1
|
Jacome MA, Wu Q, Piña Y, Etame AB. Evolution of Molecular Biomarkers and Precision Molecular Therapeutic Strategies in Glioblastoma. Cancers (Basel) 2024; 16:3635. [PMID: 39518074 PMCID: PMC11544870 DOI: 10.3390/cancers16213635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma is the most commonly occurring malignant brain tumor, with a high mortality rate despite current treatments. Its classification has evolved over the years to include not only histopathological features but also molecular findings. Given the heterogeneity of glioblastoma, molecular biomarkers for diagnosis have become essential for initiating treatment with current therapies, while new technologies for detecting specific variations using computational tools are being rapidly developed. Advances in molecular genetics have made possible the creation of tailored therapies based on specific molecular targets, with various degrees of success. This review provides an overview of the latest advances in the fields of histopathology and radiogenomics and the use of molecular markers for management of glioblastoma, as well as the development of new therapies targeting the most common molecular markers. Furthermore, we offer a summary of the results of recent preclinical and clinical trials to recognize the current trends of investigation and understand the possible future directions of molecular targeted therapies in glioblastoma.
Collapse
Affiliation(s)
- Maria A. Jacome
- Departamento de Ciencias Morfológicas Microscópicas, Universidad de Carabobo, Valencia 02001, Venezuela
| | - Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| |
Collapse
|
2
|
Doniselli FM, Pascuzzo R, Mazzi F, Padelli F, Moscatelli M, Akinci D'Antonoli T, Cuocolo R, Aquino D, Cuccarini V, Sconfienza LM. Quality assessment of the MRI-radiomics studies for MGMT promoter methylation prediction in glioma: a systematic review and meta-analysis. Eur Radiol 2024; 34:5802-5815. [PMID: 38308012 PMCID: PMC11364578 DOI: 10.1007/s00330-024-10594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVES To evaluate the methodological quality and diagnostic accuracy of MRI-based radiomic studies predicting O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in gliomas. METHODS PubMed Medline, EMBASE, and Web of Science were searched to identify MRI-based radiomic studies on MGMT methylation in gliomas published until December 31, 2022. Three raters evaluated the study methodological quality with Radiomics Quality Score (RQS, 16 components) and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD, 22 items) scales. Risk of bias and applicability concerns were assessed with QUADAS-2 tool. A meta-analysis was performed to estimate the pooled area under the curve (AUC) and to assess inter-study heterogeneity. RESULTS We included 26 studies, published from 2016. The median RQS total score was 8 out of 36 (22%, range 8-44%). Thirteen studies performed external validation. All studies reported AUC or accuracy, but only 4 (15%) performed calibration and decision curve analysis. No studies performed phantom analysis, cost-effectiveness analysis, and prospective validation. The overall TRIPOD adherence score was between 50% and 70% in 16 studies and below 50% in 10 studies. The pooled AUC was 0.78 (95% CI, 0.73-0.83, I2 = 94.1%) with a high inter-study heterogeneity. Studies with external validation and including only WHO-grade IV gliomas had significantly lower AUC values (0.65; 95% CI, 0.57-0.73, p < 0.01). CONCLUSIONS Study RQS and adherence to TRIPOD guidelines was generally low. Radiomic prediction of MGMT methylation status showed great heterogeneity of results and lower performances in grade IV gliomas, which hinders its current implementation in clinical practice. CLINICAL RELEVANCE STATEMENT MGMT promoter methylation status appears to be variably correlated with MRI radiomic features; radiomic models are not sufficiently robust to be integrated into clinical practice to accurately predict MGMT promoter methylation status in patients with glioma before surgery. KEY POINTS • Adherence to the indications of TRIPOD guidelines was generally low, as was RQS total score. • MGMT promoter methylation status prediction with MRI radiomic features provided heterogeneous diagnostic accuracy results across studies. • Studies that included grade IV glioma only and performed external validation had significantly lower diagnostic accuracy than others.
Collapse
Affiliation(s)
- Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy.
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Francesco Padelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Rheinstrasse 26, 4410, Liestal, Switzerland
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende 43, Baronissi, 84081, Salerno, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| |
Collapse
|
3
|
Malik P, Soliman R, Chen YA, Munoz DG, Das S, Bharatha A, Mathur S. Patterns of T2-FLAIR discordance across a cohort of adult-type diffuse gliomas and deviations from the classic T2-FLAIR mismatch sign. Neuroradiology 2024; 66:521-530. [PMID: 38347151 DOI: 10.1007/s00234-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE T2-FLAIR mismatch serves as a highly specific but insensitive marker for IDH-mutant (IDHm) astrocytoma with potential limitations in real-world application. We aimed to assess the utility of a broader definition of T2-FLAIR discordance across a cohort of adult-type diffuse lower-grade gliomas (LrGG) to see if specific patterns emerge and additionally examine factors determining deviation from the classic T2-FLAIR mismatch sign. METHODS Preoperative MRIs of non-enhancing adult-type diffuse LrGGs were reviewed. Relevant demographic, molecular, and MRI data were compared across tumor subgroups. RESULTS Eighty cases satisfied the inclusion criteria. Highest discordance prevalence and > 50% T2-FLAIR discordance volume were noted with IDHm astrocytomas (P < 0.001), while < 25% discordance volume was associated with oligodendrogliomas (P = 0.03) and IDH-wildtype (IDHw) LrGG (P = 0.004). "T2-FLAIR matched pattern" was associated with IDHw LrGG (P < 0.001) and small or minimal areas of discordance with oligodendrogliomas (P = 0.03). Sensitivity and specificity of classic mismatch sign for IDHm astrocytoma were 25.7% and 100%, respectively (P = 0.06). Retained ATRX expression and/or non-canonical IDH mutation (n = 10) emerged as a significant factor associated with absence of classic T2-FLAIR mismatch sign in IDHm astrocytomas (100%, P = 0.02) and instead had minimal discordance or matched pattern (40%, P = 0.04). CONCLUSION T2-FLAIR discordance patterns in adult-type diffuse LrGGs exist on a diverging but distinct spectrum of classic mismatch to T2-FLAIR matched patterns. Specific molecular markers may play a role in deviations from classic mismatch sign.
Collapse
Affiliation(s)
- Prateek Malik
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, 30 Bond St., Toronto, ON, M5B 1W8, Canada
| | - Radwa Soliman
- Diagnostic and Interventional Radiology Department, Assiut University, Asyut, Egypt
| | - Yingming Amy Chen
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, 30 Bond St., Toronto, ON, M5B 1W8, Canada
| | - David G Munoz
- Department of Pathology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Aditya Bharatha
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, 30 Bond St., Toronto, ON, M5B 1W8, Canada
| | - Shobhit Mathur
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, 30 Bond St., Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
4
|
Wang S, Wang X, Yin X, Lv X, Cai J. Differentiating HCC from ICC and prediction of ICC grade based on MRI deep-radiomics: Using lesions and their extended regions. Phys Med 2024; 120:103322. [PMID: 38452430 DOI: 10.1016/j.ejmp.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE This study aimed to evaluate the ability of MRI-based intratumoral and peritumoral radiomics features of liver tumors to differentiate between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) and to predict ICC differentiation. METHODS This study retrospectively collected 87 HCC patients and 75 ICC patients who were confirmed pathologically. The standard region of interest (ROI) of the lesion drawn by the radiologist manually shrank inward and expanded outward to form multiple ROI extended regions. A three-step feature selection method was used to select important radiomics features and convolution features from extended regions. The predictive performance of several machine learning classifiers on dominant feature sets was compared. The extended region performance was assessed by area under the curve (AUC), specificity, sensitivity, F1-score and accuracy. RESULTS The performance of the model is further improved by incorporating convolution features. Compared with the standard ROI, the extended region obtained better prediction performance, among which 6 mm extended region had the best prediction ability (Classification: AUC = 0.96, F1-score = 0.94, Accuracy: 0.94; Grading: AUC = 0.94, F1-score = 0.93, Accuracy = 0.89). CONCLUSION Larger extended region and fusion features can improve tumor predictive performance and have potential value in tumor radiology.
Collapse
Affiliation(s)
- Shuping Wang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
| | - Xuehu Wang
- College of Electronic and Information Engineering, Hebei University, Baoding 071002, China; Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding 071002, China; Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding 071002, China.
| | - Xiaoping Yin
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Xiaoyan Lv
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianming Cai
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
5
|
Saluja S, Trivedi MC, Saha A. Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5250-5282. [PMID: 38872535 DOI: 10.3934/mbe.2024232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive biopsies for precise grading. As an alternative, computer-assisted methods, particularly deep convolutional neural networks (DCNNs), have gained traction. This research paper explores the recent advancements in DCNNs for glioma grading using brain magnetic resonance images (MRIs) from 2015 to 2023. The study evaluated various DCNN architectures and their performance, revealing remarkable results with models such as hybrid and ensemble based DCNNs achieving accuracy levels of up to 98.91%. However, challenges persisted in the form of limited datasets, lack of external validation, and variations in grading formulations across diverse literature sources. Addressing these challenges through expanding datasets, conducting external validation, and standardizing grading formulations can enhance the performance and reliability of DCNNs in glioma grading, thereby advancing brain tumor classification and extending its applications to other neurological disorders.
Collapse
Affiliation(s)
- Sonam Saluja
- Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura 799046, India
| | - Munesh Chandra Trivedi
- Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura 799046, India
| | - Ashim Saha
- Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura 799046, India
| |
Collapse
|
6
|
Cepeda S. Machine Learning and Radiomics in Gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:231-243. [PMID: 39523269 DOI: 10.1007/978-3-031-64892-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The integration of machine learning (ML) and radiomics is emerging as a pivotal advancement in glioma research, offering novel insights into the diagnosis, prognosis, and treatment of these complex tumors. Radiomics involves the extraction of a multitude of quantitative features from medical images. When these features are analyzed through ML algorithms, the precision of tumor characterization is enhanced beyond traditional methods.This chapter examines the application of both supervised and unsupervised ML techniques for interpreting radiomic data, highlighting their potential for accurately predicting tumor grade, identifying genetic mutations, estimating patient survival rates, and evaluating treatment responses. The ability of ML-based radiomic analysis to discern intricate patterns in tumor imaging, imperceptible to human observation, is particularly emphasized.Challenges in this field, including data diversity, overfitting risks, and the need for extensive, annotated datasets, are critically assessed. The necessity of integrating these advanced technologies into clinical practice through interdisciplinary collaboration is underscored as a crucial factor for their effective utilization.Overall, the synergy between ML and radiomics in glioma research represents a significant step toward personalized medicine, offering enhanced tools for patient-specific treatment strategies.
Collapse
Affiliation(s)
- Santiago Cepeda
- Department of Neurosurgery, Río Hortega University Hospital, Valladolid, Spain.
| |
Collapse
|
7
|
Sanvito F, Kaufmann TJ, Cloughesy TF, Wen PY, Ellingson BM. Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration. FRONTIERS IN RADIOLOGY 2023; 3:1267615. [PMID: 38152383 PMCID: PMC10751345 DOI: 10.3389/fradi.2023.1267615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
Standardized MRI acquisition protocols are crucial for reducing the measurement and interpretation variability associated with response assessment in brain tumor clinical trials. The main challenge is that standardized protocols should ensure high image quality while maximizing the number of institutions meeting the acquisition requirements. In recent years, extensive effort has been made by consensus groups to propose different "ideal" and "minimum requirements" brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and primary central nervous system lymphomas (PCSNL). In clinical practice, BTIPs for clinical trials can be easily integrated with additional MRI sequences that may be desired for clinical patient management at individual sites. In this review, we summarize the general concepts behind the choice and timing of sequences included in the current recommended BTIPs, we provide a comparative overview, and discuss tips and caveats to integrate additional clinical or research sequences while preserving the recommended BTIPs. Finally, we also reflect on potential future directions for brain tumor imaging in clinical trials.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Song G, Xie G, Nie Y, Majid MS, Yavari I. Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods. J Cancer Res Clin Oncol 2023; 149:16293-16309. [PMID: 37698684 DOI: 10.1007/s00432-023-05389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Convolutional Neural Networks (ConvNets) have quickly become popular machine learning techniques in recent years, particularly in the classification and segmentation of medical images. One of the most prevalent types of brain cancers is glioma, and early, accurate diagnosis is essential for both treatment and survival. In this study, MRI scans were examined utilizing deep learning techniques to examine glioma diagnosis studies. METHODS In this systematic review, keywords were used to obtain English-language studies from the Arxiv, IEEE, Springer, ScienceDirect, and PubMed databases for the years 2010-2022. The material needed for review was then collected from the articles once they had been chosen based on the entry and exit criteria and in accordance with the research's goal. RESULTS Finally, 77 different academic articles were chosen. According to a study of published articles, glioma brain tumors were discovered, categorized, and segmented utilizing a coordinated approach that included image collecting, pre-processing, model design and execution, and model output evaluation. The majority of investigations have used publicly accessible photo databases and already-trained algorithms. The bulk of studies have employed Dice's classification accuracy and similarity coefficient metrics to assess model performance. CONCLUSION The results of this study indicate that glioma segmentation has received more attention from researchers than glioma detection and classification. It is advised that more research be done in the areas of glioma detection and, particularly, grading in order to be included in systems that support medical diagnosis.
Collapse
Affiliation(s)
- Guanghui Song
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China.
| | - Guanbao Xie
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China
| | - Yan Nie
- College of Science & Technology, Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Mohammed Sh Majid
- Computer Techniques Engineering Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Iman Yavari
- School of Computing and Technology, Eastern Mediterranean University, Northern Cyprus, Famagusta, Cyprus.
| |
Collapse
|
9
|
Pan I, Huang RY. Artificial intelligence in neuroimaging of brain tumors: reality or still promise? Curr Opin Neurol 2023; 36:549-556. [PMID: 37973024 DOI: 10.1097/wco.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW To provide an updated overview of artificial intelligence (AI) applications in neuro-oncologic imaging and discuss current barriers to wider clinical adoption. RECENT FINDINGS A wide variety of AI applications in neuro-oncologic imaging have been developed and researched, spanning tasks from pretreatment brain tumor classification and segmentation, preoperative planning, radiogenomics, prognostication and survival prediction, posttreatment surveillance, and differentiating between pseudoprogression and true disease progression. While earlier studies were largely based on data from a single institution, more recent studies have demonstrated that the performance of these algorithms are also effective on external data from other institutions. Nevertheless, most of these algorithms have yet to see widespread clinical adoption, given the lack of prospective studies demonstrating their efficacy and the logistical difficulties involved in clinical implementation. SUMMARY While there has been significant progress in AI and neuro-oncologic imaging, clinical utility remains to be demonstrated. The next wave of progress in this area will be driven by prospective studies measuring outcomes relevant to clinical practice and go beyond retrospective studies which primarily aim to demonstrate high performance.
Collapse
Affiliation(s)
- Ian Pan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School
| | | |
Collapse
|
10
|
Geng X, Zhou ZA, Mi Y, Wang C, Wang M, Guo C, Qu C, Feng S, Kim I, Yu M, Ji H, Ren X. Glioma Single-Cell Biomechanical Analysis by Cyclic Conical Constricted Microfluidics. Anal Chem 2023; 95:15585-15594. [PMID: 37843131 DOI: 10.1021/acs.analchem.3c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Determining the grade of glioma is a critical step in choosing patients' treatment plans in clinical practices. The pathological diagnosis of patient's glioma samples requires extensive staining and imaging procedures, which are expensive and time-consuming. Current advanced uniform-width-constriction-channel-based microfluidics have proven to be effective in distinguishing cancer cells from normal tissues, such as breast cancer, ovarian cancer, prostate cancer, etc. However, the uniform-width-constriction channels can result in low yields on glioma cells with irregular morphologies and high heterogeneity. In this research, we presented an innovative cyclic conical constricted (CCC) microfluidic device to better differentiate glioma cells from normal glial cells. Compared with the widely used uniform-width-constriction microchannels, the new CCC configuration forces single cells to deform gradually and obtains the biophysical attributes from each deformation. The human-derived glioma cell lines U-87 and U-251, as well as the human-derived normal glial astrocyte cell line HA-1800 were selected as the proof of concept. The results showed that CCC channels can effectively obtain the biomechanical characteristics of different 12-25 μm glial cell lines. The patient glioma samples with WHO grades II, III, and IV were tested by CCC channels and compared between Elastic Net (ENet) and Lasso analysis. The results demonstrated that CCC channels and the ENet can successfully select critical biomechanical parameters to differentiate the grades of single-glioma cells. This CCC device can be potentially further applied to the extensive family of brain tumors at the single-cell level.
Collapse
Affiliation(s)
- Xin Geng
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Zi-Ang Zhou
- Department of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Yang Mi
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Chunhong Wang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Meng Wang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Chenjia Guo
- Department of Pathology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Chongxiao Qu
- Department of Pathology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Shilun Feng
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Inyoung Kim
- Department of Statistics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Miao Yu
- Department of Research and Development, Stedical Scientific, Carlsbad, California 92010, United States
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Xiang Ren
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Department of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
12
|
Chen Y, Yang Z, Zhao J, Adamson J, Sheng Y, Yin FF, Wang C. A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation. Phys Med Biol 2023; 68:185025. [PMID: 37586382 DOI: 10.1088/1361-6560/acf10d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Objective.To develop a deep ensemble learning (DEL) model with radiomics spatial encoding execution for improved glioma segmentation accuracy using multi-parametric magnetic resonance imaging (mp-MRI).Approach.This model was developed using 369 glioma patients with a four-modality mp-MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. In each modality volume, a 3D sliding kernel was implemented across the brain to capture image heterogeneity: 56 radiomic features were extracted within the kernel, resulting in a fourth-order tensor. Each radiomic feature can then be encoded as a 3D image volume, namely a radiomic feature map (RFM). For each patient, all RFMs extracted from all four modalities were processed using principal component analysis for dimension reduction, and the first four principal components (PCs) were selected. Next, a DEL model comprised of four U-Net sub-models was trained for the segmentation of a region-of-interest: each sub-model utilizes the mp-MRI and one of the four PCs as a five-channel input for 2D execution. Last, four softmax probability results given by the DEL model were superimposed and binarized using Otsu's method as the segmentation results. Three DEL models were trained to segment the enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The segmentation results given by the proposed ensemble were compared to the mp-MRI-only U-Net results.Main Results.All three radiomics-incorporated DEL models were successfully implemented: compared to the mp-MRI-only U-net results, the dice coefficients of ET (0.777 → 0.817), TC (0.742 → 0.757), and WT (0.823 → 0.854) demonstrated improvement. The accuracy, sensitivity, and specificity results demonstrated similar patterns.Significance.The adopted radiomics spatial encoding execution enriches the image heterogeneity information that leads to the successful demonstration of the proposed DEL model, which offers a new tool for mp-MRI-based medical image segmentation.
Collapse
Affiliation(s)
- Yang Chen
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu 215316, People's Republic of China
| | - Zhenyu Yang
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, United States of America
| | - Jingtong Zhao
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, United States of America
| | - Justus Adamson
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, United States of America
| | - Yang Sheng
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, United States of America
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu 215316, People's Republic of China
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, United States of America
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, United States of America
| |
Collapse
|
13
|
Alizadeh M, Broomand Lomer N, Azami M, Khalafi M, Shobeiri P, Arab Bafrani M, Sotoudeh H. Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme. Cancers (Basel) 2023; 15:4429. [PMID: 37760399 PMCID: PMC10526457 DOI: 10.3390/cancers15184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma and glioblastoma multiform (GBM) remain among the most debilitating and life-threatening brain tumors. Despite advances in diagnosing approaches, patient follow-up after treatment (surgery and chemoradiation) is still challenging for differentiation between tumor progression/recurrence, pseudoprogression, and radionecrosis. Radiomics emerges as a promising tool in initial diagnosis, grading, and survival prediction in patients with glioma and can help differentiate these post-treatment scenarios. Preliminary published studies are promising about the role of radiomics in post-treatment glioma/GBM. However, this field faces significant challenges, including a lack of evidence-based solid data, scattering publication, heterogeneity of studies, and small sample sizes. The present review explores radiomics's capabilities in following patients with glioma/GBM status post-treatment and to differentiate tumor progression, recurrence, pseudoprogression, and radionecrosis.
Collapse
Affiliation(s)
- Mohammadreza Alizadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran;
| | - Nima Broomand Lomer
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 41937-13111, Iran;
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj 66186-34683, Iran;
| | - Mohammad Khalafi
- Radiology Department, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran;
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran 14167-53955, Iran; (P.S.); (M.A.B.)
| | - Melika Arab Bafrani
- School of Medicine, Tehran University of Medical Sciences, Tehran 14167-53955, Iran; (P.S.); (M.A.B.)
| | - Houman Sotoudeh
- Department of Radiology and Neurology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Miller DM, Yadanapudi K, Rai V, Rai SN, Chen J, Frieboes HB, Masters A, McCallum A, Williams BJ. Untangling the web of glioblastoma treatment resistance using a multi-omic and multidisciplinary approach. Am J Med Sci 2023; 366:185-198. [PMID: 37330006 DOI: 10.1016/j.amjms.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/01/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM), the most common human brain tumor, has been notoriously resistant to treatment. As a result, the dismal overall survival of GBM patients has not changed over the past three decades. GBM has been stubbornly resistant to checkpoint inhibitor immunotherapies, which have been remarkably effective in the treatment of other tumors. It is clear that GBM resistance to therapy is multifactorial. Although therapeutic transport into brain tumors is inhibited by the blood brain barrier, there is evolving evidence that overcoming this barrier is not the predominant factor. GBMs generally have a low mutation burden, exist in an immunosuppressed environment and they are inherently resistant to immune stimulation, all of which contribute to treatment resistance. In this review, we evaluate the contribution of multi-omic approaches (genomic and metabolomic) along with analyzing immune cell populations and tumor biophysical characteristics to better understand and overcome GBM multifactorial resistance to treatment.
Collapse
Affiliation(s)
- Donald M Miller
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yadanapudi
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Veeresh Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shesh N Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Cancer Data Science Center of University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph Chen
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA; Center for Preventative Medicine, University of Louisville, Louisville, KY, USA
| | - Adrianna Masters
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville, Louisville, KY, USA
| | - Abigail McCallum
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Brian J Williams
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
15
|
Zhong S, Ren JX, Yu ZP, Peng YD, Yu CW, Deng D, Xie Y, He ZQ, Duan H, Wu B, Li H, Yang WZ, Bai Y, Sai K, Chen YS, Guo CC, Li DP, Cheng Y, Zhang XH, Mou YG. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. J Neurosurg 2023; 139:305-314. [PMID: 36461822 DOI: 10.3171/2022.10.jns22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.
Collapse
Affiliation(s)
- Sheng Zhong
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- 3Department of Bioinformatics, Harvard Medical School, Boston, Massachusetts
| | - Jia-Xin Ren
- 4Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Ze-Peng Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Da Peng
- 5College of Computer Science and Technology, Jilin University, Changchun, China
| | - Cheng-Wei Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Davy Deng
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - YangYiran Xie
- 6Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhen-Qiang He
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Wu
- Departments of7Orthopaedics
| | | | - Wen-Zhuo Yang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Bai
- 9Neurosurgery, The First Hospital of Jilin University, Changchun, China; and
| | - Ke Sai
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yin-Sheng Chen
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng-Cheng Guo
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Pei Li
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Cheng
- 10Department of Neurosurgery, The Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiang-Heng Zhang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Gao Mou
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Rui W, Zhang S, Shi H, Sheng Y, Zhu F, Yao Y, Chen X, Cheng H, Zhang Y, Aili A, Yao Z, Zhang XY, Ren Y. Deep Learning-Assisted Quantitative Susceptibility Mapping as a Tool for Grading and Molecular Subtyping of Gliomas. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:243-254. [PMID: 37325712 PMCID: PMC10260708 DOI: 10.1007/s43657-022-00087-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to explore the value of deep learning (DL)-assisted quantitative susceptibility mapping (QSM) in glioma grading and molecular subtyping. Forty-two patients with gliomas, who underwent preoperative T2 fluid-attenuated inversion recovery (T2 FLAIR), contrast-enhanced T1-weighted imaging (T1WI + C), and QSM scanning at 3.0T magnetic resonance imaging (MRI) were included in this study. Histopathology and immunohistochemistry staining were used to determine glioma grades, and isocitrate dehydrogenase (IDH) 1 and alpha thalassemia/mental retardation syndrome X-linked gene (ATRX) subtypes. Tumor segmentation was performed manually using Insight Toolkit-SNAP program (www.itksnap.org). An inception convolutional neural network (CNN) with a subsequent linear layer was employed as the training encoder to capture multi-scale features from MRI slices. Fivefold cross-validation was utilized as the training strategy (seven samples for each fold), and the ratio of sample size of the training, validation, and test dataset was 4:1:1. The performance was evaluated by the accuracy and area under the curve (AUC). With the inception CNN, single modal of QSM showed better performance in differentiating glioblastomas (GBM) and other grade gliomas (OGG, grade II-III), and predicting IDH1 mutation and ATRX loss (accuracy: 0.80, 0.77, 0.60) than either T2 FLAIR (0.69, 0.57, 0.54) or T1WI + C (0.74, 0.57, 0.46). When combining three modalities, compared with any single modality, the best AUC/accuracy/F1-scores were reached in grading gliomas (OGG and GBM: 0.91/0.89/0.87, low-grade and high-grade gliomas: 0.83/0.86/0.81), predicting IDH1 mutation (0.88/0.89/0.85), and predicting ATRX loss (0.78/0.71/0.67). As a supplement to conventional MRI, DL-assisted QSM is a promising molecular imaging method to evaluate glioma grades, IDH1 mutation, and ATRX loss. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00087-6.
Collapse
Affiliation(s)
- Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Mid 12 Wulumuqi Road, Shanghai, 200040 China
| | - Shengjie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433 China
| | - Huidong Shi
- Department of Radiology, Huashan Hospital, Fudan University, Mid 12 Wulumuqi Road, Shanghai, 200040 China
| | - Yaru Sheng
- Department of Radiology, Huashan Hospital, Fudan University, Mid 12 Wulumuqi Road, Shanghai, 200040 China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - YiDi Yao
- Department of Radiology, Huashan Hospital, Fudan University, Mid 12 Wulumuqi Road, Shanghai, 200040 China
| | - Xiang Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433 China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yong Zhang
- GE Healthcare, MR Research, Huatuo Road, Shanghai, 201203 China
| | - Ababikere Aili
- Department of Radiology, Kuqa County People’s Hospital, Xinjiang, 842000 China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Mid 12 Wulumuqi Road, Shanghai, 200040 China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433 China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Mid 12 Wulumuqi Road, Shanghai, 200040 China
| |
Collapse
|
17
|
Glioma radiogenomics and artificial intelligence: road to precision cancer medicine. Clin Radiol 2023; 78:137-149. [PMID: 36241568 DOI: 10.1016/j.crad.2022.08.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Radiogenomics refers to the study of the relationship between imaging phenotypes and gene expression patterns/molecular characteristics, which might allow improved diagnosis, decision-making, and predicting patient outcomes in the context of multiple diseases. Central nervous system (CNS) tumours contribute to significant cancer-related mortality in the present age. Although historically CNS neoplasms were classified and graded based on microscopic appearance, there was discordance between two histologically similar tumours that showed varying prognosis and behaviour, attributable to their molecular signatures. These led to the incorporation of molecular markers in the classification of CNS neoplasms. Meanwhile, advancements in imaging technology such as diffusion-based imaging (including tractography), perfusion, and spectroscopy in addition to the conventional imaging of glial neoplasms, have opened an avenue for radiogenomics. This review touches upon the schema of the current classification of gliomas, concepts behind molecular markers, and parameters that are used in radiogenomics to characterise gliomas and the role of artificial intelligence for the same. Further, the role of radiomics in the grading of brain tumours, prediction of treatment response and prognosis has been discussed. Use of automated and semi-automated tumour segmentation for radiotherapy planning and follow-up has also been discussed briefly.
Collapse
|
18
|
AlRayahi J, Alwalid O, Mubarak W, Maaz AUR, Mifsud W. Pediatric Brain Tumors in the Molecular Era: Updates for the Radiologist. Semin Roentgenol 2023; 58:47-66. [PMID: 36732011 DOI: 10.1053/j.ro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jehan AlRayahi
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar.
| | - Osamah Alwalid
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar
| | - Walid Mubarak
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar
| | - Ata Ur Rehman Maaz
- Department of Pediatric Hematology-Oncology, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
19
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
20
|
Machine Learning in the Classification of Pediatric Posterior Fossa Tumors: A Systematic Review. Cancers (Basel) 2022; 14:cancers14225608. [PMID: 36428701 PMCID: PMC9688156 DOI: 10.3390/cancers14225608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Posterior fossa tumors (PFTs) are a morbid group of central nervous system tumors that most often present in childhood. While early diagnosis is critical to drive appropriate treatment, definitive diagnosis is currently only achievable through invasive tissue collection and histopathological analyses. Machine learning has been investigated as an alternative means of diagnosis. In this systematic review and meta-analysis, we evaluated the primary literature to identify all machine learning algorithms developed to classify and diagnose pediatric PFTs using imaging or molecular data. Methods: Of the 433 primary papers identified in PubMed, EMBASE, and Web of Science, 25 ultimately met the inclusion criteria. The included papers were extracted for algorithm architecture, study parameters, performance, strengths, and limitations. Results: The algorithms exhibited variable performance based on sample size, classifier(s) used, and individual tumor types being investigated. Ependymoma, medulloblastoma, and pilocytic astrocytoma were the most studied tumors with algorithm accuracies ranging from 37.5% to 94.5%. A minority of studies compared the developed algorithm to a trained neuroradiologist, with three imaging-based algorithms yielding superior performance. Common algorithm and study limitations included small sample sizes, uneven representation of individual tumor types, inconsistent performance reporting, and a lack of application in the clinical environment. Conclusions: Artificial intelligence has the potential to improve the speed and accuracy of diagnosis in this field if the right algorithm is applied to the right scenario. Work is needed to standardize outcome reporting and facilitate additional trials to allow for clinical uptake.
Collapse
|
21
|
Chen MM, Terzic A, Becker AS, Johnson JM, Wu CC, Wintermark M, Wald C, Wu J. Artificial intelligence in oncologic imaging. Eur J Radiol Open 2022; 9:100441. [PMID: 36193451 PMCID: PMC9525817 DOI: 10.1016/j.ejro.2022.100441] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Radiology is integral to cancer care. Compared to molecular assays, imaging has its advantages. Imaging as a noninvasive tool can assess the entirety of tumor unbiased by sampling error and is routinely acquired at multiple time points in oncological practice. Imaging data can be digitally post-processed for quantitative assessment. The ever-increasing application of Artificial intelligence (AI) to clinical imaging is challenging radiology to become a discipline with competence in data science, which plays an important role in modern oncology. Beyond streamlining certain clinical tasks, the power of AI lies in its ability to reveal previously undetected or even imperceptible radiographic patterns that may be difficult to ascertain by the human sensory system. Here, we provide a narrative review of the emerging AI applications relevant to the oncological imaging spectrum and elaborate on emerging paradigms and opportunities. We envision that these technical advances will change radiology in the coming years, leading to the optimization of imaging acquisition and discovery of clinically relevant biomarkers for cancer diagnosis, staging, and treatment monitoring. Together, they pave the road for future clinical translation in precision oncology.
Collapse
Affiliation(s)
- Melissa M. Chen
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Admir Terzic
- Department of Radiology, Dom Zdravlja Odzak, Odzak, Bosnia and Herzegovina
| | - Anton S. Becker
- Department Radiology, Memorial Sloan Kettering, New York, NY, USA
| | - Jason M. Johnson
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C. Wu
- Department of Thoracic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Villalonga JF, Solari D, Cuocolo R, De Lucia V, Ugga L, Gragnaniello C, Pailler JI, Cervio A, Campero A, Cavallo LM, Cappabianca P. Clinical application of the “sellar barrier’s concept” for predicting intraoperative CSF leak in endoscopic endonasal surgery for pituitary adenomas with a machine learning analysis. Front Surg 2022; 9:934721. [PMID: 36157423 PMCID: PMC9492953 DOI: 10.3389/fsurg.2022.934721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recently, it was defined that the sellar barrier entity could be identified as a predictor of cerebrospinal fluid (CSF) intraoperative leakage. The aim of this study is to validate the application of the sellar barrier concept for predicting intraoperative CSF leak in endoscopic endonasal surgery for pituitary adenomas with a machine learning approach. Methods We conducted a prospective cohort study, from June 2019 to September 2020: data from 155 patients with pituitary subdiaphragmatic adenoma operated through endoscopic approach at the Division of Neurosurgery, Università degli Studi di Napoli “Federico II,” were included. Preoperative magnetic resonance images (MRI) and intraoperative findings were analyzed. After processing patient data, the experiment was conducted as a novelty detection problem, splitting outliers (i.e., patients with intraoperative fistula, n = 11/155) and inliers into separate datasets, the latter further separated into training (n = 115/144) and inlier test (n = 29/144) datasets. The machine learning analysis was performed using different novelty detection algorithms [isolation forest, local outlier factor, one-class support vector machine (oSVM)], whose performance was assessed separately and as an ensemble on the inlier and outlier test sets. Results According to the type of sellar barrier, patients were classified into two groups, i.e., strong and weak barrier; a third category of mixed barrier was defined when a case was neither weak nor strong. Significant differences between the three datasets were found for Knosp classification score (p = 0.0015), MRI barrier: strong (p = 1.405 × 10−6), MRI barrier: weak (p = 4.487 × 10−8), intraoperative barrier: strong (p = 2.788 × 10−7), and intraoperative barrier: weak (p = 2.191 × 10−10). We recorded 11 cases of intraoperative leakage that occurred in the majority of patients presenting a weak sellar barrier (p = 4.487 × 10−8) at preoperative MRI. Accuracy, sensitivity, and specificity for outlier detection were 0.70, 0.64, and 0.72 for IF; 0.85, 0.45, and 1.00 for LOF; 0.83, 0.64, and 0.90 for oSVM; and 0.83, 0.55, and 0.93 for the ensemble, respectively. Conclusions There is a true correlation between the type of sellar barrier at MRI and its in vivo features as observed during endoscopic endonasal surgery. The novelty detection models highlighted differences between patients who developed an intraoperative CSF leak and those who did not.
Collapse
Affiliation(s)
- J. F. Villalonga
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
- LINT, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
- Correspondence: J. F. Villalonga
| | - D. Solari
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
| | - R. Cuocolo
- Department of Advanced Biomedical Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
| | - V. De Lucia
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
| | - L. Ugga
- Department of Advanced Biomedical Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
| | - C. Gragnaniello
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
- Department of Neurological Surgery, Swedish Neuroscience Institute, Seattle, WA, United States
| | - J. I. Pailler
- LINT, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - A. Cervio
- Departamento de Neurocirugía, FLENI, Buenos Aires, Argentina
| | - A. Campero
- LINT, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - L. M. Cavallo
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
| | - P. Cappabianca
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Universita’ degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
23
|
Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
AutoComBat: a generic method for harmonizing MRI-based radiomic features. Sci Rep 2022; 12:12762. [PMID: 35882891 PMCID: PMC9325761 DOI: 10.1038/s41598-022-16609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The use of multicentric data is becoming essential for developing generalizable radiomic signatures. In particular, Magnetic Resonance Imaging (MRI) data used in brain oncology are often heterogeneous in terms of scanners and acquisitions, which significantly impact quantitative radiomic features. Various methods have been proposed to decrease dependency, including methods acting directly on MR images, i.e., based on the application of several preprocessing steps before feature extraction or the ComBat method, which harmonizes radiomic features themselves. The ComBat method used for radiomics may be misleading and presents some limitations, such as the need to know the labels associated with the "batch effect". In addition, a statistically representative sample is required and the applicability of a signature whose batch label is not present in the train set is not possible. This work aimed to compare a priori and a posteriori radiomic harmonization methods and propose a code adaptation to be machine learning compatible. Furthermore, we have developed AutoComBat, which aims to automatically determine the batch labels, using either MRI metadata or quality metrics as inputs of the proposed constrained clustering. A heterogeneous dataset consisting of high and low-grade gliomas coming from eight different centers was considered. The different methods were compared based on their ability to decrease relative standard deviation of radiomic features extracted from white matter and on their performance on a classification task using different machine learning models. ComBat and AutoComBat using image-derived quality metrics as inputs for batch assignment and preprocessing methods presented promising results on white matter harmonization, but with no clear consensus for all MR images. Preprocessing showed the best results on the T1w-gd images for the grading task. For T2w-flair, AutoComBat, using either metadata plus quality metrics or metadata alone as inputs, performs better than the conventional ComBat, highlighting its potential for data harmonization. Our results are MRI weighting, feature class and task dependent and require further investigations on other datasets.
Collapse
|
25
|
Moassefi M, Faghani S, Conte GM, Kowalchuk RO, Vahdati S, Crompton DJ, Perez-Vega C, Cabreja RAD, Vora SA, Quiñones-Hinojosa A, Parney IF, Trifiletti DM, Erickson BJ. A deep learning model for discriminating true progression from pseudoprogression in glioblastoma patients. J Neurooncol 2022; 159:447-455. [DOI: 10.1007/s11060-022-04080-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/25/2022] [Indexed: 12/30/2022]
|
26
|
Arivazhagan N, Venkatesh J, Somasundaram K, Vijayalakshmi K, Priya SS, Suresh Thangakrishnan M, Senthamilselvan K, Lakshmi Dhevi B, Vijendra Babu D, Chandragandhi S, Ashine Chamato F. An Improved Machine Learning Model for Diagnostic Cancer Recognition Using Artificial Intelligence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1078056. [PMID: 35845582 PMCID: PMC9283038 DOI: 10.1155/2022/1078056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
In the medical field, some specialized applications are currently being used to treat various ailments. These activities are being carried out with extra care, especially for cancer patients. Physicians are seeking the help of technology to help diagnose cancer, its dosage, its current status, cancer classification, and appropriate treatment. The machine learning method developed by an artificial intelligence is proposed here in order to effectively assist the doctors in that regard. Its design methods obtain highly complex cancerous inputs and clearly describe its type and dosage. It is also recommending the effects of cancer and appropriate medical procedures to the doctors. This method ensures that a lot of doctors' time is saved. In a saturation point, the proposed model achieved 93.31% of image recognition, 6.69% of image rejection, 94.22% accuracy, 92.42% of precision, 93.94% of recall rate, 92.6% of F1-score, and 2178 ms of computational speed. This shows that the proposed model performs well while compared with the existing methods.
Collapse
Affiliation(s)
- N. Arivazhagan
- Department of Computational Intelligence, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India
| | - J. Venkatesh
- Department of Computer Science and Engineering, Chennai Institute of Technology, Kundrathur, Chennai 600069, Tamilnadu, India
| | - K. Somasundaram
- Institute of Information of Technology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India
| | - K. Vijayalakshmi
- Department of CSE, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India
| | - S. Sathiya Priya
- Department of Electronics and Communication Engineering, Panimalar Institute of Technology, Chennai, Tamilnadu, India
| | - M. Suresh Thangakrishnan
- Department of Computer Science and Engineering, Einstein College of Engineering, Tirunelveli 627012, Tamilnadu, India
| | - K. Senthamilselvan
- Department of Electronics and communication Engineering, Prince Shri Venkateshwara Padmavathy Engineering College, Ponmar, Chennai, Tamilnadu, India
| | - B. Lakshmi Dhevi
- Institute of Artificial Intelligence and Machine Learning, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India
| | - D. Vijendra Babu
- Department of Electronics and Communication Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation, Chennai, Tamilnadu, India
| | - S. Chandragandhi
- AP/CSE, JCT College of Engineering and Technology, Pichanur, Tamilnadu, India
| | - Fekadu Ashine Chamato
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
27
|
George E, Flagg E, Chang K, Bai HX, Aerts HJ, Vallières M, Reardon DA, Huang RY. Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma. AJNR Am J Neuroradiol 2022; 43:675-681. [PMID: 35483906 PMCID: PMC9089247 DOI: 10.3174/ajnr.a7488] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of treatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy. MATERIALS AND METHODS Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (n = 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (n = 60-74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (n = 29-43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points. RESULTS The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index = 0.472-0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692-0.750) and progression-free survival (concordance index = 0.680-0.715). CONCLUSIONS A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.
Collapse
Affiliation(s)
- E George
- From the Department of Radiology and Biomedical Imaging (E.G.), University of California San Francisco, San Francisco, California
| | - E Flagg
- Department of Radiology (E.F., R.Y.H.), Brigham and Women's Hospital, Boston, Massachusetts
| | - K Chang
- Massachusetts Institute of Technology (K.C.), Cambridge, Massachusetts
| | - H X Bai
- Department of Diagnostic Imaging (H.X.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - H J Aerts
- Artificial Intelligence in Medicine Program (H.J.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Departments of Radiation Oncology and Radiology (H.J.A.), Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - M Vallières
- Department of Computer Science (M.V.), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - D A Reardon
- Center for Neuro Oncology (D.A.R.), Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Y Huang
- Department of Radiology (E.F., R.Y.H.), Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
28
|
Sha Y, Chen J. MRI-based radiomics for the diagnosis of triple-negative breast cancer: a meta-analysis. Clin Radiol 2022; 77:655-663. [DOI: 10.1016/j.crad.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
|
29
|
Developing an Artificial Intelligence Model for Tumor Grading and Classification, Based on MRI Sequences of Human Brain Gliomas. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm.120638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Artificial intelligence (AI) models have provided advanced applications to many scientific areas, including the prediction of the pathologic grade of tumors, utilizing radiology techniques. Gliomas are among the malignant brain tumors in human adults, and their efficient diagnosis is of high clinical significance. Objectives: Given the contribution of AI to medical diagnoses, we investigated the role of deep learning in the differential diagnosis and grading of human brain gliomas. Methods: This study developed a new AI diagnostic model, i.e., EfficientNetB0, to grade and classify human brain gliomas, using sequences from magnetic resonance imaging (MRI). Results: We validated the new AI model, using a standard dataset (BraTS-2019) and demonstrated that the AI components, i.e., convolutional neural networks and transfer learning, provided excellent performance for classifying and grading glioma images at 98.8% accuracy. Conclusions: The proposed model, EfficientNetB0, is capable to classify and grade glioma from MRI sequences at high accuracy, validity, and specificity. It can provide better performance and diagnostic results for human glioma images than models developed by previous studies.
Collapse
|
30
|
Lotan E, Zhang B, Dogra S, Wang W, Carbone D, Fatterpekar G, Oermann E, Lui Y. Development and Practical Implementation of a Deep Learning-Based Pipeline for Automated Pre- and Postoperative Glioma Segmentation. AJNR Am J Neuroradiol 2022; 43:24-32. [PMID: 34857514 PMCID: PMC8757542 DOI: 10.3174/ajnr.a7363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Quantitative volumetric segmentation of gliomas has important implications for diagnosis, treatment, and prognosis. We present a deep-learning model that accommodates automated preoperative and postoperative glioma segmentation with a pipeline for clinical implementation. Developed and engineered in concert, the work seeks to accelerate clinical realization of such tools. MATERIALS AND METHODS A deep learning model, autoencoder regularization-cascaded anisotropic, was developed, trained, and tested fusing key elements of autoencoder regularization with a cascaded anisotropic convolutional neural network. We constructed a dataset consisting of 437 cases with 40 cases reserved as a held-out test and the remainder split 80:20 for training and validation. We performed data augmentation and hyperparameter optimization and used a mean Dice score to evaluate against baseline models. To facilitate clinical adoption, we developed the model with an end-to-end pipeline including routing, preprocessing, and end-user interaction. RESULTS The autoencoder regularization-cascaded anisotropic model achieved median and mean Dice scores of 0.88/0.83 (SD, 0.09), 0.89/0.84 (SD, 0.08), and 0.81/0.72 (SD, 0.1) for whole-tumor, tumor core/resection cavity, and enhancing tumor subregions, respectively, including both preoperative and postoperative follow-up cases. The overall total processing time per case was ∼10 minutes, including data routing (∼1 minute), preprocessing (∼6 minute), segmentation (∼1-2 minute), and postprocessing (∼1 minute). Implementation challenges were discussed. CONCLUSIONS We show the feasibility and advantages of building a coordinated model with a clinical pipeline for the rapid and accurate deep learning segmentation of both preoperative and postoperative gliomas. The ability of the model to accommodate cases of postoperative glioma is clinically important for follow-up. An end-to-end approach, such as used here, may lead us toward successful clinical translation of tools for quantitative volume measures for glioma.
Collapse
Affiliation(s)
- E. Lotan
- From the Department of Radiology (E.L., B.Z., S.D., D.C., G.F., E.K.O., Y.W.L.)
| | - B. Zhang
- From the Department of Radiology (E.L., B.Z., S.D., D.C., G.F., E.K.O., Y.W.L.)
| | - S. Dogra
- From the Department of Radiology (E.L., B.Z., S.D., D.C., G.F., E.K.O., Y.W.L.)
| | | | - D. Carbone
- From the Department of Radiology (E.L., B.Z., S.D., D.C., G.F., E.K.O., Y.W.L.)
| | - G. Fatterpekar
- From the Department of Radiology (E.L., B.Z., S.D., D.C., G.F., E.K.O., Y.W.L.)
| | - E.K. Oermann
- From the Department of Radiology (E.L., B.Z., S.D., D.C., G.F., E.K.O., Y.W.L.),Neurosurgery, School of Medicine (E.K.O.), NYU Langone Health, New York, New York
| | - Y.W. Lui
- From the Department of Radiology (E.L., B.Z., S.D., D.C., G.F., E.K.O., Y.W.L.)
| |
Collapse
|
31
|
Pendem S, Zachariah R, Priya PS. Classification of low- and high-grade gliomas using radiomic analysis of multiple sequences of MRI brain. J Cancer Res Ther 2022. [DOI: 10.4103/jcrt.jcrt_1581_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Tillmanns N, Lum AE, Cassinelli G, Merkaj S, Verma T, Zeevi T, Staib L, Subramanian H, Bahar RC, Brim W, Lost J, Jekel L, Brackett A, Payabvash S, Ikuta I, Lin M, Bousabarah K, Johnson MH, Cui J, Malhotra A, Omuro A, Turowski B, Aboian MS. Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries. Neurooncol Adv 2022; 4:vdac093. [PMID: 36071926 PMCID: PMC9446682 DOI: 10.1093/noajnl/vdac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background While there are innumerable machine learning (ML) research algorithms used for segmentation of gliomas, there is yet to be a US FDA cleared product. The aim of this study is to explore the systemic limitations of research algorithms that have prevented translation from concept to product by a review of the current research literature. Methods We performed a systematic literature review on 4 databases. Of 11 727 articles, 58 articles met the inclusion criteria and were used for data extraction and screening using TRIPOD. Results We found that while many articles were published on ML-based glioma segmentation and report high accuracy results, there were substantial limitations in the methods and results portions of the papers that result in difficulty reproducing the methods and translation into clinical practice. Conclusions In addition, we identified that more than a third of the articles used the same publicly available BRaTS and TCIA datasets and are responsible for the majority of patient data on which ML algorithms were trained, which leads to limited generalizability and potential for overfitting and bias.
Collapse
Affiliation(s)
- Niklas Tillmanns
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Avery E Lum
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Cassinelli
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sara Merkaj
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tej Verma
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tal Zeevi
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lawrence Staib
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Harry Subramanian
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ryan C Bahar
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Waverly Brim
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jan Lost
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leon Jekel
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alexandria Brackett
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut, USA
| | - Sam Payabvash
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ichiro Ikuta
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - MingDe Lin
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Visage Imaging, Inc., San Diego, California, USA
| | | | - Michele H Johnson
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jin Cui
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Ajay Malhotra
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Antonio Omuro
- Department of Neurology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bernd Turowski
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Mariam S Aboian
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Subramanian H, Dey R, Brim WR, Tillmanns N, Cassinelli Petersen G, Brackett A, Mahajan A, Johnson M, Malhotra A, Aboian M. Trends in Development of Novel Machine Learning Methods for the Identification of Gliomas in Datasets That Include Non-Glioma Images: A Systematic Review. Front Oncol 2021; 11:788819. [PMID: 35004312 PMCID: PMC8733688 DOI: 10.3389/fonc.2021.788819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Machine learning has been applied to the diagnostic imaging of gliomas to augment classification, prognostication, segmentation, and treatment planning. A systematic literature review was performed to identify how machine learning has been applied to identify gliomas in datasets which include non-glioma images thereby simulating normal clinical practice. Materials and Methods Four databases were searched by a medical librarian and confirmed by a second librarian for all articles published prior to February 1, 2021: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science-Core Collection. The search strategy included both keywords and controlled vocabulary combining the terms for: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, as well as related terms. The review was conducted in stepwise fashion with abstract screening, full text screening, and data extraction. Quality of reporting was assessed using TRIPOD criteria. Results A total of 11,727 candidate articles were identified, of which 12 articles were included in the final analysis. Studies investigated the differentiation of normal from abnormal images in datasets which include gliomas (7 articles) and the differentiation of glioma images from non-glioma or normal images (5 articles). Single institution datasets were most common (5 articles) followed by BRATS (3 articles). The median sample size was 280 patients. Algorithm testing strategies consisted of five-fold cross validation (5 articles), and the use of exclusive sets of images within the same dataset for training and for testing (7 articles). Neural networks were the most common type of algorithm (10 articles). The accuracy of algorithms ranged from 0.75 to 1.00 (median 0.96, 10 articles). Quality of reporting assessment utilizing TRIPOD criteria yielded a mean individual TRIPOD ratio of 0.50 (standard deviation 0.14, range 0.37 to 0.85). Conclusion Systematic review investigating the identification of gliomas in datasets which include non-glioma images demonstrated multiple limitations hindering the application of these algorithms to clinical practice. These included limited datasets, a lack of generalizable algorithm training and testing strategies, and poor quality of reporting. The development of more robust and heterogeneous datasets is needed for algorithm development. Future studies would benefit from using external datasets for algorithm testing as well as placing increased attention on quality of reporting standards. Systematic Review Registration www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020209938, International Prospective Register of Systematic Reviews (PROSPERO 2020 CRD42020209938).
Collapse
Affiliation(s)
- Harry Subramanian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Rahul Dey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Waverly Rose Brim
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Niklas Tillmanns
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | | | - Alexandria Brackett
- Harvey Cushing/John Hay Whitney Medical Library, Yale School of Medicine, New Haven, CT, United States
| | - Amit Mahajan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Michele Johnson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Mariam Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Mariam Aboian,
| |
Collapse
|
34
|
van Kempen EJ, Post M, Mannil M, Witkam RL, Ter Laan M, Patel A, Meijer FJA, Henssen D. Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis. Eur Radiol 2021; 31:9638-9653. [PMID: 34019128 PMCID: PMC8589805 DOI: 10.1007/s00330-021-08035-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Different machine learning algorithms (MLAs) for automated segmentation of gliomas have been reported in the literature. Automated segmentation of different tumor characteristics can be of added value for the diagnostic work-up and treatment planning. The purpose of this study was to provide an overview and meta-analysis of different MLA methods. METHODS A systematic literature review and meta-analysis was performed on the eligible studies describing the segmentation of gliomas. Meta-analysis of the performance was conducted on the reported dice similarity coefficient (DSC) score of both the aggregated results as two subgroups (i.e., high-grade and low-grade gliomas). This study was registered in PROSPERO prior to initiation (CRD42020191033). RESULTS After the literature search (n = 734), 42 studies were included in the systematic literature review. Ten studies were eligible for inclusion in the meta-analysis. Overall, the MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86). In addition, a DSC score of 0.83 (95% CI: 0.80-0.87) and 0.82 (95% CI: 0.78-0.87) was observed for the automated glioma segmentation of the high-grade and low-grade gliomas, respectively. However, heterogeneity was considerably high between included studies, and publication bias was observed. CONCLUSION MLAs facilitating automated segmentation of gliomas show good accuracy, which is promising for future implementation in neuroradiology. However, before actual implementation, a few hurdles are yet to be overcome. It is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set. KEY POINTS • MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86), indicating a good performance. • MLA performance was comparable when comparing the segmentation results of the high-grade gliomas and the low-grade gliomas. • For future studies using MLAs, it is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set.
Collapse
Affiliation(s)
- Evi J van Kempen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Max Post
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Manoj Mannil
- Clinic of Radiology, University Hospital Münster, Münster, Germany
| | - Richard L Witkam
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ajay Patel
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Wu J, Liang F, Wei R, Lai S, Lv X, Luo S, Wu Z, Chen H, Zhang W, Zeng X, Ye X, Wu Y, Wei X, Jiang X, Zhen X, Yang R. A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis. Cancers (Basel) 2021; 13:5793. [PMID: 34830943 PMCID: PMC8616314 DOI: 10.3390/cancers13225793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the diagnostic potential of a novel RFO model in differentiating GBM and SBM with multiparametric MR sequences collected from 244 (131 GBM and 113 SBM) patients. Three basic volume of interests (VOIs) were delineated on the conventional axial MR images (T1WI, T2WI, T2_FLAIR, and CE_T1WI), including volumetric non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE). Using the RFO model, radiomics features extracted from different multiparametric MRI sequence(s) and VOI(s) were fused and the best sequence and VOI, or possible combinations, were determined. A multi-disciplinary team (MDT)-like fusion was performed to integrate predictions from the high-performing models for the final discrimination of GBM vs. SBM. Image features extracted from the volumetric ET (VOIET) had dominant predictive performances over features from other VOI combinations. Fusion of VOIET features from the T1WI and T2_FLAIR sequences via the RFO model achieved a discrimination accuracy of AUC = 0.925, accuracy = 0.855, sensitivity = 0.856, and specificity = 0.853, on the independent testing cohort 1, and AUC = 0.859, accuracy = 0.836, sensitivity = 0.708, and specificity = 0.919 on the independent testing cohort 2, which significantly outperformed three experienced radiologists (p = 0.03, 0.01, 0.02, and 0.01, and p = 0.02, 0.01, 0.45, and 0.02, respectively) and the MDT-decision result of three experienced experts (p = 0.03, 0.02, 0.03, and 0.02, and p = 0.03, 0.02, 0.44, and 0.03, respectively).
Collapse
Affiliation(s)
- Jialiang Wu
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
- Department of Radiology, The University of Hong Kong Shenzhen Hospital, Shenzhen 518000, China
| | - Fangrong Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Ruili Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou 510520, China;
| | - Xiaofei Lv
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shiwei Luo
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Zhe Wu
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Huixian Chen
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Xiangling Zeng
- Department of Radiology, Huizhou Municipal Central Hospital, Huizhou 516001, China;
| | - Xianghua Ye
- Department of Radiation Oncology, 1st Affiliated Hospital, Zhejiang University, Hangzhou 310009, China;
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China;
| | - Xinhua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| |
Collapse
|
36
|
Abdel Razek AAK, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, Helmy E. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 2021; 12:152. [PMID: 34676470 PMCID: PMC8531173 DOI: 10.1186/s13244-021-01102-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This article is a comprehensive review of the basic background, technique, and clinical applications of artificial intelligence (AI) and radiomics in the field of neuro-oncology. A variety of AI and radiomics utilized conventional and advanced techniques to differentiate brain tumors from non-neoplastic lesions such as inflammatory and demyelinating brain lesions. It is used in the diagnosis of gliomas and discrimination of gliomas from lymphomas and metastasis. Also, semiautomated and automated tumor segmentation has been developed for radiotherapy planning and follow-up. It has a role in the grading, prediction of treatment response, and prognosis of gliomas. Radiogenomics allowed the connection of the imaging phenotype of the tumor to its molecular environment. In addition, AI is applied for the assessment of extra-axial brain tumors and pediatric tumors with high performance in tumor detection, classification, and stratification of patient's prognoses.
Collapse
Affiliation(s)
| | - Ahmed Alksas
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mohamed Shehata
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Amr AbdelKhalek
- Internship at Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Khaled Abdel Baky
- Department of Diagnostic Radiology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Ayman El-Baz
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Eman Helmy
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Elgomheryia Street, Mansoura, 3512, Egypt.
| |
Collapse
|
37
|
Lotlikar VS, Satpute N, Gupta A. Brain Tumor Detection Using Machine Learning and Deep Learning: A Review. Curr Med Imaging 2021; 18:604-622. [PMID: 34561990 DOI: 10.2174/1573405617666210923144739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
According to the international agency for research on cancer (IARC), the mortality rate due to brain tumors is 76%. It is required to detect the brain tumors as early as possible and to provide the patient with the required treatment to avoid any fatal situation. With the recent advancement in technology, it is possible to automatically detect the tumor from images such as magnetic resonance imaging (MRI) and computed tomography scans using a computer-aided design. Machine learning and deep learning techniques have gained significance among researchers in medical fields, especially convolutional neural networks (CNN), due to their ability to analyze large amounts of complex image data and perform classification. The objective of this review article is to present an exhaustive study of techniques such as preprocessing, machine learning, and deep learning that have been adopted in the last 15 years and based on it to present a detailed comparative analysis. The challenges encountered by researchers in the past for tumor detection have been discussed along with the future scopes that can be taken by the researchers as the future work. Clinical challenges that are encountered have also been discussed, which are missing in existing review articles.
Collapse
Affiliation(s)
- Venkatesh S Lotlikar
- MTech scholar, Department of E&TC Engineering, College of Engineering Pune, India
| | - Nitin Satpute
- Electrical and Computer Engineering, Aarhus University. Denmark
| | - Aditya Gupta
- Adjunct Faculty, Department of E&TC Engineering, College of Engineering Pune, India
| |
Collapse
|
38
|
Ning Z, Tu C, Di X, Feng Q, Zhang Y. Deep cross-view co-regularized representation learning for glioma subtype identification. Med Image Anal 2021; 73:102160. [PMID: 34303890 DOI: 10.1016/j.media.2021.102160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The new subtypes of diffuse gliomas are recognized by the World Health Organization (WHO) on the basis of genotypes, e.g., isocitrate dehydrogenase and chromosome arms 1p/19q, in addition to the histologic phenotype. Glioma subtype identification can provide valid guidances for both risk-benefit assessment and clinical decision. The feature representations of gliomas in magnetic resonance imaging (MRI) have been prevalent for revealing underlying subtype status. However, since gliomas are highly heterogeneous tumors with quite variable imaging phenotypes, learning discriminative feature representations in MRI for gliomas remains challenging. In this paper, we propose a deep cross-view co-regularized representation learning framework for glioma subtype identification, in which view representation learning and multiple constraints are integrated into a unified paradigm. Specifically, we first learn latent view-specific representations based on cross-view images generated from MRI via a bi-directional mapping connecting original imaging space and latent space, and view-correlated regularizer and output-consistent regularizer in the latent space are employed to explore view correlation and derive view consistency, respectively. We further learn view-sharable representations which can explore complementary information of multiple views by projecting the view-specific representations into a holistically shared space and enhancing via adversary learning strategy. Finally, the view-specific and view-sharable representations are incorporated for identifying glioma subtype. Experimental results on multi-site datasets demonstrate the proposed method outperforms several state-of-the-art methods in detection of glioma subtype status.
Collapse
Affiliation(s)
- Zhenyuan Ning
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Chao Tu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Di
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
39
|
Liu D, Chen J, Hu X, Yang K, Liu Y, Hu G, Ge H, Zhang W, Liu H. Imaging-Genomics in Glioblastoma: Combining Molecular and Imaging Signatures. Front Oncol 2021; 11:699265. [PMID: 34295824 PMCID: PMC8290166 DOI: 10.3389/fonc.2021.699265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Based on artificial intelligence (AI), computer-assisted medical diagnosis can scientifically and efficiently deal with a large quantity of medical imaging data. AI technologies including deep learning have shown remarkable progress across medical image recognition and genome analysis. Imaging-genomics attempts to explore the associations between potential gene expression patterns and specific imaging phenotypes. These associations provide potential cellular pathophysiology information, allowing sampling of the lesion habitat with high spatial resolution. Glioblastoma (GB) poses spatial and temporal heterogeneous characteristics, challenging to current precise diagnosis and treatments for the disease. Imaging-genomics provides a powerful tool for non-invasive global assessment of GB and its response to treatment. Imaging-genomics also has the potential to advance our understanding of underlying cancer biology, gene alterations, and corresponding biological processes. This article reviews the recent progress in the utilization of the imaging-genomics analysis in GB patients, focusing on its implications and prospects in individualized diagnosis and management.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Taha B, Boley D, Sun J, Chen C. Potential and limitations of radiomics in neuro-oncology. J Clin Neurosci 2021; 90:206-211. [PMID: 34275550 DOI: 10.1016/j.jocn.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022]
Abstract
Radiomics seeks to apply classical methods of image processing to obtain quantitative parameters from imaging. Derived features are subsequently fed into algorithmic models to aid clinical decision making. The application of radiomics and machine learning techniques to clinical medicine remains in its infancy. The great potential of radiomics lies in its objective, granular approach to investigating clinical imaging. In neuro-oncology, advanced machine learning techniques, particularly deep learning, are at the forefront of new discoveries in the field. However, despite the great promise of machine learning aided radiomic approaches, the current use remains confined to scholarly research, without real-world deployment in neuro-oncology. The paucity of data, inconsistencies in preprocessing, radiomic feature instability, and the rarity of the events of interest are critical barriers to clinical translation. In this article, we will outline the major steps in the process of radiomics, as well as review advances and challenges in the field as they pertain to neuro-oncology.
Collapse
Affiliation(s)
- Birra Taha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN USA
| | - Daniel Boley
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ju Sun
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN USA.
| |
Collapse
|
41
|
Daisy PS, Anitha TS. Can artificial intelligence overtake human intelligence on the bumpy road towards glioma therapy? Med Oncol 2021; 38:53. [PMID: 33811540 DOI: 10.1007/s12032-021-01500-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022]
Abstract
Gliomas are one of the most devastating primary brain tumors which impose significant management challenges to the clinicians. The aggressive behaviour of gliomas is mainly attributed to their rapid proliferation, unravelled genomics and the blood-brain barrier which protects the tumor cells from chemotherapeutic regimens. Suspects of brain tumors are usually assessed by magnetic resonance imaging and computed tomography. These images allow surgeons to decide on the tumor grading, intra-operative pathology, feasibility of surgery, and treatment planning. All these data are compiled manually by physicians, wherein it takes time for the validation of results and concluding the treatment modality. In this context, the arrival of artificial intelligence in this era of personalized medicine, has proven promising performance in the diagnosis and management of gliomas. Starting from grading prediction till outcome evaluation, artificial intelligence-based forefronts have revolutionized oncological research. Interestingly, this approach has also been able to precisely differentiate tumor lesion from healthy tissues. However, till date, their utility in neuro-oncological field remains limited due to the issues pertaining to their reliability and transparency. Hence, to shed novel insights on the "clinical utility of this novel approach on glioma management" and to reveal "the black-boxes that have to be solved for fruitful application of artificial intelligence in neuro-oncology research", we provide in this review, a succinct description of the potential gear of artificial intelligence-based avenues in glioma treatment and the barriers that impede their rapid implementation in neuro-oncology.
Collapse
Affiliation(s)
- Precilla S Daisy
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Pillaiyarkuppam, Puducherry, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Pillaiyarkuppam, Puducherry, India. .,Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth, Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India.
| |
Collapse
|
42
|
Shin I, Kim H, Ahn SS, Sohn B, Bae S, Park JE, Kim HS, Lee SK. Development and Validation of a Deep Learning-Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images. AJNR Am J Neuroradiol 2021; 42:838-844. [PMID: 33737268 DOI: 10.3174/ajnr.a7003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Differentiating glioblastoma from solitary brain metastasis preoperatively using conventional MR images is challenging. Deep learning models have shown promise in performing classification tasks. The diagnostic performance of a deep learning-based model in discriminating glioblastoma from solitary brain metastasis using preoperative conventional MR images was evaluated. MATERIALS AND METHODS Records of 598 patients with histologically confirmed glioblastoma or solitary brain metastasis at our institution between February 2006 and December 2017 were retrospectively reviewed. Preoperative contrast-enhanced T1WI and T2WI were preprocessed and roughly segmented with rectangular regions of interest. A deep neural network was trained and validated using MR images from 498 patients. The MR images of the remaining 100 were used as an internal test set. An additional 143 patients from another tertiary hospital were used as an external test set. The classifications of ResNet-50 and 2 neuroradiologists were compared for their accuracy, precision, recall, F1 score, and area under the curve. RESULTS The areas under the curve of ResNet-50 were 0.889 and 0.835 in the internal and external test sets, respectively. The area under the curve of neuroradiologists 1 and 2 were 0.889 and 0.768 in the internal test set and 0.857 and 0.708 in the external test set, respectively. CONCLUSIONS A deep learning-based model may be a supportive tool for preoperative discrimination between glioblastoma and solitary brain metastasis using conventional MR images.
Collapse
Affiliation(s)
- I Shin
- From the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| | - H Kim
- From the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| | - S S Ahn
- From the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| | - B Sohn
- From the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| | - S Bae
- Department of Radiology (S.B.), National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - J E Park
- Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K.), Asan Medical Center, University of Ulsan College of Medicine
| | - H S Kim
- Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K.), Asan Medical Center, University of Ulsan College of Medicine
| | - S-K Lee
- From the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology 2021; 63:1293-1304. [PMID: 33649882 PMCID: PMC8295153 DOI: 10.1007/s00234-021-02668-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose To systematically review and evaluate the methodological quality of studies using radiomics for diagnostic and predictive purposes in patients with intracranial meningioma. To perform a meta-analysis of machine learning studies for the prediction of intracranial meningioma grading from pre-operative brain MRI. Methods Articles published from the year 2000 on radiomics and machine learning applications in brain imaging of meningioma patients were included. Their methodological quality was assessed by three readers with the radiomics quality score, using the intra-class correlation coefficient (ICC) to evaluate inter-reader reproducibility. A meta-analysis of machine learning studies for the preoperative evaluation of meningioma grading was performed and their risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool. Results In all, 23 studies were included in the systematic review, 8 of which were suitable for the meta-analysis. Total (possible range, −8 to 36) and percentage radiomics quality scores were respectively 6.96 ± 4.86 and 19 ± 13% with a moderate to good inter-reader reproducibility (ICC = 0.75, 95% confidence intervals, 95%CI = 0.54–0.88). The meta-analysis showed an overall AUC of 0.88 (95%CI = 0.84–0.93) with a standard error of 0.02. Conclusions Machine learning and radiomics have been proposed for multiple applications in the imaging of meningiomas, with promising results for preoperative lesion grading. However, future studies with adequate standardization and higher methodological quality are required prior to their introduction in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02668-0.
Collapse
|
44
|
Özcan H, Emiroğlu BG, Sabuncuoğlu H, Özdoğan S, Soyer A, Saygı T. A comparative study for glioma classification using deep convolutional neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1550-1572. [PMID: 33757198 DOI: 10.3934/mbe.2021080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gliomas are a type of central nervous system (CNS) tumor that accounts for the most of malignant brain tumors. The World Health Organization (WHO) divides gliomas into four grades based on the degree of malignancy. Gliomas of grades I-II are considered low-grade gliomas (LGGs), whereas gliomas of grades III-IV are termed high-grade gliomas (HGGs). Accurate classification of HGGs and LGGs prior to malignant transformation plays a crucial role in treatment planning. Magnetic resonance imaging (MRI) is the cornerstone for glioma diagnosis. However, examination of MRI data is a time-consuming process and error prone due to human intervention. In this study we introduced a custom convolutional neural network (CNN) based deep learning model trained from scratch and compared the performance with pretrained AlexNet, GoogLeNet and SqueezeNet through transfer learning for an effective glioma grade prediction. We trained and tested the models based on pathology-proven 104 clinical cases with glioma (50 LGGs, 54 HGGs). A combination of data augmentation techniques was used to expand the training data. Five-fold cross-validation was applied to evaluate the performance of each model. We compared the models in terms of averaged values of sensitivity, specificity, F1 score, accuracy, and area under the receiver operating characteristic curve (AUC). According to the experimental results, our custom-design deep CNN model achieved comparable or even better performance than the pretrained models. Sensitivity, specificity, F1 score, accuracy and AUC values of the custom model were 0.980, 0.963, 0.970, 0.971 and 0.989, respectively. GoogLeNet showed better performance than AlexNet and SqueezeNet in terms of accuracy and AUC with a sensitivity, specificity, F1 score, accuracy, and AUC values of 0.980, 0.889, 0.933, 0.933, and 0.987, respectively. AlexNet yielded a sensitivity, specificity, F1 score, accuracy, and AUC values of 0.940, 0.907, 0.922, 0.923 and 0.970, respectively. As for SqueezeNet, the sensitivity, specificity, F1 score, accuracy, and AUC values were 0.920, 0.870, 0.893, 0.894, and 0.975, respectively. The results have shown the effectiveness and robustness of the proposed custom model in classifying gliomas into LGG and HGG. The findings suggest that the deep CNNs and transfer learning approaches can be very useful to solve classification problems in the medical domain.
Collapse
Affiliation(s)
- Hakan Özcan
- Department of Computer Technology, Amasya University, Amasya, Turkey
| | | | | | | | - Ahmet Soyer
- Department of Neurosurgery, Ufuk University, Ankara, Turkey
| | - Tahsin Saygı
- Department of Neurosurgery, Haseki Research and Training Hospital, İstanbul, Turkey
| |
Collapse
|
45
|
Sanvito F, Castellano A, Falini A. Advancements in Neuroimaging to Unravel Biological and Molecular Features of Brain Tumors. Cancers (Basel) 2021; 13:cancers13030424. [PMID: 33498680 PMCID: PMC7865835 DOI: 10.3390/cancers13030424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Advanced neuroimaging is gaining increasing relevance for the characterization and the molecular profiling of brain tumor tissue. On one hand, for some tumor types, the most widespread advanced techniques, investigating diffusion and perfusion features, have been proven clinically feasible and rather robust for diagnosis and prognosis stratification. In addition, 2-hydroxyglutarate spectroscopy, for the first time, offers the possibility to directly measure a crucial molecular marker. On the other hand, numerous innovative approaches have been explored for a refined evaluation of tumor microenvironments, particularly assessing microstructural and microvascular properties, and the potential applications of these techniques are vast and still to be fully explored. Abstract In recent years, the clinical assessment of primary brain tumors has been increasingly dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor pathophysiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers for predicting tumor grades and molecular subtypes, opening the era of “molecular imaging” and radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors, including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques. Lastly, after providing an overview of the advancements, we illustrate current clinical applications and future perspectives.
Collapse
Affiliation(s)
- Francesco Sanvito
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-3015
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
46
|
Simińska D, Korbecki J, Kojder K, Kapczuk P, Fabiańska M, Gutowska I, Machoy-Mokrzyńska A, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Anthropometric Factors in Glioblastoma Multiforme-Literature Review. Brain Sci 2021; 11:116. [PMID: 33467126 PMCID: PMC7829953 DOI: 10.3390/brainsci11010116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Although glioblastoma multiforme (GBM) is a widely researched cancer of the central nervous system, we still do not know its full pathophysiological mechanism and we still lack effective treatment methods as the current combination of surgery, radiotherapy, and chemotherapy does not bring about satisfactory results. The median survival time for GBM patients is only about 15 months. In this paper, we present the epidemiology of central nervous system (CNS) tumors and review the epidemiological data on GBM regarding gender, age, weight, height, and tumor location. The data indicate the possible influence of some anthropometric factors on the occurrence of GBM, especially in those who are male, elderly, overweight, and/or are taller. However, this review of single and small-size epidemiological studies should not be treated as definitive due to differences in the survey methods used. Detailed epidemiological registers could help identify the main at-risk groups which could then be used as homogenous study groups in research worldwide. Such research, with less distortion from various factors, could help identify the pathomechanisms that lead to the development of GBM.
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Krakowska 71–79, 71-017 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Anna Machoy-Mokrzyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| |
Collapse
|
47
|
Zhang B, Yan J, Chen W, Dong Y, Zhang L, Mo X, Chen Q, Cheng J, Liu X, Wang W, Zhang Z, Zhang S. Machine learning classifiers for predicting 3-year progression-free survival and overall survival in patients with gliomas after surgery. J Cancer 2021; 12:1604-1615. [PMID: 33613747 PMCID: PMC7890310 DOI: 10.7150/jca.52183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background: To develop machine-learning based models to predict the progression-free survival (PFS) and overall survival (OS) in patients with gliomas and explore the effect of different feature selection methods on the prediction. Methods: We included 505 patients (training cohort, n = 354; validation cohort, n = 151) with gliomas between January 1, 2011 and December 31, 2016. The clinical, neuroimaging, and molecular genetic data of patients were retrospectively collected. The multi-causes discovering with structure learning (McDSL) algorithm, least absolute shrinkage and selection operator regression (LASSO), and Cox proportional hazards regression model were employed to discover the predictors for 3-year PFS and OS, respectively. Eight machine learning classifiers with 5-fold cross-validation were developed to predict 3-year PFS and OS. The area under the curve (AUC) was used to evaluate the prognostic performance of classifiers. Results: McDSL identified four causal factors (tumor location, WHO grade, histologic type, and molecular genetic group) for 3-year PFS and OS, whereas LASSO and Cox identified wide-range number of factors associated with 3-year PFS and OS. The performance of each machine learning classifier based on McDSL, LASSO, and Cox was not significantly different. Logistic regression yielded the optimal performance in predicting 3-year PFS based on the McDSL (AUC, 0.872, 95% confidence interval [CI]: 0.828-0.916) and 3-year OS based on the LASSO (AUC, 0.901, 95% CI: 0.861-0.940). Conclusions: McDSL is more reproducible than LASSO and Cox model in the feature selection process. Logistic regression model may have the highest performance in predicting 3-year PFS and OS of gliomas.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiqi Chen
- Big Data Decision Institute, Jinan University, Guangzhou, Guangdong, China.,School of management, Jinan University. Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong, Provincial Key Laboratory of South China
| | - Yuhao Dong
- Structural Heart Disease, Guangdong Provincial; People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Irmak E. Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS OF ELECTRICAL ENGINEERING 2021; 45. [PMCID: PMC8061452 DOI: 10.1007/s40998-021-00426-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Brain tumor diagnosis and classification still rely on histopathological analysis of biopsy specimens today. The current method is invasive, time-consuming and prone to manual errors. These disadvantages show how essential it is to perform a fully automated method for multi-classification of brain tumors based on deep learning. This paper aims to make multi-classification of brain tumors for the early diagnosis purposes using convolutional neural network (CNN). Three different CNN models are proposed for three different classification tasks. Brain tumor detection is achieved with 99.33% accuracy using the first CNN model. The second CNN model can classify the brain tumor into five brain tumor types as normal, glioma, meningioma, pituitary and metastatic with an accuracy of 92.66%. The third CNN model can classify the brain tumors into three grades as Grade II, Grade III and Grade IV with an accuracy of 98.14%. All the important hyper-parameters of CNN models are automatically designated using the grid search optimization algorithm. To the best of author’s knowledge, this is the first study for multi-classification of brain tumor MRI images using CNN whose almost all hyper-parameters are tuned by the grid search optimizer. The proposed CNN models are compared with other popular state-of-the-art CNN models such as AlexNet, Inceptionv3, ResNet-50, VGG-16 and GoogleNet. Satisfactory classification results are obtained using large and publicly available clinical datasets. The proposed CNN models can be employed to assist physicians and radiologists in validating their initial screening for brain tumor multi-classification purposes.
Collapse
Affiliation(s)
- Emrah Irmak
- Electrical-Electronics Engineering Department, Alanya Alaaddin Keykubat University, 07425 Alanya, Antalya, Turkey
| |
Collapse
|
49
|
Clement P, Booth T, Borovečki F, Emblem KE, Figueiredo P, Hirschler L, Jančálek R, Keil VC, Maumet C, Özsunar Y, Pernet C, Petr J, Pinto J, Smits M, Warnert EAH. GliMR: Cross-Border Collaborations to Promote Advanced MRI Biomarkers for Glioma. J Med Biol Eng 2020; 41:115-125. [PMID: 33293909 PMCID: PMC7712600 DOI: 10.1007/s40846-020-00582-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Purpose There is an annual incidence of 50,000 glioma cases in Europe. The optimal treatment strategy is highly personalised, depending on tumour type, grade, spatial localization, and the degree of tissue infiltration. In research settings, advanced magnetic resonance imaging (MRI) has shown great promise as a tool to inform personalised treatment decisions. However, the use of advanced MRI in clinical practice remains scarce due to the downstream effects of siloed glioma imaging research with limited representation of MRI specialists in established consortia; and the associated lack of available tools and expertise in clinical settings. These shortcomings delay the translation of scientific breakthroughs into novel treatment strategy. As a response we have developed the network “Glioma MR Imaging 2.0” (GliMR) which we present in this article. Methods GliMR aims to build a pan-European and multidisciplinary network of experts and accelerate the use of advanced MRI in glioma beyond the current “state-of-the-art” in glioma imaging. The Action Glioma MR Imaging 2.0 (GliMR) was granted funding by the European Cooperation in Science and Technology (COST) in June 2019. Results GliMR’s first grant period ran from September 2019 to April 2020, during which several meetings were held and projects were initiated, such as reviewing the current knowledge on advanced MRI; developing a General Data Protection Regulation (GDPR) compliant consent form; and setting up the website. Conclusion The Action overcomes the pre-existing limitations of glioma research and is funded until September 2023. New members will be accepted during its entire duration.
Collapse
Affiliation(s)
- Patricia Clement
- Ghent Institute for Metabolic and Functional Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Thomas Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH UK.,Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, SE5 9RS UK
| | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Kyrre E Emblem
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Lydiane Hirschler
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Radim Jančálek
- Department of Neurosurgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Vera C Keil
- Department of Radiology, Amsterdam University Medical Center, VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Yelda Özsunar
- Department of Radiology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Cyril Pernet
- Centre for Clinical Brain Sciences & Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Brar K, Hachem LD, Badhiwala JH, Mau C, Zacharia BE, de Moraes FY, Pirouzmand F, Mansouri A. Management of Diffuse Low-Grade Glioma: The Renaissance of Robust Evidence. Front Oncol 2020; 10:575658. [PMID: 33117714 PMCID: PMC7560299 DOI: 10.3389/fonc.2020.575658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
The surgical management of diffuse low-grade gliomas (DLGGs) has undergone a paradigm shift toward striving for maximal safe resection when feasible. While extensive observational data supports this transition, unbiased evidence in the form of high quality randomized-controlled trials (RCTs) is lacking. Furthermore, despite a high volume of molecular, genetic, and imaging data, the field of neuro-oncology lacks personalized care algorithms for individuals with DLGGs based on a robust foundation of evidence. In this manuscript, we (1) discuss the logistical and philosophical challenges hindering the development of surgical RCTs for DLGGs, (2) highlight the potential impact of well-designed international prospective observational registries, (3) discuss ways in which cutting-edge computational techniques can be harnessed to generate maximal insight from high volumes of multi-faceted data, and (4) outline a comprehensive plan of action that will enable a multi-disciplinary approach to future DLGG management, integrating advances in clinical medicine, basic molecular research and large-scale data mining.
Collapse
Affiliation(s)
- Karanbir Brar
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Laureen D Hachem
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Jetan H Badhiwala
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Christine Mau
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| | - Fabio Ynoe de Moraes
- Division of Radiation Oncology, Department of Oncology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Farhad Pirouzmand
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|