phase-contrast imaging (X-PCI) offers increased sensitivity with respect to standard radiography and CT allowing an enhanced visibility of adjoining, low density structures with an almost histological image resolution. This study examined the feasibility of X-PCI for high-resolution (sub-) micrometer analysis of different stages in tissue degeneration of human cartilage samples and compare it to histology and transmission electron microscopy. Methods Ten 10%-formalin preserved healthy and moderately degenerated osteochondral samples, post-mortem extracted from human knee joints, were examined using four different X-PCI tomographic set-ups using synchrotron radiation the European Synchrotron Radiation Facility (France) and the Swiss Light Source (Switzerland). Volumetric datasets were acquired with voxel sizes between 0.7 × 0.7 × 0.7 and 0.1 × 0.1 × 0.1 µm3. Data were reconstructed by a filtered back-projection algorithm, post-processed by ImageJ, the WEKA machine learning pixel classification tool and VGStudio max. For correlation, osteochondral samples were processed for histology and transmission electron microscopy. Results X-PCI provides a three-dimensional visualization of healthy and moderately degenerated cartilage samples down to a (sub-)cellular level with good correlation to histologic and transmission electron microscopy images. X-PCI is able to resolve the three layers and the architectural organization of cartilage including changes in chondrocyte cell morphology, chondrocyte subgroup distribution and (re-)organization as well as its subtle matrix structures. Conclusions X-PCI captures comprehensive cartilage tissue transformation in its environment and might serve as a tissue-preserving, staining-free and volumetric virtual histology tool for examining and chronicling cartilage behavior in basic research/laboratory experiments of cartilage disease evolution.
Collapse
Affiliation(s)
- Annie Horng
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.,RZM - Radiologisches Zentrum Munich-Pasing, Pippinger Str. 25, 81245, Munich, Germany
| | - Johannes Stroebel
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-University Munich, Am Coulombwall 1, 85748, Garching, Germany
| | - Tobias Geith
- Department of Interventional Radiology, Klinikum Rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Stefan Milz
- Faculty of Medicine, Anatomische Anstalt, Neuroanatomy, Ludwig Maximilians University, Munich, Germany
| | | | - Yang Yang
- European Synchrotron Radiation Facility, Grenoble, France.,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Peter Cloetens
- European Synchrotron Radiation Facility, Grenoble, France
| | - Goran Lovric
- Paul Scherrer Institute (Swiss Light Source), Villigen, Switzerland
| | | | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France
| | - Paola Coan
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany. .,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-University Munich, Am Coulombwall 1, 85748, Garching, Germany.
| |
Collapse
|
7
|
Keenan OJF, Holland G, Maempel JF, Keating JF, Scott CEH. Correlations between radiological classification systems and confirmed cartilage loss in severe knee osteoarthritis. Bone Joint J 2020; 102-B:301-309. [PMID: 32114823 DOI: 10.1302/0301-620x.102b3.bjj-2019-0337.r1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability. METHODS A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16 regions of interest were recorded. Radiological classification and FTCL were correlated using the Spearman correlation coefficient. RESULTS Knees had a mean of 6.8 regions of FTCL (SD 3.1), most common medially. The commonest patterns of FTCL were medial ± patellofemoral (143/300, 48%) and tricompartmental (89/300, 30%). ACL status was associated with pattern of FTCL (p = 0.023). All radiological classification systems demonstrated moderate ICC, but this was highest for the IKDC: whole knee 0.68 (95% confidence interval (CI) 0.60 to 0.74); medial compartment 0.84 (95% CI 0.80 to 0.87); and lateral compartment 0.79 (95% CI 0.73 to 0.83). Correlation with actual FTCL was strongest for Ahlbäck (Spearman rho 0.27 to 0.39) and KL (0.30 to 0.33) systems, although all systems demonstrated medium correlation. The Ahlbäck score was the most discriminating in severe knee OA. Osteophyte presence in the medial compartment had high positive predictive value (PPV) for FTCL, but not in the lateral compartment. CONCLUSION The Ahlbäck and KL systems had the highest correlation with confirmed cartilage loss at TKA. However, the IKDC system displayed the best interobserver reliability, with favourable correlation with FTCL in medial and lateral compartments, although it was less discriminating in more severe disease. Cite this article: Bone Joint J 2020;102-B(3):301-309.
Collapse
Affiliation(s)
- Oisin J F Keenan
- Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - George Holland
- Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Julian F Maempel
- Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - John F Keating
- Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Chloe E H Scott
- Royal Infirmary of Edinburgh, Edinburgh, UK, Honorary Senior Clinical Lecturer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Jian J, Zhao X, Qin L, Zhao Y, Sun M, Lv W, Hu C. Three-dimensional visualization of fibrous tissues in cirrhotic rats via X-ray phase-contrast computed tomography with iodine staining. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1354-1360. [PMID: 31274464 DOI: 10.1107/s1600577519006064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
To accurately characterize cirrhosis, knowledge of the 3D fibrous structures is essential. Histology is the gold standard in cirrhosis screening, but it mainly provides structural information in 2D planes and destroys the 3D samples in the process. The aim of this study was to evaluate the potential of X-ray phase-contrast computed tomography (PCCT) with iodine staining for the 3D nondestructive visualization of internal structural details in entire cirrhotic livers with histopathologic correlation. In this study, cirrhotic livers induced by carbon tetrachloride (CCl4) in rats were imaged via PCCT and then histopathologically processed. Characteristics of the cirrhosis, i.e. abnormal nodules surrounded by annular fibrosis, were established and a 3D reconstruction of these structures was also performed via PCCT. Fibrosis area, septal width and nodular size were measured and the correlation for these quantitative measurements between PCCT and histopathologic findings was analyzed. The results showed that fibrous bands, small nodules and angio-architecture in cirrhosis were clearly presented in the PCCT images, with histopathologic findings as standard reference. In comparison with histopathology, PCCT was associated with a very close value for fibrosis area, septal width and nodular size. The quantitative measurements showed a strong correlation between PCCT and histopathology. Additionally, the 3D structures of fibrous bands and microvasculature were presented simultaneously. PCCT provides excellent results in the assessment of cirrhosis characteristics and 3D presentation of these feature structures compared with histopathology. Thus, the technique may serve as an adjunct nondestructive 3D modality for cirrhosis characterization.
Collapse
Affiliation(s)
- Jianbo Jian
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lili Qin
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yuqing Zhao
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Mengyu Sun
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Wenjuan Lv
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Chunhong Hu
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
9
|
Shanblatt ER, Sung Y, Gupta R, Nelson BJ, Leng S, Graves WS, McCollough CH. Forward model for propagation-based x-ray phase contrast imaging in parallel- and cone-beam geometry. OPTICS EXPRESS 2019; 27:4504-4521. [PMID: 30876068 DOI: 10.1364/oe.27.004504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate a fast, flexible, and accurate paraxial wave propagation model to serve as a forward model for propagation-based X-ray phase contrast imaging (XPCI) in parallel-beam or cone-beam geometry. This model incorporates geometric cone-beam effects into the multi-slice beam propagation method. It enables rapid prototyping and is well suited to serve as a forward model for propagation-based X-ray phase contrast tomographic reconstructions. Furthermore, it is capable of modeling arbitrary objects, including those that are strongly or multi-scattering. Simulation studies were conducted to compare our model to other forward models in the X-ray regime, such as the Mie and full-wave Rytov solutions.
Collapse
|