1
|
Kotoulas SC, Spyratos D, Porpodis K, Domvri K, Boutou A, Kaimakamis E, Mouratidou C, Alevroudis I, Dourliou V, Tsakiri K, Sakkou A, Marneri A, Angeloudi E, Papagiouvanni I, Michailidou A, Malandris K, Mourelatos C, Tsantos A, Pataka A. A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2025; 17:882. [PMID: 40075729 PMCID: PMC11898928 DOI: 10.3390/cancers17050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5-10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities-such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans-but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.
Collapse
Affiliation(s)
- Serafeim-Chrysovalantis Kotoulas
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Dionysios Spyratos
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Konstantinos Porpodis
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Kalliopi Domvri
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Afroditi Boutou
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Evangelos Kaimakamis
- 1st ICU, Medical Informatics Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| | - Christina Mouratidou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioannis Alevroudis
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Vasiliki Dourliou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Kalliopi Tsakiri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Agni Sakkou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Alexandra Marneri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Elena Angeloudi
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioanna Papagiouvanni
- 4th Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Anastasia Michailidou
- 2nd Propaedeutic Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantinos Malandris
- 2nd Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Constantinos Mourelatos
- Biology and Genetics Laboratory, Aristotle’s University of Thessaloniki, 54624 Thessaloniki, Greece;
| | - Alexandros Tsantos
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Athanasia Pataka
- Respiratory Failure Clinic and Sleep Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| |
Collapse
|
2
|
Chen YH, Lue KH, Chu SC, Lin CB, Liu SH. The value of 18F-fluorodeoxyglucose positron emission tomography-based radiomics in non-small cell lung cancer. Tzu Chi Med J 2025; 37:17-27. [PMID: 39850392 PMCID: PMC11753514 DOI: 10.4103/tcmj.tcmj_124_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 01/25/2025] Open
Abstract
Currently, the second most commonly diagnosed cancer in the world is lung cancer, and 85% of cases are non-small cell lung cancer (NSCLC). With growing knowledge of oncogene drivers and cancer immunology, several novel therapeutics have emerged to improve the prognostic outcomes of NSCLC. However, treatment outcomes remain diverse, and an accurate tool to achieve precision medicine is an unmet need. Radiomics, a method of extracting medical imaging features, is promising for precision medicine. Among all radiomic tools, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)-based radiomics provides distinct information on glycolytic activity and heterogeneity. In this review, we collected relevant literature from PubMed and summarized the various applications of 18F-FDG PET-derived radiomics in improving the detection of metastasis, subtyping histopathologies, characterizing driver mutations, assessing treatment response, and evaluating survival outcomes of NSCLC. Furthermore, we reviewed the values of 18F-FDG PET-based deep learning. Finally, several challenges and caveats exist in the implementation of 18F-FDG PET-based radiomics for NSCLC. Implementing 18F-FDG PET-based radiomics in clinical practice is necessary to ensure reproducibility. Moreover, basic studies elucidating the underlying biological significance of 18F-FDG PET-based radiomics are lacking. Current inadequacies hamper immediate clinical adoption; however, radiomic studies are progressively addressing these issues. 18F-FDG PET-based radiomics remains an invaluable and indispensable aspect of precision medicine for NSCLC.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
3
|
Wang L, Zhang C, Li J. A Hybrid CNN-Transformer Model for Predicting N Staging and Survival in Non-Small Cell Lung Cancer Patients Based on CT-Scan. Tomography 2024; 10:1676-1693. [PMID: 39453040 PMCID: PMC11510788 DOI: 10.3390/tomography10100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Accurate assessment of N staging in patients with non-small cell lung cancer (NSCLC) is critical for the development of effective treatment plans, the optimization of therapeutic strategies, and the enhancement of patient survival rates. This study proposes a hybrid model based on 3D convolutional neural networks (CNNs) and transformers for predicting the N-staging and survival rates of NSCLC patients within the NSCLC radiogenomics and Nsclc-radiomics datasets. The model achieved accuracies of 0.805, 0.828, and 0.819 for the training, validation, and testing sets, respectively. By leveraging the strengths of CNNs in local feature extraction and the superior performance of transformers in global information modeling, the model significantly enhances predictive accuracy and efficacy. A comparative analysis with traditional CNN and transformer architectures demonstrates that the CNN-transformer hybrid model outperforms N-staging predictions. Furthermore, this study extracts the one-year survival rate as a feature and employs the Lasso-Cox model for survival predictions at various time intervals (1, 3, 5, and 7 years), with all survival prediction p-values being less than 0.05, illustrating the time-dependent nature of survival analysis. The application of time-dependent ROC curves further validates the model's accuracy and reliability for survival predictions. Overall, this research provides innovative methodologies and new insights for the early diagnosis and prognostic evaluation of NSCLC.
Collapse
Affiliation(s)
| | | | - Jin Li
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (L.W.); (C.Z.)
| |
Collapse
|
4
|
Wang J, Liu G, Zhou C, Cui X, Wang W, Wang J, Huang Y, Jiang J, Wang Z, Tang Z, Zhang A, Cui D. Application of artificial intelligence in cancer diagnosis and tumor nanomedicine. NANOSCALE 2024; 16:14213-14246. [PMID: 39021117 DOI: 10.1039/d4nr01832j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cancer is a major health concern due to its high incidence and mortality rates. Advances in cancer research, particularly in artificial intelligence (AI) and deep learning, have shown significant progress. The swift evolution of AI in healthcare, especially in tools like computer-aided diagnosis, has the potential to revolutionize early cancer detection. This technology offers improved speed, accuracy, and sensitivity, bringing a transformative impact on cancer diagnosis, treatment, and management. This paper provides a concise overview of the application of artificial intelligence in the realms of medicine and nanomedicine, with a specific emphasis on the significance and challenges associated with cancer diagnosis. It explores the pivotal role of AI in cancer diagnosis, leveraging structured, unstructured, and multimodal fusion data. Additionally, the article delves into the applications of AI in nanomedicine sensors and nano-oncology drugs. The fundamentals of deep learning and convolutional neural networks are clarified, underscoring their relevance to AI-driven cancer diagnosis. A comparative analysis is presented, highlighting the accuracy and efficiency of traditional methods juxtaposed with AI-based approaches. The discussion not only assesses the current state of AI in cancer diagnosis but also delves into the challenges faced by AI in this context. Furthermore, the article envisions the future development direction and potential application of artificial intelligence in cancer diagnosis, offering a hopeful prospect for enhanced cancer detection and improved patient prognosis.
Collapse
Affiliation(s)
- Junhao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Guan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinyuan Cui
- Imaging Department of Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiulin Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yixin Huang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jinlei Jiang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zengyi Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Amin Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- School of Medicine, Henan University, Henan, China
| |
Collapse
|
5
|
Lue KH, Chen YH, Chu SC, Lin CB, Wang TF, Liu SH. Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study. Ann Nucl Med 2024; 38:647-658. [PMID: 38704786 DOI: 10.1007/s12149-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To investigate the prognostic value of 18F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. METHODS We retrospectively analyzed the pre-treatment 18F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (n = 166) and digital (n = 51) PET cohorts. 18F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. RESULTS In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUVmax, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p < 0.001) and digital PET cohorts (HR = 1.284, p = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p < 0.001, c-index = 0.708 and HR = 1.256, p = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). CONCLUSIONS Combining 18F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan
| | - Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan.
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.707, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan.
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan.
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Hematology and Oncology, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chih-Bin Lin
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Internal Medicine, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tso-Fu Wang
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Hematology and Oncology, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.707, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
| |
Collapse
|
6
|
Lococo F, Ghaly G, Chiappetta M, Flamini S, Evangelista J, Bria E, Stefani A, Vita E, Martino A, Boldrini L, Sassorossi C, Campanella A, Margaritora S, Mohammed A. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. Cancers (Basel) 2024; 16:1832. [PMID: 38791910 PMCID: PMC11119930 DOI: 10.3390/cancers16101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Artificial Intelligence (AI) has revolutionized the management of non-small-cell lung cancer (NSCLC) by enhancing different aspects, including staging, prognosis assessment, treatment prediction, response evaluation, recurrence/prognosis prediction, and personalized prognostic assessment. AI algorithms may accurately classify NSCLC stages using machine learning techniques and deep imaging data analysis. This could potentially improve precision and efficiency in staging, facilitating personalized treatment decisions. Furthermore, there are data suggesting the potential application of AI-based models in predicting prognosis in terms of survival rates and disease progression by integrating clinical, imaging and molecular data. In the present narrative review, we will analyze the preliminary studies reporting on how AI algorithms could predict responses to various treatment modalities, such as surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. There is robust evidence suggesting that AI also plays a crucial role in predicting the likelihood of tumor recurrence after surgery and the pattern of failure, which has significant implications for tailoring adjuvant treatments. The successful implementation of AI in personalized prognostic assessment requires the integration of different data sources, including clinical, molecular, and imaging data. Machine learning (ML) and deep learning (DL) techniques enable AI models to analyze these data and generate personalized prognostic predictions, allowing for a precise and individualized approach to patient care. However, challenges relating to data quality, interpretability, and the ability of AI models to generalize need to be addressed. Collaboration among clinicians, data scientists, and regulators is critical for the responsible implementation of AI and for maximizing its benefits in providing a more personalized prognostic assessment. Continued research, validation, and collaboration are essential to fully exploit the potential of AI in NSCLC management and improve patient outcomes. Herein, we have summarized the state of the art of applications of AI in lung cancer for predicting staging, prognosis, and pattern of recurrence after treatment in order to provide to the readers a large comprehensive overview of this challenging issue.
Collapse
Affiliation(s)
- Filippo Lococo
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Galal Ghaly
- Faculty of Medicine and Surgery, Thoracic Surgery Unit, Cairo University, Giza 12613, Egypt; (G.G.); (A.M.)
| | - Marco Chiappetta
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Sara Flamini
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Jessica Evangelista
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Emilio Bria
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Alessio Stefani
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Emanuele Vita
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Antonella Martino
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Radiotherapy Unit, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Luca Boldrini
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Radiotherapy Unit, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Carolina Sassorossi
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Annalisa Campanella
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Stefano Margaritora
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Abdelrahman Mohammed
- Faculty of Medicine and Surgery, Thoracic Surgery Unit, Cairo University, Giza 12613, Egypt; (G.G.); (A.M.)
| |
Collapse
|
7
|
Yuan L, An L, Zhu Y, Duan C, Kong W, Jiang P, Yu QQ. Machine Learning in Diagnosis and Prognosis of Lung Cancer by PET-CT. Cancer Manag Res 2024; 16:361-375. [PMID: 38699652 PMCID: PMC11063459 DOI: 10.2147/cmar.s451871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As a disease with high morbidity and high mortality, lung cancer has seriously harmed people's health. Therefore, early diagnosis and treatment are more important. PET/CT is usually used to obtain the early diagnosis, staging, and curative effect evaluation of tumors, especially lung cancer, due to the heterogeneity of tumors and the differences in artificial image interpretation and other reasons, it also fails to entirely reflect the real situation of tumors. Artificial intelligence (AI) has been applied to all aspects of life. Machine learning (ML) is one of the important ways to realize AI. With the help of the ML method used by PET/CT imaging technology, there are many studies in the diagnosis and treatment of lung cancer. This article summarizes the application progress of ML based on PET/CT in lung cancer, in order to better serve the clinical. In this study, we searched PubMed using machine learning, lung cancer, and PET/CT as keywords to find relevant articles in the past 5 years or more. We found that PET/CT-based ML approaches have achieved significant results in the detection, delineation, classification of pathology, molecular subtyping, staging, and response assessment with survival and prognosis of lung cancer, which can provide clinicians a powerful tool to support and assist in critical daily clinical decisions. However, ML has some shortcomings such as slightly poor repeatability and reliability.
Collapse
Affiliation(s)
- Lili Yuan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Lin An
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Yandong Zhu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Chongling Duan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Weixiang Kong
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Qing-Qing Yu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| |
Collapse
|
8
|
Song X, Duan X, He X, Wang Y, Li K, Deng B, Chen X, Wang Y, Li M, Shan H. Computer-aided diagnosis of distal metastasis in non-small cell lung cancer by low-dose CT based radiomics and deep learning signatures. LA RADIOLOGIA MEDICA 2024; 129:239-251. [PMID: 38214839 DOI: 10.1007/s11547-024-01770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND This study aimed to develop and validate radiomics and deep learning (DL) signatures for predicting distal metastasis (DM) of non-small cell lung cancer (NSCLC) in low-dose computed tomography (LDCT). METHODS Images and clinical data were retrospectively collected for 381 NSCLC patients and prospectively collected for 114 patients at the Fifth Affiliated Hospital of Sun Yat-Sen University. Additionally, we enrolled 179 patients from the Jiangmen Central Hospital to externally validate the signatures. Machine-learning algorithms were employed to develop radiomics signature while the DL signature was developed using neural architecture search. The diagnostic efficiency was primarily quantified with the area under receiver operating characteristic curve (AUC). We interpreted the reasoning process of the radiomics signature and DL signature by radiomics voxel mapping and attention weight tracking. RESULTS A total of 674 patients with pathologically-confirmed NSCLC were included from two institutions, with 143 of them having DM. The radiomics signature achieved AUCs of 0.885, 0.854, and 0.733 in the internal validation, prospective validation, and external validation while those for DL signature were 0.893, 0.786, and 0.780. The proposed signatures achieved a promising performance in predicting the DM of NSCLC and outperformed the approaches proposed in previous studies. Interpretability analysis revealed that both radiomics and DL signatures could detect the variations among voxels inside tumors, which helped in identifying the DM of NSCLC. CONCLUSIONS Our study demonstrates the potential of LDCT-based radiomics and DL signatures for predicting DM in NSCLC. These signatures could help improve lung cancer screening regarding further diagnostic tests and treatment strategies.
Collapse
Affiliation(s)
- Xiaoyi Song
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xiaobei Duan
- Department of Nuclear Medicine, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Xinghua He
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yubo Wang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Kunwei Li
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Bangxuan Deng
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Xiangmeng Chen
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Ying Wang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Man Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Department of Information Technology and Data Center, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Biobank of the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
9
|
Kidera E, Koyasu S, Hirata K, Hamaji M, Nakamoto R, Nakamoto Y. Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using 18F-FDG PET. Ann Nucl Med 2024; 38:71-80. [PMID: 37755604 DOI: 10.1007/s12149-023-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. METHODS We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. RESULTS In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. CONCLUSION The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.
Collapse
Affiliation(s)
- Eitaro Kidera
- Department of Radiology, Kishiwada City Hospital, Kishiwada, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
10
|
Lue KH, Chen YH, Chu SC, Chang BS, Lin CB, Chen YC, Lin HH, Liu SH. A comparison of 18 F-FDG PET-based radiomics and deep learning in predicting regional lymph node metastasis in patients with resectable lung adenocarcinoma: a cross-scanner and temporal validation study. Nucl Med Commun 2023; 44:1094-1105. [PMID: 37728592 DOI: 10.1097/mnm.0000000000001776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
OBJECTIVE The performance of 18 F-FDG PET-based radiomics and deep learning in detecting pathological regional nodal metastasis (pN+) in resectable lung adenocarcinoma varies, and their use across different generations of PET machines has not been thoroughly investigated. We compared handcrafted radiomics and deep learning using different PET scanners to predict pN+ in resectable lung adenocarcinoma. METHODS We retrospectively analyzed pretreatment 18 F-FDG PET from 148 lung adenocarcinoma patients who underwent curative surgery. Patients were separated into analog (n = 131) and digital (n = 17) PET cohorts. Handcrafted radiomics and a ResNet-50 deep-learning model of the primary tumor were used to predict pN+ status. Models were trained in the analog PET cohort, and the digital PET cohort was used for cross-scanner validation. RESULTS In the analog PET cohort, entropy, a handcrafted radiomics, independently predicted pN+. However, the areas under the receiver-operating-characteristic curves (AUCs) and accuracy for entropy were only 0.676 and 62.6%, respectively. The ResNet-50 model demonstrated a better AUC and accuracy of 0.929 and 94.7%, respectively. In the digital PET validation cohort, the ResNet-50 model also demonstrated better AUC (0.871 versus 0.697) and accuracy (88.2% versus 64.7%) than entropy. The ResNet-50 model achieved comparable specificity to visual interpretation but with superior sensitivity (83.3% versus 66.7%) in the digital PET cohort. CONCLUSION Applying deep learning across different generations of PET scanners may be feasible and better predict pN+ than handcrafted radiomics. Deep learning may complement visual interpretation and facilitate tailored therapeutic strategies for resectable lung adenocarcinoma.
Collapse
Affiliation(s)
- Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology,
| | - Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology,
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
- School of Medicine, College of Medicine, Tzu Chi University,
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University,
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| | - Bee-Song Chang
- Department of Cardiothoracic Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| | - Yen-Chang Chen
- School of Medicine, College of Medicine, Tzu Chi University,
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien,
| | - Hsin-Hon Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan and
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology,
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| |
Collapse
|
11
|
Mu J, Huang J, Ao M, Li W, Jiang L, Yang L. Advances in diagnosis and prediction for aggression of pure solid T1 lung cancer. PRECISION CLINICAL MEDICINE 2023; 6:pbad020. [PMID: 38025970 PMCID: PMC10680022 DOI: 10.1093/pcmedi/pbad020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
A growing number of early-stage lung cancers presenting as malignant pulmonary nodules have been diagnosed because of the increased adoption of low-dose spiral computed tomography. But pure solid T1 lung cancer with ≤3 cm in the greatest dimension is not always at an early stage, despite its small size. This type of cancer can be highly aggressive and is associated with pathological involvement, metastasis, postoperative relapse, and even death. However, it is easily misdiagnosed or delay diagnosed in clinics and thus poses a serious threat to human health. The percentage of nodal or extrathoracic metastases has been reported to be >20% in T1 lung cancer. As such, understanding and identifying the aggressive characteristics of pure solid T1 lung cancer is crucial for prevention, diagnosis, and therapeutic strategies, and beneficial to improving the prognosis. With the widespread of lung cancer screening, these highly invasive pure solid T1 lung cancer will become the main advanced lung cancer in future. However, there is limited information regarding precision medicine on how to identify these "early-stage" aggressive lung cancers. To provide clinicians with new insights into early recognition and intervention of the highly invasive pure solid T1 lung cancer, this review summarizes its clinical characteristics, imaging, pathology, gene alterations, immune microenvironment, multi-omics, and current techniques for diagnosis and prediction.
Collapse
Affiliation(s)
- Junhao Mu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Min Ao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Rogasch JMM, Michaels L, Baumgärtner GL, Frost N, Rückert JC, Neudecker J, Ochsenreither S, Gerhold M, Schmidt B, Schneider P, Amthauer H, Furth C, Penzkofer T. A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [ 18F]FDG-PET/CT parameters. Eur J Nucl Med Mol Imaging 2023; 50:2140-2151. [PMID: 36820890 PMCID: PMC10199849 DOI: 10.1007/s00259-023-06145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND In patients with non-small cell lung cancer (NSCLC), accuracy of [18F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image assessment. METHODS Monocentric retrospective analysis of pretherapeutic [18F]FDG-PET/CT in 491 consecutive patients with NSCLC using an analog PET/CT scanner (training + test cohort, n = 385) or digital scanner (validation, n = 106). Forty clinical variables, tumor characteristics, and image variables (e.g., primary tumor and LN SUVmax and size) were collected. Different combinations of machine learning methods for feature selection and classification of N0/1 vs. N2/3 disease were compared. Ten-fold nested cross-validation was used to derive the mean area under the ROC curve of the ten test folds ("test AUC") and AUC in the validation cohort. Reference standard was the final N stage from interdisciplinary consensus (histological results for N2/3 LNs in 96%). RESULTS N2/3 disease was present in 190 patients (39%; training + test, 37%; validation, 46%; p = 0.09). A gradient boosting classifier (GBM) with 10 features was selected as the final model based on test AUC of 0.91 (95% confidence interval, 0.87-0.94). Validation AUC was 0.94 (0.89-0.98). At a target sensitivity of approx. 90%, test/validation accuracy of the GBM was 0.78/0.87. This was significantly higher than the accuracy based on "mediastinal LN uptake > mediastinum" (0.7/0.75; each p < 0.05) or combined PET/CT criteria (PET positive and/or LN short axis diameter > 10 mm; 0.68/0.75; each p < 0.001). Harmonization of PET images between the two scanners affected SUVmax and visual assessment of the LNs but did not diminish the AUC of the GBM. CONCLUSIONS A machine learning model based on routinely available variables from [18F]FDG-PET/CT improved accuracy in mediastinal LN staging compared to established visual assessment criteria. A web application implementing this model was made available.
Collapse
Affiliation(s)
- Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Liza Michaels
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Georg L Baumgärtner
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nikolaj Frost
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jens-Carsten Rückert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jens Neudecker
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Sebastian Ochsenreither
- Department of Hematology and Medical Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charité Comprehensive Cancer Center, Berlin, Germany
| | - Manuela Gerhold
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Bernd Schmidt
- Department of Internal Medicine - Pneumology and Sleep Medicine, DRK Kliniken Berlin Mitte, Berlin, Germany
| | - Paul Schneider
- Department of Thoracic Surgery, DRK Kliniken Berlin Mitte, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias Penzkofer
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Mu J, Kuang K, Ao M, Li W, Dai H, Ouyang Z, Li J, Huang J, Guo S, Yang J, Yang L. Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans. Front Med (Lausanne) 2023; 10:1145846. [PMID: 37275359 PMCID: PMC10235703 DOI: 10.3389/fmed.2023.1145846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
In the clinic, it is difficult to distinguish the malignancy and aggressiveness of solid pulmonary nodules (PNs). Incorrect assessments may lead to delayed diagnosis and an increased risk of complications. We developed and validated a deep learning-based model for the prediction of malignancy as well as local or distant metastasis in solid PNs based on CT images of primary lesions during initial diagnosis. In this study, we reviewed the data from multiple patients with solid PNs at our institution from 1 January 2019 to 30 April 2022. The patients were divided into three groups: benign, Ia-stage lung cancer, and T1-stage lung cancer with metastasis. Each cohort was further split into training and testing groups. The deep learning system predicted the malignancy and metastasis status of solid PNs based on CT images, and then we compared the malignancy prediction results among four different levels of clinicians. Experiments confirmed that human-computer collaboration can further enhance diagnostic accuracy. We made a held-out testing set of 134 cases, with 689 cases in total. Our convolutional neural network model reached an area under the ROC (AUC) of 80.37% for malignancy prediction and an AUC of 86.44% for metastasis prediction. In observer studies involving four clinicians, the proposed deep learning method outperformed a junior respiratory clinician and a 5-year respiratory clinician by considerable margins; it was on par with a senior respiratory clinician and was only slightly inferior to a senior radiologist. Our human-computer collaboration experiment showed that by simply adding binary human diagnosis into model prediction probabilities, model AUC scores improved to 81.80-88.70% when combined with three out of four clinicians. In summary, the deep learning method can accurately diagnose the malignancy of solid PNs, improve its performance when collaborating with human experts, predict local or distant metastasis in patients with T1-stage lung cancer, and facilitate the application of precision medicine.
Collapse
Affiliation(s)
- Junhao Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiming Kuang
- Dianei Technology, Shanghai, China
- University of California, San Diego, San Diego, CA, United States
| | - Min Ao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyun Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zubin Ouyang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyu Li
- Dianei Technology, Shanghai, China
- School of Computer Science, Wuhan University, Wuhan, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiancheng Yang
- Dianei Technology, Shanghai, China
- Shanghai Jiao Tong University, Shanghai, China
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Park J, Kang SK, Hwang D, Choi H, Ha S, Seo JM, Eo JS, Lee JS. Automatic Lung Cancer Segmentation in [ 18F]FDG PET/CT Using a Two-Stage Deep Learning Approach. Nucl Med Mol Imaging 2023; 57:86-93. [PMID: 36998591 PMCID: PMC10043063 DOI: 10.1007/s13139-022-00745-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022] Open
Abstract
Purpose Since accurate lung cancer segmentation is required to determine the functional volume of a tumor in [18F]FDG PET/CT, we propose a two-stage U-Net architecture to enhance the performance of lung cancer segmentation using [18F]FDG PET/CT. Methods The whole-body [18F]FDG PET/CT scan data of 887 patients with lung cancer were retrospectively used for network training and evaluation. The ground-truth tumor volume of interest was drawn using the LifeX software. The dataset was randomly partitioned into training, validation, and test sets. Among the 887 PET/CT and VOI datasets, 730 were used to train the proposed models, 81 were used as the validation set, and the remaining 76 were used to evaluate the model. In Stage 1, the global U-net receives 3D PET/CT volume as input and extracts the preliminary tumor area, generating a 3D binary volume as output. In Stage 2, the regional U-net receives eight consecutive PET/CT slices around the slice selected by the Global U-net in Stage 1 and generates a 2D binary image as the output. Results The proposed two-stage U-Net architecture outperformed the conventional one-stage 3D U-Net in primary lung cancer segmentation. The two-stage U-Net model successfully predicted the detailed margin of the tumors, which was determined by manually drawing spherical VOIs and applying an adaptive threshold. Quantitative analysis using the Dice similarity coefficient confirmed the advantages of the two-stage U-Net. Conclusion The proposed method will be useful for reducing the time and effort required for accurate lung cancer segmentation in [18F]FDG PET/CT.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Electrical and Computer Engineering, Seoul National University College of Engineering, Seoul, 08826 Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Seung Kwan Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, 08826 Korea
- Brightonix Imaging Inc., Seoul, 03080 Korea
| | - Donghwi Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, 08826 Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St Mary’s Hospital, The Catholic University of Korea, Seoul, 06591 Korea
| | - Jong Mo Seo
- Department of Electrical and Computer Engineering, Seoul National University College of Engineering, Seoul, 08826 Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308 Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, 08826 Korea
- Brightonix Imaging Inc., Seoul, 03080 Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080 Korea
| |
Collapse
|
15
|
Bashkandi AH, Sadoughi K, Aflaki F, Alkhazaleh HA, Mohammadi H, Jimenez G. Combination of political optimizer, particle swarm optimizer, and convolutional neural network for brain tumor detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
16
|
Hussain Ali Y, Chinnaperumal S, Marappan R, Raju SK, Sadiq AT, Farhan AK, Srinivasan P. Multi-Layered Non-Local Bayes Model for Lung Cancer Early Diagnosis Prediction with the Internet of Medical Things. Bioengineering (Basel) 2023; 10:bioengineering10020138. [PMID: 36829633 PMCID: PMC9952033 DOI: 10.3390/bioengineering10020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
The Internet of Things (IoT) has been influential in predicting major diseases in current practice. The deep learning (DL) technique is vital in monitoring and controlling the functioning of the healthcare system and ensuring an effective decision-making process. In this study, we aimed to develop a framework implementing the IoT and DL to identify lung cancer. The accurate and efficient prediction of disease is a challenging task. The proposed model deploys a DL process with a multi-layered non-local Bayes (NL Bayes) model to manage the process of early diagnosis. The Internet of Medical Things (IoMT) could be useful in determining factors that could enable the effective sorting of quality values through the use of sensors and image processing techniques. We studied the proposed model by analyzing its results with regard to specific attributes such as accuracy, quality, and system process efficiency. In this study, we aimed to overcome problems in the existing process through the practical results of a computational comparison process. The proposed model provided a low error rate (2%, 5%) and an increase in the number of instance values. The experimental results led us to conclude that the proposed model can make predictions based on images with high sensitivity and better precision values compared to other specific results. The proposed model achieved the expected accuracy (81%, 95%), the expected specificity (80%, 98%), and the expected sensitivity (80%, 99%). This model is adequate for real-time health monitoring systems in the prediction of lung cancer and can enable effective decision-making with the use of DL techniques.
Collapse
Affiliation(s)
- Yossra Hussain Ali
- Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq
| | - Seelammal Chinnaperumal
- Department of Computer Science and Engineering, Solamalai College of Engineering, Madurai 625020, India
| | - Raja Marappan
- School of Computing, Sastra Deemed University, Thanjavur 613401, India
| | - Sekar Kidambi Raju
- School of Computing, Sastra Deemed University, Thanjavur 613401, India
- Correspondence:
| | - Ahmed T. Sadiq
- Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq
| | - Alaa K. Farhan
- Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq
| | | |
Collapse
|
17
|
Currie G, Hawk KE, Rohren E. The transformational potential of molecular radiomics. J Med Radiat Sci 2022; 70 Suppl 2:77-88. [PMID: 36238997 PMCID: PMC10122929 DOI: 10.1002/jmrs.626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Conventional radiomics in nuclear medicine involve hand-crafted and computer-assisted regions of interest. Recent developments in artificial intelligence (AI) have seen the emergence of AI-augmented segmentation and extraction of lower order traditional radiomic features. Deep learning (DL) affords the opportunity to extract abstract radiomic features directly from input tensors (images) without the need for segmentation. These fourth-order, high dimensional radiomics produce deep radiomics and are well suited to the data density associated with the molecular nature of hybrid imaging. Molecular radiomics and deep molecular radiomics provide insights beyond images and quantitation typical of semantic reporting. While the application of molecular radiomics using hand-crafted and computer-generated features is integrated into decision-making in nuclear medicine, the acceptance of deep molecular radiomics is less universal. This manuscript aims to provide an understanding of the language and principles associated with radiomics and deep radiomics in nuclear medicine.
Collapse
Affiliation(s)
- Geoffrey Currie
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - K Elizabeth Hawk
- School of Medicine, Stanford University, Stanford, California, USA.,Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Eric Rohren
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
18
|
Laros SSA, Dieckens D, Blazis SP, van der Heide JA. Machine learning classification of mediastinal lymph node metastasis in NSCLC: a multicentre study in a Western European patient population. EJNMMI Phys 2022; 9:66. [PMID: 36153446 PMCID: PMC9509500 DOI: 10.1186/s40658-022-00494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND [18F] FDG PET-CT has an important role in the initial staging of lung cancer; however, accurate differentiation between activity in malignant and benign intrathoracic lymph nodes on PET-CT scans can be challenging. The purpose of the current study was to investigate the effect of incorporating primary tumour data and clinical features to differentiate between [18F] FDG-avid malignant and benign intrathoracic lymph nodes. METHODS We retrospectively selected lung cancer patients who underwent PET-CT for initial staging in two centres in the Netherlands. The primary tumour and suspected lymph node metastases were annotated and cross-referenced with pathology results. Lymph nodes were classified as malignant or benign. From the image data, we extracted radiomic features and trained the classifier model using the extreme gradient boost (XGB) algorithm. Various scenarios were defined by selecting different combinations of data input and clinical features. Data from centre 1 were used for training and validation of the models using the XGB algorithm. To determine the performance of the model in a different hospital, the XGB model was tested using data from centre 2. RESULTS Adding primary tumour data resulted in a significant gain in the performance of the trained classifier model. Adding the clinical information about distant metastases did not lead to significant improvement. The performance of the model in the test set (centre 2) was slightly but statistically significantly lower than in the validation set (centre 1). CONCLUSIONS Using the XGB algorithm potentially leads to an improved model for the classification of intrathoracic lymph nodes. The inclusion of primary tumour data improved the performance of the model, while additional knowledge of distant metastases did not. In patients in whom metastases are limited to lymph nodes in the thorax, this may reduce costly and invasive procedures such as endobronchial ultrasound or mediastinoscopy procedures.
Collapse
Affiliation(s)
- Sara S. A. Laros
- grid.413972.a0000 0004 0396 792XDepartment of Medical Physics and Engineering, Albert Schweitzer Hospital, Afdeling Klinische Fysica - Medische Techniek, Albert Schweitzerplaats 25, 3318 AT Dordrecht, The Netherlands
| | - Dennis Dieckens
- grid.413972.a0000 0004 0396 792XDepartment of Nuclear Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Stephan P. Blazis
- grid.413972.a0000 0004 0396 792XDepartment of Medical Physics and Engineering, Albert Schweitzer Hospital, Afdeling Klinische Fysica - Medische Techniek, Albert Schweitzerplaats 25, 3318 AT Dordrecht, The Netherlands
| | - Johannes A. van der Heide
- grid.413972.a0000 0004 0396 792XDepartment of Nuclear Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands ,grid.413681.90000 0004 0631 9258Department of Nuclear Medicine, Diakonessenhuis Hospital, Utrecht, The Netherlands ,grid.412301.50000 0000 8653 1507Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
19
|
Huang B, Sollee J, Luo YH, Reddy A, Zhong Z, Wu J, Mammarappallil J, Healey T, Cheng G, Azzoli C, Korogodsky D, Zhang P, Feng X, Li J, Yang L, Jiao Z, Bai HX. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. EBioMedicine 2022; 82:104127. [PMID: 35810561 PMCID: PMC9278031 DOI: 10.1016/j.ebiom.2022.104127] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pre-treatment FDG-PET/CT scans were analyzed with machine learning to predict progression of lung malignancies and overall survival (OS). METHODS A retrospective review across three institutions identified patients with a pre-procedure FDG-PET/CT and an associated malignancy diagnosis. Lesions were manually and automatically segmented, and convolutional neural networks (CNNs) were trained using FDG-PET/CT inputs to predict malignancy progression. Performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Image features were extracted from CNNs and by radiomics feature extraction, and random survival forests (RSF) were constructed to predict OS. Concordance index (C-index) and integrated brier score (IBS) were used to evaluate OS prediction. FINDINGS 1168 nodules (n=965 patients) were identified. 792 nodules had progression and 376 were progression-free. The most common malignancies were adenocarcinoma (n=740) and squamous cell carcinoma (n=179). For progression risk, the PET+CT ensemble model with manual segmentation (accuracy=0.790, AUC=0.876) performed similarly to the CT only (accuracy=0.723, AUC=0.888) and better compared to the PET only (accuracy=0.664, AUC=0.669) models. For OS prediction with deep learning features, the PET+CT+clinical RSF ensemble model (C-index=0.737) performed similarly to the CT only (C-index=0.730) and better than the PET only (C-index=0.595), and clinical only (C-index=0.595) models. RSF models constructed with radiomics features had comparable performance to those with CNN features. INTERPRETATION CNNs trained using pre-treatment FDG-PET/CT and extracted performed well in predicting lung malignancy progression and OS. OS prediction performance with CNN features was comparable to a radiomics approach. The prognostic models could inform treatment options and improve patient care. FUNDING NIH NHLBI training grant (5T35HL094308-12, John Sollee).
Collapse
Affiliation(s)
- Brian Huang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Sollee
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ashwin Reddy
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Zhusi Zhong
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jing Wu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Joseph Mammarappallil
- Department of Diagnostic Radiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Terrance Healey
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Gang Cheng
- Department of Diagnostic Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Azzoli
- Department of Thoracic Oncology, Rhode Island Hospital, Providence, RI 02903, USA
| | - Dana Korogodsky
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Paul Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xue Feng
- Carina Medical Inc., Lexington, KY 40507, USA
| | - Jie Li
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Li Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhicheng Jiao
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Harrison Xiao Bai
- Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N. Carolina St., Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Ouyang ML, Zheng RX, Wang YR, Zuo ZY, Gu LD, Tian YQ, Wei YG, Huang XY, Tang K, Wang LX. Deep Learning Analysis Using 18F-FDG PET/CT to Predict Occult Lymph Node Metastasis in Patients With Clinical N0 Lung Adenocarcinoma. Front Oncol 2022; 12:915871. [PMID: 35875089 PMCID: PMC9301998 DOI: 10.3389/fonc.2022.915871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The aim of this work was to determine the feasibility of using a deep learning approach to predict occult lymph node metastasis (OLM) based on preoperative FDG-PET/CT images in patients with clinical node-negative (cN0) lung adenocarcinoma. Materials and Methods Dataset 1 (for training and internal validation) included 376 consecutive patients with cN0 lung adenocarcinoma from our hospital between May 2012 and May 2021. Dataset 2 (for prospective test) used 58 consecutive patients with cN0 lung adenocarcinoma from June 2021 to February 2022 at the same center. Three deep learning models: PET alone, CT alone, and combined model, were developed for the prediction of OLM. The performance of the models was evaluated on internal validation and prospective test in terms of accuracy, sensitivity, specificity, and areas under the receiver operating characteristic curve (AUCs). Results The combined model incorporating PET and CT showed the best performance, achieved an AUC of 0.81 [95% confidence interval (CI): 0.61, 1.00] in the prediction of OLM in internal validation set (n = 60) and an AUC of 0.87 (95% CI: 0.75, 0.99) in the prospective test set (n = 58). The model achieved 87.50% sensitivity, 80.00% specificity, and 81.00% accuracy in the internal validation set and achieved 75.00% sensitivity, 88.46% specificity, and 86.60% accuracy in the prospective test set. Conclusion This study presented a deep learning approach to enable the prediction of occult nodal involvement based on the PET/CT images before surgery in cN0 lung adenocarcinoma, which would help clinicians select patients who would be suitable for sublobar resection.
Collapse
Affiliation(s)
- Ming-li Ouyang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui-xuan Zheng
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-ran Wang
- Department of Medical Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-yi Zuo
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu-dan Gu
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-qian Tian
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-guo Wei
- Precision Health Institution, General Electric (GE) Healthcare, Hangzhou, China
| | - Xiao-ying Huang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang-xing Wang, ; Kun Tang, ; Xiao-ying Huang,
| | - Kun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang-xing Wang, ; Kun Tang, ; Xiao-ying Huang,
| | - Liang-xing Wang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang-xing Wang, ; Kun Tang, ; Xiao-ying Huang,
| |
Collapse
|
21
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
22
|
Zukotynski KA, Gaudet VC, Uribe CF, Chiam K, Bénard F, Gerbaudo VH. Clinical Applications of Artificial Intelligence in Positron Emission Tomography of Lung Cancer. PET Clin 2021; 17:77-84. [PMID: 34809872 DOI: 10.1016/j.cpet.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of a computer to perform tasks normally requiring human intelligence or artificial intelligence (AI) is not new. However, until recently, practical applications in medical imaging were limited, especially in the clinic. With advances in theory, microelectronic circuits, and computer architecture as well as our ability to acquire and access large amounts of data, AI is becoming increasingly ubiquitous in medical imaging. Of particular interest to our community, radiomics tries to identify imaging features of specific pathology that can represent, for example, the texture or shape of a region in the image. This is conducted based on a review of mathematical patterns and pattern combinations. The difficulty is often finding sufficient data to span the spectrum of disease heterogeneity because many features change with pathology as well as over time and, among other issues, data acquisition is expensive. Although we are currently in the early days of the practical application of AI to medical imaging, research is ongoing to integrate imaging, molecular pathobiology, genetic make-up, and clinical manifestations to classify patients into subgroups for the purpose of precision medicine, or in other words, predicting a priori treatment response and outcome. Lung cancer is a functionally and morphologically heterogeneous disease. Positron emission tomography (PET) is an imaging technique with an important role in the precision medicine of patients with lung cancer that helps predict early response to therapy and guides the selection of appropriate treatment. Although still in its infancy, early results suggest that the use of AI in PET of lung cancer has promise for the detection, segmentation, and characterization of disease as well as for outcome prediction.
Collapse
Affiliation(s)
- Katherine A Zukotynski
- Departments of Radiology and Medicine, McMaster University, 1200 Main St.W., Hamilton, ON L8N 3Z5, Canada; School of Biomedical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, ON M5S 3G8, Canada.
| | - Vincent C Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave.W., Waterloo, ON N2L 3G1, Canada
| | - Carlos F Uribe
- PET Functional Imaging, BC Cancer, 600W. 10th Ave., Vancouver, V5Z 4E6, Canada
| | - Katarina Chiam
- Division of Engineering Science, University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada
| | - François Bénard
- Department of Radiology, University of British Columbia, 2775 Laurel St., 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Victor H Gerbaudo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02492, USA
| |
Collapse
|
23
|
Shao X, Niu R, Shao X, Gao J, Shi Y, Jiang Z, Wang Y. Application of dual-stream 3D convolutional neural network based on 18F-FDG PET/CT in distinguishing benign and invasive adenocarcinoma in ground-glass lung nodules. EJNMMI Phys 2021; 8:74. [PMID: 34727258 PMCID: PMC8561359 DOI: 10.1186/s40658-021-00423-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose This work aims to train, validate, and test a dual-stream three-dimensional convolutional neural network (3D-CNN) based on fluorine 18 (18F)-fluorodeoxyglucose (FDG) PET/CT to distinguish benign lesions and invasive adenocarcinoma (IAC) in ground-glass nodules (GGNs). Methods We retrospectively analyzed patients with suspicious GGNs who underwent 18F-FDG PET/CT in our hospital from November 2011 to November 2020. The patients with benign lesions or IAC were selected for this study. According to the ratio of 7:3, the data were randomly divided into training data and testing data. Partial image feature extraction software was used to segment PET and CT images, and the training data after using the data augmentation were used for the training and validation (fivefold cross-validation) of the three CNNs (PET, CT, and PET/CT networks). Results A total of 23 benign nodules and 92 IAC nodules from 106 patients were included in this study. In the training set, the performance of PET network (accuracy, sensitivity, and specificity of 0.92 ± 0.02, 0.97 ± 0.03, and 0.76 ± 0.15) was better than the CT network (accuracy, sensitivity, and specificity of 0.84 ± 0.03, 0.90 ± 0.07, and 0.62 ± 0.16) (especially accuracy was significant, P-value was 0.001); in the testing set, the performance of both networks declined. However, the accuracy and sensitivity of PET network were still higher than that of CT network (0.76 vs. 0.67; 0.85 vs. 0.70). For dual-stream PET/CT network, its performance was almost the same as PET network in the training set (P-value was 0.372–1.000), while in the testing set, although its performance decreased, the accuracy and sensitivity (0.85 and 0.96) were still higher than both CT and PET networks. Moreover, the accuracy of PET/CT network was higher than two nuclear medicine physicians [physician 1 (3-year experience): 0.70 and physician 2 (10-year experience): 0.73]. Conclusion The 3D-CNN based on 18F-FDG PET/CT can be used to distinguish benign lesions and IAC in GGNs, and the performance is better when both CT and PET images are used together. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00423-1.
Collapse
Affiliation(s)
- Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.,Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China
| | - Rong Niu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.,Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.,Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China
| | - Jianxiong Gao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.,Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China
| | - Yunmei Shi
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.,Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China
| | - Zhenxing Jiang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China. .,Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China.
| |
Collapse
|
24
|
Yakar M, Etiz D. Artificial intelligence in rectal cancer. Artif Intell Gastroenterol 2021; 2:10-26. [DOI: 10.35712/aig.v2.i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
|
25
|
Shao Y, Zhang YX, Chen HH, Lu SS, Zhang SC, Zhang JX. Advances in the application of artificial intelligence in solid tumor imaging. Artif Intell Cancer 2021; 2:12-24. [DOI: 10.35713/aic.v2.i2.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ying Shao
- Department of Laboratory Medicine, People Hospital of Jiangying, Jiangying 214400, Jiangsu Province, China
| | - Yu-Xuan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Huan-Huan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shan-Shan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shi-Chang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie-Xin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
26
|
Taralli S, Scolozzi V, Boldrini L, Lenkowicz J, Pelliccioni A, Lorusso M, Attieh O, Ricciardi S, Carleo F, Cardillo G, Calcagni ML. Application of Artificial Neural Network to Preoperative 18F-FDG PET/CT for Predicting Pathological Nodal Involvement in Non-small-cell Lung Cancer Patients. Front Med (Lausanne) 2021; 8:664529. [PMID: 33968968 PMCID: PMC8100035 DOI: 10.3389/fmed.2021.664529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose: To evaluate the performance of artificial neural networks (aNN) applied to preoperative 18F-FDG PET/CT for predicting nodal involvement in non-small-cell lung cancer (NSCLC) patients. Methods: We retrospectively analyzed data from 540 clinically resectable NSCLC patients (333 M; 67.4 ± 9 years) undergone preoperative 18F-FDG PET/CT and pulmonary resection with hilo-mediastinal lymphadenectomy. A 3-layers NN model was applied (dataset randomly splitted into 2/3 training and 1/3 testing). Using histopathological reference standard, NN performance for nodal involvement (N0/N+ patient) was calculated by ROC analysis in terms of: area under the curve (AUC), accuracy (ACC), sensitivity (SE), specificity (SP), positive and negative predictive values (PPV, NPV). Diagnostic performance of PET visual analysis (N+ patient: at least one node with uptake ≥ mediastinal blood-pool) and of logistic regression (LR) was evaluated. Results: Histology proved 108/540 (20%) nodal-metastatic patients. Among all collected data, relevant features selected as input parameters were: patients' age, tumor parameters (size, PET visual and semiquantitative features, histotype, grading), PET visual nodal result (patient-based, as N0/N+ and N0/N1/N2). Training and testing NN performance (AUC = 0.849, 0.769): ACC = 80 and 77%; SE = 72 and 58%; SP = 81 and 81%; PPV = 50 and 44%; NPV = 92 and 89%, respectively. Visual PET performance: ACC = 82%, SE = 32%, SP = 94%; PPV = 57%, NPV = 85%. Training and testing LR performance (AUC = 0.795, 0.763): ACC = 75 and 77%; SE = 68 and 55%; SP = 77 and 82%; PPV = 43 and 43%; NPV = 90 and 88%, respectively. Conclusions: aNN application to preoperative 18F-FDG PET/CT provides overall good performance for predicting nodal involvement in NSCLC patients candidate to surgery, especially for ruling out nodal metastases, being NPV the best diagnostic result; a high NPV was also reached by PET qualitative assessment. Moreover, in such population with low a priori nodal involvement probability, aNN better identify the relatively few and unexpected nodal-metastatic patients than PET analysis, so supporting the additional aNN use in case of PET-negative images.
Collapse
Affiliation(s)
- Silvia Taralli
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Scolozzi
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- Unità Operativa Complessa (UOC) di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jacopo Lenkowicz
- Unità Operativa Complessa (UOC) di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Armando Pelliccioni
- Department of Occupational and Environmental Medicine, Istituto Nazionale Assicurazione Infortuni sul Lavoro (INAIL), Rome, Italy
| | - Margherita Lorusso
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ola Attieh
- Nuclear Medicine Department, Jordanian Royal Medical Services, Amman, Jordan
| | - Sara Ricciardi
- Department of Cardiothoracic Surgery, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Francesco Carleo
- Unit of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Maria Lucia Calcagni
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
27
|
Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, Woodruff HC, Lambin P. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 2021; 48:3961-3974. [PMID: 33693966 PMCID: PMC8484174 DOI: 10.1007/s00259-021-05242-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Lung cancer ranks second in new cancer cases and first in cancer-related deaths worldwide. Precision medicine is working on altering treatment approaches and improving outcomes in this patient population. Radiological images are a powerful non-invasive tool in the screening and diagnosis of early-stage lung cancer, treatment strategy support, prognosis assessment, and follow-up for advanced-stage lung cancer. Recently, radiological features have evolved from solely semantic to include (handcrafted and deep) radiomic features. Radiomics entails the extraction and analysis of quantitative features from medical images using mathematical and machine learning methods to explore possible ties with biology and clinical outcomes. METHODS Here, we outline the latest applications of both structural and functional radiomics in detection, diagnosis, and prediction of pathology, gene mutation, treatment strategy, follow-up, treatment response evaluation, and prognosis in the field of lung cancer. CONCLUSION The major drawbacks of radiomics are the lack of large datasets with high-quality data, standardization of methodology, the black-box nature of deep learning, and reproducibility. The prerequisite for the clinical implementation of radiomics is that these limitations are addressed. Future directions include a safer and more efficient model-training mode, merge multi-modality images, and combined multi-discipline or multi-omics to form "Medomics."
Collapse
Affiliation(s)
- Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands. .,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Arthur Jochems
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium.,Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Chenggong Yan
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Deep learning in Nuclear Medicine—focus on CNN-based approaches for PET/CT and PET/MR: where do we stand? Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00411-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging 2020; 4:24. [PMID: 34191197 PMCID: PMC8218106 DOI: 10.1186/s41824-020-00094-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Artificial intelligence (AI) refers to a field of computer science aimed to perform tasks typically requiring human intelligence. Currently, AI is recognized in the broader technology radar within the five key technologies which emerge for their wide-ranging applications and impact in communities, companies, business, and value chain framework alike. However, AI in medical imaging is at an early phase of development, and there are still hurdles to take related to reliability, user confidence, and adoption. The present narrative review aimed to provide an overview on AI-based approaches (distributed learning, statistical learning, computer-aided diagnosis and detection systems, fully automated image analysis tool, natural language processing) in oncological hybrid medical imaging with respect to clinical tasks (detection, contouring and segmentation, prediction of histology and tumor stage, prediction of mutational status and molecular therapies targets, prediction of treatment response, and outcome). Particularly, AI-based approaches have been briefly described according to their purpose and, finally lung cancer-being one of the most extensively malignancy studied by hybrid medical imaging-has been used as illustrative scenario. Finally, we discussed clinical challenges and open issues including ethics, validation strategies, effective data-sharing methods, regulatory hurdles, educational resources, and strategy to facilitate the interaction among different stakeholders. Some of the major changes in medical imaging will come from the application of AI to workflow and protocols, eventually resulting in improved patient management and quality of life. Overall, several time-consuming tasks could be automatized. Machine learning algorithms and neural networks will permit sophisticated analysis resulting not only in major improvements in disease characterization through imaging, but also in the integration of multiple-omics data (i.e., derived from pathology, genomic, proteomics, and demographics) for multi-dimensional disease featuring. Nevertheless, to accelerate the transition of the theory to practice a sustainable development plan considering the multi-dimensional interactions between professionals, technology, industry, markets, policy, culture, and civil society directed by a mindset which will allow talents to thrive is necessary.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Francesco Bartoli
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Marciano
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberta Zanca
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Riemer H J A Slart
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands
- Faculty of Science and Technology, Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - Paola A Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Editor's Notebook: July 2020. AJR Am J Roentgenol 2020; 215:3-4. [DOI: 10.2214/ajr.20.23234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|