1
|
Verdan S, Torri GB, Marcos VN, Moreira MHS, Defante MLR, Fagundes MDC, de Barros EMJ, Dias AB, Shen L, Altmayer S. Ultrasound-derived fat fraction for diagnosing hepatic steatosis: a systematic review and meta-analysis. Eur Radiol 2025:10.1007/s00330-025-11652-8. [PMID: 40346257 DOI: 10.1007/s00330-025-11652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 04/05/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVE To perform a systematic review and meta-analysis to evaluate the diagnostic performance of Ultrasound-Derived Fat Fraction (UDFF) in detecting hepatic steatosis using Magnetic Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF) as the reference standard. MATERIALS AND METHODS Relevant databases were searched through November 2024. Studies that evaluated the UDFF to detect hepatic steatosis using MRI-PDFF as the reference standard met the inclusion criteria. Our primary outcome was the sensitivity and specificity of UDFF compared to MRI-PDFF in distinguishing steatosis from non-steatosis. Analyses were performed using a bivariate random-effects approach, and heterogeneity was considered substantial if I2 > 50%. A sensitivity analysis was performed to detect potential studies that contribute to heterogeneity. RESULTS Nine studies comprising 1150 patients (mean age range, 14-62 years; 51.2% women) were included. Eight studies were performed using the same vendor platform. The pooled sensitivity of UDFF for detecting hepatic steatosis was 90.4% (95% CI: 84.0%, 94.4%), and the pooled specificity was 83.8% (95% CI: 75.1%, 89.8%). The AUC for the summary receiver-operating characteristic curve was 0.93 (95% CI: 0.83, 0.95). Heterogeneity among the studies was low (I² = 22.2%). CONCLUSION UDFF demonstrates high sensitivity and specificity for detecting hepatic steatosis, supporting its value as a noninvasive tool for screening. KEY POINTS Question Small individual studies suggest that US-Derived Fat Fraction (UDFF) may effectively detect hepatic steatosis compared to MRI, but no meta-analysis has been performed. Findings In nine studies including 1150 patients, UDFF demonstrated high pooled sensitivity (90.4%) and specificity (83.8%) relative to MRI with low between-study heterogeneity. Clinical relevance UDFF demonstrates high diagnostic accuracy compared with MRI, supporting its use as a noninvasive tool with potentially lower cost and wider availability for large-scale screening of hepatic steatosis.
Collapse
Affiliation(s)
- Sarah Verdan
- Department of Radiology and Diagnostic Imaging, University Hospital of Juiz de Fora - UFJF, Juiz de Fora, Brazil.
| | - Giovanni B Torri
- Department of Radiology and Diagnostic Imaging, Hospital Universitário de Santa Maria, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Vinícius Neves Marcos
- Department of Radiology and Diagnostic Imaging, University Hospital of Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Maria Helena Silva Moreira
- Department of Radiology and Diagnostic Imaging, University Hospital of Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | | | | | | | - Adriano B Dias
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network-Sinai Health System-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Luyao Shen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephan Altmayer
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Qi R, Lu L, He T, Zhang L, Lin Y, Bao L. Comparing ultrasound-derived fat fraction and MRI-PDFF for quantifying hepatic steatosis: a real-world prospective study. Eur Radiol 2025; 35:2580-2588. [PMID: 39414658 DOI: 10.1007/s00330-024-11119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE To compare the agreement between ultrasound-derived fat fraction (UDFF) with magnetic resonance proton density fat fraction (MRI-PDFF) for quantification of hepatic steatosis and verify its reliability and diagnostic performance by comparing with MRI-PDFF as the reference standard. METHODS This prospective study included a primary analysis of 191 patients who underwent MRI-PDFF and UDFF from February 2023 to February 2024. MRI-PDFF were derived from three liver segment measurements with calculation of an overall median PDFF. UDFF was performed by two different sonographers for each of the six measurements, and the median was taken. Intraclass correlation coefficient (ICC) and Bland-Altman analysis were used to assess agreement. Receiver operating characteristics (ROC) curves were used to evaluate the diagnostic performance of UDFF in detecting different degrees of hepatic steatosis. RESULTS A total of 176 participants were enrolled in the final cohort of this study (median age, 36.0 years; 82 men, 94 women). The median MRI-PDFF value was 11.3% (interquartile range (IQR) 7.5-18.9); 84.7% patients had a median MRI-PDFF value ≥ 6.4%. The median UDFF measured by different sonographers were 9.5% (IQR: 5.0-18.0) and 9.0% (IQR: 5.0-18.0), respectively. The interobserver agreement of UDFF measurement was excellent agreement (ICC = 0.951 [95% CI: 0.934-0.964], p < 0.001). UDFF was positively strongly correlated with MRI-PDFF with ICC of 0.899 (95% CI: 0.852-0.930). The Bland-Altman analysis showed high agreement between UDFF and MRI-PDFF measurements, with a mean bias of 1.7% (95% LOA, -8.7 to 12.2%). The optimal UDFF cutoff values were 5.5%, 15.5% and 17.5% for detecting MRI-PDFF at historic thresholds of 6.4%, 17.4%, and 22.1%, with AUC of 0.851, 0.952, and 0.948, respectively. The sensitivity was 79.2%, 87.5%, 88.9%, and specificity was 81.5%, 90.6%, 90.0%, respectively. CONCLUSIONS UDFF is a reliable and accurate method for quantification and classification of hepatic steatosis, with strong agreement to MRI-PDFF. The UDFF cutoff values of 5.5%, 15.5%, and 17.5% provide high sensitivity and specificity for the detection of mild, moderate, and severe hepatic steatosis, respectively. KEY POINTS Question Is ultrasound-derived fat fraction (UDFF) reliable for the quantitative detection of hepatic steatosis compared to MRI proton density fat fraction (MRI-PDFF)? Findings UDFF cutoff values of 5.5%, 15.5%, and 17.5% provided high sensitivity and specificity for the detection of mild, moderate, and severe hepatic steatosis, respectively. Clinical relevance UDFF is a reliable and accurate method for quantification and classification of hepatic steatosis, with strong agreement to MRI-PDFF and high reproducibility of liver fat content by different sonographers.
Collapse
Affiliation(s)
- Ruixiang Qi
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, P.R. China
| | - Liren Lu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, P.R. China
| | - Ting He
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, P.R. China
| | - Liqing Zhang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, P.R. China
| | - Yiting Lin
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, P.R. China
| | - Lingyun Bao
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, P.R. China.
| |
Collapse
|
3
|
Meng L, Wang J, Yang H, Hu Y, Yang Z. Ultrasound-derived fat fraction to assess liver steatosis in obese patients with polycystic ovary syndrome. Clin Exp Med 2025; 25:130. [PMID: 40299093 PMCID: PMC12041043 DOI: 10.1007/s10238-025-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Abstract
This study aims to explore the characteristics and influencing factors of ultrasound-derived fat fraction (UDFF) in obese patients with polycystic ovary syndrome (PCOS). Evaluate the diagnostic value of UDFF for MAFLD. This study included 124 obese PCOS patients and 106 age- and body mass index (BMI)-matched obese women, collecting clinical data from both groups. Compare the characteristics and related factors of hepatic steatosis between two groups. A total of 124 obese PCOS patients were divided into MAFLD group (n = 64) and no MAFLD group (n = 60). Binary logistic regression was used to analyze the independent risk factors for MAFLD in obese PCOS patients, and Spearman correlation analysis was used to examine the correlation between UDFF and various variables. The MAFLD group was further divided into mild group (S1, n = 16), moderate group (S2, n = 24), and severe group (S3, n = 24). Based on the ultrasound results, draw a receiver operating characteristic curve (ROC) for diagnosing the degree of hepatic steatosis in obese PCOS patients using UDFF. MAFLD was more common in the obese PCOS group than in the simple obese group (51.61% vs. 40.57%, P < 0.05). UDFF is positively correlated with the severity of MAFLD (r = 0.603, P < 0.01). The AUC for diagnosing liver steatosis with S ≥ 1, S ≥ 2, and S = 3 using UDFF is 0.935, 0.951, and 0.916. UDFF has certain diagnostic value for metabolic-related fatty liver disease in obese PCOS patients, and UDFF levels gradually increase with the severity of MAFLD.
Collapse
Affiliation(s)
- LingZhi Meng
- Qingdao University Affiliated Hospital, No. 16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province, China
| | - JinXia Wang
- The Second Surgical Department, Qingdao West Coast New Area Traditional Chinese Medicine Hospital, Qingdao, China
| | - Hui Yang
- Qingdao University Affiliated Hospital, No. 16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province, China
| | - YiXuan Hu
- Qingdao University Affiliated Hospital, No. 16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province, China
| | - ZongLi Yang
- Qingdao University Affiliated Hospital, No. 16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province, China.
| |
Collapse
|
4
|
Cheng S, Lv W, You T, Zhang S. Influence variables of ultrasound-derived fat fraction in liver fat content measurement: preprandial and postprandial states. Abdom Radiol (NY) 2025:10.1007/s00261-025-04909-9. [PMID: 40220168 DOI: 10.1007/s00261-025-04909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE To investigate whether there is any effect of preprandial and postprandial states of patients on Ultrasound-derived fat fraction(UDFF) in liver fat content measurement. METHODS A retrospective study was conducted on 1596 patients who underwent UDFF from January to September 2024; UDFF measurements were performed by a sonographer, who repeated each measurement 5 times before and after meals, respectively, and finally expressed them as the mean; then paired t-tests and analyses of variance (ANOVA) were used to compare the differences in preprandial and postprandial UDFF and Auto p-SWE( Auto point shear wave elastography) values among groups, and linear regression was used to analyze the differences in preprandial and postprandial UDFF and Auto p-SWE values between each group. RESULTS The study enrolled 1036 patients(491 males and 545 females), aged 18-89 years, mean age (56.50 ± 14.67) years. The differences in UDFF and Auto p-SWE values between the group eating protein and fatty foods (n = 613) and the group eating light foods (n = 423) were not statistically significant (p > 0.05); the differences in UDFF and Auto p-SWE values between the group with a body mass index(BMI) < 25 kg/m2 (n = 703) and the group with a BMI ≥ 25 kg/m2 (n = 333) were statistically significant (p < 0.05). Preprandial and postprandiall UDFF and Auto p-SWE values were highly positively correlated in the eating group, the protein and greasy food group, and the light food group (r = 0.985, 0.983, 0.988, r = 0.834, 0.849, 0.810, all p < 0.001). CONCLUSIONS UDFF has good consistency in the measurement of liver fat content in preprandial and postprandial states.
Collapse
Affiliation(s)
- Shuai Cheng
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wenhao Lv
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | | | - Shengmin Zhang
- The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Wang P, Song D, Han J, Zhang J, Chen H, Gao R, Shen H, Li J. Comparing Three Ultrasound-Based Techniques for Diagnosing and Grading Hepatic Steatosis in Metabolic Dysfunction-Associated Steatotic Liver Disease. Acad Radiol 2025; 32:1949-1957. [PMID: 39294051 DOI: 10.1016/j.acra.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
RATIONALE AND OBJECTIVES To compare the diagnostic accuracy and grading ability of ultrasound-derived fat fraction (UDFF), controlled attenuation parameters (CAP), and hepatic/renal ratio (HRR) for hepatic steatosis in metabolic dysfunction-associated steatotic liver disease (MASLD) using magnetic resonance imaging proton density fat fraction (PDFF) as the gold standard. METHODS Patients suspected of having MASLD in our hospital between October 2023 and May 2024 were divided into the MASLD group and the control group. All patients underwent UDFF, CAP, and PDFF examinations. HRR was measured during routine ultrasound examination. In statistical analysis, we initially assessed the correlation between UDFF, CAP, HRR, and general characteristics of subjects with PDFF. Subsequently, receiver operating characteristic curve were employed to evaluate and compare the diagnostic performance of UDFF, CAP, and HRR for different grades of hepatic steatosis in MASLD. Their area under the curve, optimal cut-off value, sensitivity, and specificity were also determined. Finally, predictive factors determined hepatic steatosis in MASLD (PDFF≥6%) were identified through binary logistic regression analysis. RESULTS 115 individuals were ultimately included in the MASLD group, while 102 were included in the control group. UDFF, CAP, and HRR were all positively correlated with PDFF. Among them, UDFF exhibited the strongest correlation with PDFF (ρ = 0.91). Furthermore, in the comparison of diagnostic efficacy among different grades of hepatic steatosis, UDFF outperformed CAP and HRR (p < 0.05). However, there were no statistically significant differences in AUCs between CAP and HRR across all three grades. The AUCs for UDFF in ≥S1, ≥S2, and ≥S3 were 0.99 (95% CI 0.97 to 1.00), 0.96 (95% CI 0.93 to 0.98), and 0.97 (95% CI 0.94 to 0.99), respectively. The optimal thresholds for UDFF are determined as follows: ≥ 6% for grade S1; ≥ 15% for grade S2; and ≥ 23% for grade S3. Multivariate analysis revealed that only age, UDFF, and CAP were important influencing factors for hepatic steatosis in MASLD. CONCLUSION The diagnostic accuracy of UDFF surpassed that of CAP and HRR in the detection and grading of hepatic steatosis in MASLD.
Collapse
Affiliation(s)
- Pingping Wang
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China
| | - Danlei Song
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China
| | - JiaHao Han
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China
| | - Jing Zhang
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China
| | - Huihui Chen
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China
| | - Ruixia Gao
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China
| | - Huiming Shen
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China
| | - Jia Li
- Southeast University Zhongda Hospital, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, China.
| |
Collapse
|
6
|
Ferraioli G, Barr RG. Ultrasound evaluation of chronic liver disease. Abdom Radiol (NY) 2025; 50:1158-1170. [PMID: 39292280 DOI: 10.1007/s00261-024-04568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Chronic liver disease is a world-wide epidemic. Any etiology that causes inflammation in the liver will lead to chronic liver disease. Presently, the most common inciting factor worldwide is steatotic liver disease. Recent advances in ultrasound imaging provide a multiparametric ultrasound methodology of diagnosing, staging, and monitoring treatment of chronic liver disease. Elastography has become a standard of care technique for the evaluation of liver fibrosis. Quantitative ultrasound allows for determination of the degree of fatty infiltration of the liver. Portal hypertension is the most important factor in determination of liver decompensation. B-mode findings combined with Doppler, and elastography techniques provide qualitative and quantitative methods of determining clinically significant portal hypertension. A newer method using contrast enhanced ultrasound may allow for a non-invasive quantitative estimation of the portal pressures. This paper reviews the use of multiparametric ultrasound in the evaluation of chronic liver disease including conventional B-mode ultrasound, Doppler, elastography and quantitative ultrasound for estimation of liver fat. The recent guidelines are presented and advised protocols reviewed.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Brambilla 74, 27100, Pavia, Italy.
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA
- Southwoods Imaging, 7623 Market Street, Youngstown, OH, 44512, USA
| |
Collapse
|
7
|
Hughes JH, Amin NB, Wojciechowski J, Vourvahis M. Exposure-response modeling of liver fat imaging endpoints in non-alcoholic fatty liver disease populations administered ervogastat alone and co-administered with clesacostat. CPT Pharmacometrics Syst Pharmacol 2025; 14:317-330. [PMID: 39564924 PMCID: PMC11812935 DOI: 10.1002/psp4.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis describe a collection of liver conditions characterized by the accumulation of liver fat. Despite biopsy being the reference standard for determining the severity of disease, non-invasive measures such as magnetic resonance imaging proton density fat fraction (MRI-PDFF) and FibroScan® controlled attenuation parameter (CAP™) can be used to understand longitudinal changes in steatosis. The aim of this work was to describe the exposure-response relationship of ervogastat with or without clesacostat on steatosis, through population pharmacokinetic/pharmacodynamic (PK/PD) modeling of both liver fat measurements simultaneously. Population pharmacokinetic and exposure-response models using individual predictions of average concentrations were used to describe ervogastat/clesacostat PKPD. Due to both liver fat endpoints being continuous-bounded outcomes on different scales, a dynamic transform-both-sides approach was used to link a common latent factor representing liver fat to each endpoint. Simultaneous modeling of both MRI-PDFF and CAP™ was successful with both measurements being adequately described by the model. The clinical trial simulation was able to adequately predict the results of a recent Phase 2 study, where subjects given ervogastat/clesacostat 300/10 mg BID for 6 weeks had a LS means and model-predicted median (95% confidence intervals) percent change from baseline MRI-PDFF of -45.8% and -45.6% (-61.6% to -31.8%), respectively. Simultaneous modeling of both MRI-PDFF and CAP™ was successful with both measurements being adequately described. By describing the underlying changes of steatosis with a latent variable, this model may be extended to describe biopsy results from future studies.
Collapse
Affiliation(s)
| | - Neeta B. Amin
- Pfizer Research and DevelopmentCambridgeMassachusettsUSA
| | | | | |
Collapse
|
8
|
Boglárka Z, Zsombor Z, Rónaszéki AD, Egresi A, Stollmayer R, Himsel M, Bérczi V, Kalina I, Werling K, Győri G, Maurovich-Horvat P, Folhoffer A, Hagymási K, Kaposi PN. Construction of a Compound Model to Enhance the Accuracy of Hepatic Fat Fraction Estimation with Quantitative Ultrasound. Diagnostics (Basel) 2025; 15:203. [PMID: 39857087 PMCID: PMC11763894 DOI: 10.3390/diagnostics15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). Methods: We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0-S4) in a combined retrospective-prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF. Linear and nonlinear models were trained during five-time repeated three-fold cross-validation in a retrospectively collected dataset of 60 MASLD cases. We calculated the models' Pearson correlation (r) and the intraclass correlation coefficient (ICC) in a prospectively collected test set of 57 MASLD cases. Results: The linear multivariable model (r = 0.602, ICC = 0.529) and USFF (r = 0.576, ICC = 0.54) were more reliable in S0- and S1-grade steatosis than the nonlinear multivariable model (r = 0.492, ICC = 0.461). In S2 and S3 grades, the nonlinear multivariable (r = 0.377, ICC = 0.32) and AC-only (r = 0.375, ICC = 0.313) models' approximated correlation and agreement surpassed that of the multivariable linear model (r = 0.394, ICC = 0.265). We searched a QUS parameter grid to find the optimal thresholds (AC ≥ 0.84 dB/cm/MHz, BSC-D ≥ 105), above which switching from a linear (r = 0.752, ICC = 0.715) to a nonlinear multivariable (r = 0.719, ICC = 0.641) model could improve the overall fit (r = 0.775, ICC = 0.718). Conclusions: The USFF and linear multivariable models are robust in diagnosing low-grade steatosis. Switching to a nonlinear model could enhance the fit to MRI-PDFF in advanced steatosis.
Collapse
Affiliation(s)
- Zsély Boglárka
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Zita Zsombor
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Aladár D. Rónaszéki
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Anna Egresi
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (A.E.); (K.W.); (K.H.)
| | - Róbert Stollmayer
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marco Himsel
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Viktor Bérczi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Ildikó Kalina
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Klára Werling
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (A.E.); (K.W.); (K.H.)
| | - Gabriella Győri
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Anikó Folhoffer
- Department of Internal Medicine and Oncology, Semmelweis University, 1082 Budapest, Hungary;
| | - Krisztina Hagymási
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (A.E.); (K.W.); (K.H.)
| | - Pál Novák Kaposi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| |
Collapse
|
9
|
Nakamura Y, Hirooka M, Koizumi Y, Yano R, Imai Y, Watanabe T, Yoshida O, Tokumoto Y, Abe M, Hiasa Y. Diagnostic accuracy of ultrasound-derived fat fraction for the detection and quantification of hepatic steatosis in patients with liver biopsy. J Med Ultrason (2001) 2025; 52:85-94. [PMID: 38918301 DOI: 10.1007/s10396-024-01472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE This retrospective study was conducted to investigate the diagnostic accuracy of ultrasound-derived fat fraction (UDFF) for grading hepatic steatosis using liver histology as the reference standard. METHODS Seventy-three patients with liver disease were assessed using UDFF and liver biopsy. Pearson's test and the Bland-Altman plot were used to assess the correlation between UDFF and histological fat content in liver sections. The UDFF cutoff values for histologically proven steatosis grades were determined using the area under the receiver operating characteristic curve (AUROC). RESULTS The median age of the patients was 66 (interquartile range 54-74) years, and 33 (45%) were females. The UDFF values showed a stepwise increase with increasing steatosis grade (p < .001) and were strongly correlated with the histological fat content (r = .7736, p < .001). The Bland-Altman plot revealed a mean bias of 2.384% (95% limit of agreement, - 6.582 to 11.351%) between them. Univariate regression analysis revealed no significant predictors of divergence. The AUROCs for distinguishing steatosis grades of ≥ 1, ≥2, and 3 were 0.956 (95% confidence interval [CI], 0.910-1.00), 0.926 (95% CI, 0.860-0.993), and 0.971 (95% CI, 0.929-1.000), respectively. The UDFF cutoff value of > 6% had a sensitivity and specificity of 94.8% and 82.3%, respectively, for diagnosing steatosis grade ≥ 1. There was no association between UDFF and the fibrosis stage. CONCLUSION UDFF shows strong agreement with the histological fat content and excellent diagnostic accuracy for grading steatosis. UDFF is a promising tool for detecting and quantifying hepatic steatosis in clinical practice.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan.
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Ryo Yano
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| |
Collapse
|
10
|
Barr RG. Multiparametric Ultrasound for Chronic Liver Disease. Radiol Clin North Am 2025; 63:13-28. [PMID: 39510657 DOI: 10.1016/j.rcl.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Diffuse liver disease is a substantial world-wide problem. With the combination of conventional ultrasound of the abdomen, fat quantification and elastography, appropriate staging of the patient can be assessed. This information allows for the diagnosis of steatosis and detection of fibrosis as well as prognosis, surveillance, and prioritization for treatment. With the potential for reversibility with appropriate treatment accurate assessment for the stage of chronic liver disease is critical.
Collapse
Affiliation(s)
- Richard G Barr
- Northeastern Ohio Medical University, Southwoods Imaging, 7623 Market Street, Youngstown, OH 44512, USA.
| |
Collapse
|
11
|
Miranda J, Key Wakate Teruya A, Leão Filho H, Lahan-Martins D, Tamura Sttefano Guimarães C, de Paula Reis Guimarães V, Ide Yamauchi F, Blasbalg R, Velloni FG. Diffuse and focal liver fat: advanced imaging techniques and diagnostic insights. Abdom Radiol (NY) 2024; 49:4437-4462. [PMID: 38896247 DOI: 10.1007/s00261-024-04407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
The fatty liver disease represents a complex, multifaceted challenge, requiring a multidisciplinary approach for effective management and research. This article uses conventional and advanced imaging techniques to explore the etiology, imaging patterns, and quantification methods of hepatic steatosis. Particular emphasis is placed on the challenges and advancements in the imaging diagnostics of fatty liver disease. Techniques such as ultrasound, CT, MRI, and elastography are indispensable for providing deep insights into the liver's fat content. These modalities not only distinguish between diffuse and focal steatosis but also help identify accompanying conditions, such as inflammation and fibrosis, which are critical for accurate diagnosis and management.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Department of Radiology, University of São Paulo, R. Dr. Ovídio Pires de Campos, 75-Cerqueira César, São Paulo, SP, 05403-010, Brazil.
| | - Alexandre Key Wakate Teruya
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
| | - Hilton Leão Filho
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
| | - Daniel Lahan-Martins
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
- Departament of Radiology-FCM, State University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126 Cidade Universitária, Campinas, SP, 13083-887, Brazil
| | - Cássia Tamura Sttefano Guimarães
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
| | - Vivianne de Paula Reis Guimarães
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
| | - Fernando Ide Yamauchi
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
| | - Roberto Blasbalg
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
| | - Fernanda Garozzo Velloni
- Department of Radiology, Diagnósticos da América SA (DASA), Av Juruá 434, Alphaville Industrial, Barueri, São Paulo, SP, 06455-010, Brazil
| |
Collapse
|
12
|
Song D, Wang P, Han J, Chen H, Gao R, Li L, Li J. Reproducibility of ultrasound-derived fat fraction in measuring hepatic steatosis. Insights Imaging 2024; 15:254. [PMID: 39436490 PMCID: PMC11496408 DOI: 10.1186/s13244-024-01834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE Steatotic liver disease (SLD) has become the most common cause of chronic liver disease. Nevertheless, the non-invasive quantitative diagnosis of steatosis is still lacking in clinical practice. This study aimed to evaluate the reproducibility of the new parameter for steatosis quantification named ultrasound-derived fat fraction (UDFF). MATERIALS AND METHODS The UDFF values were independently executed by two operators in two periods. In the process, repeated measurements of the same patient were performed by the same operator under different conditions (liver segments, respiration, positions, and dietary). Finally, the results of some subjects (28) were compared with the MRI-derived proton density fat fraction (PDFF). The concordance analysis was mainly achieved by the intraclass correlation coefficient (ICC) and Bland-Altman. RESULTS One hundred-five participants were included in the study. UDFF had good reliability in measuring the adult liver (ICCintra-observer = 0.96, ICCinter-observer = 0.94). Meanwhile, the ICC of the two operators increased over time. The variable measurement states did not influence the UDFF values on the surface, but they affected the coefficient of variation (Cov) of the results. Segment 8 (S8), end-expiratory, supine, and fasting images had the most minor variability. On the other hand, the UDFF value of S8 displayed satisfied consistency with PDFF (mean difference, -0.24 ± 1.44), and the results of both S5 (mean difference: -0.56 ± 3.95) and S8 (mean difference: 0.73 ± 1.87) agreed well with the whole-liver PDFF. CONCLUSION UDFF measurements had good reproducibility. Furthermore, the state of S8, end-expiration, supine, and fasting might be the more stable measurement approach. CRITICAL RELEVANCE STATEMENT UDFF is the quantitative ultrasound parameter of hepatic steatosis and has good reproducibility. It can show more robust performance under specific measurement conditions (S8, end-expiratory, supine, and fasting). TRIAL REGISTRATION The research protocol was registered at the Chinese Clinical Trial Registry on October 9, 2023 ( http://www.chictr.org.cn/ ). The registration number is ChiCTR 2300076457. KEY POINTS There is a lack of non-invasive quantitative measurement options for hepatic steatosis. UDFF demonstrated excellent reproducibility in measuring hepatic steatosis. S8, end-expiratory, supine, and fasting may be the more stable measuring condition. Training could improve the operators' measurement stability. Variable measurement state affects the repeatability of the UDFF values (Cov).
Collapse
Affiliation(s)
- Danlei Song
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Pingping Wang
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jiahao Han
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Huihui Chen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ruixia Gao
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| | - Jia Li
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
13
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
14
|
Ferraioli G, Maiocchi L, Barr RG, Roccarina D. Assessing Quality of Ultrasound Attenuation Coefficient Results for Liver Fat Quantification. Diagnostics (Basel) 2024; 14:2171. [PMID: 39410575 PMCID: PMC11475129 DOI: 10.3390/diagnostics14192171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Algorithms for quantifying liver fat content based on the ultrasound attenuation coefficient (AC) are currently available; however, little is known about whether their accuracy increases by applying quality criteria such as the interquartile range-to-median ratio (IQR/M) or whether the median or average AC value should be used. METHODS AC measurements were performed with the Aplio i800 ultrasound system using the attenuation imaging (ATI) algorithm (Canon Medical Systems, Otawara, Tochigi, Japan). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) was the reference standard. The diagnostic performance of the AC median value of 5 measurements (AC-M) was compared to that of AC average value (AC-A) of 5 or 3 acquisitions and different levels of IQR/M for median values or standard deviation/average (SD/A) for average values were also analyzed. Concordance between AC-5M, AC-5A, and AC3A was evaluated with concordance correlation coefficient (CCC). RESULTS A total of 182 individuals (94 females; mean age, 51.2y [SD: 15]) were evaluated. A total of 77 (42.3%) individuals had S0 steatosis (MRI-PDFF < 6%), 75 (41.2%) S1 (MRI-PDFF 6-17%), 10 (5.5%) S2 (MRI-PDFF 17.1-22%), and 20 (11%) S3 (MRI-PDFF ≥ 22.1%). Concordance of AC-5A and AC-3A with AC-5M was excellent (CCC: 0.99 and 0.96, respectively). The correlation with MRI-PDFF was almost perfect. Diagnostic accuracy of AC-5M, AC-5A, and AC3A was not significantly affected by different levels of IQR/M or SD/A. CONCLUSIONS The accuracy of AC in quantifying liver fat content was not affected by reducing the number of acquisitions (from five to three), by using the mean instead of the median, or by reducing the IQR/M or SD/A to ≤5%.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
| | - Laura Maiocchi
- UOC Malattie Infettive, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Richard G. Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH 44272, USA;
- Southwoods Imaging, Youngstown, OH 44512, USA
| | - Davide Roccarina
- SOD Medicina Interna ed Epatologia, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
- Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
15
|
Zhang LX, Dioguardi B, Vilgrain V, Fang C, Sidhu PS, Cloutier G, Tang A. Quantitative Ultrasound and Ultrasound-Based Elastography for Chronic Liver Disease: Practical Guidance, From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2024. [PMID: 39259009 DOI: 10.2214/ajr.24.31709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Quantitative ultrasound (QUS) and ultrasound-based elastography techniques are emerging as non-invasive effective methods for assessing chronic liver disease. They are more accurate than B-mode imaging alone and more accessible than MRI as alternatives to liver biopsy. Early detection and monitoring of diffuse liver processes such as steatosis, inflammation, and fibrosis play an important role in guiding patient management. The most widely available and validated techniques are attenuation-based QUS techniques and shear-wave elastography techniques that measure shear-wave speed. Other techniques are supported by a growing body of evidence and are increasingly commercialized. This review explains general physical concepts of QUS and ultrasound-based elastography techniques for evaluating chronic liver disease. The first section describes QUS techniques relying on attenuation, backscatter, and speed of sound. The second section discusses ultrasound-based elastography techniques analyzing shear-wave speed, shear-wave dispersion, and shear-wave attenuation. With an emphasis on clinical implementation, each technique's diagnostic performance along with thresholds for various clinical applications are summarized, to provide guidance on analysis and reporting for radiologists. Measurement methods, advantages, and limitations are also discussed. The third section explores developments in quantitative contrast-enhanced and vascular ultrasound that are relevant to chronic liver disease evaluation.
Collapse
Affiliation(s)
- Li Xin Zhang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
| | - Burgio Dioguardi
- Department of Radiology, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Clichy, France
- Research Center on Inflammation, Université Paris Cité, Paris, France
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Clichy, France
| | - Cheng Fang
- Department of Radiology, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS UK
- Department of Imaging Sciences, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE17EH UK
| | - Paul S Sidhu
- Department of Radiology, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS UK
- Department of Imaging Sciences, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE17EH UK
| | - Guy Cloutier
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - An Tang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| |
Collapse
|
16
|
Ferraioli G, Barr RG, Berzigotti A, Sporea I, Wong VWS, Reiberger T, Karlas T, Thiele M, Cardoso AC, Ayonrinde OT, Castera L, Dietrich CF, Iijima H, Lee DH, Kemp W, Oliveira CP, Sarin SK. WFUMB Guidelines/Guidance on Liver Multiparametric Ultrasound. Part 2: Guidance on Liver Fat Quantification. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1088-1098. [PMID: 38658207 DOI: 10.1016/j.ultrasmedbio.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The World Federation for Ultrasound in Medicine and Biology (WFUMB) has promoted the development of this document on multiparametric ultrasound. Part 2 is a guidance on the use of the available tools for the quantification of liver fat content with ultrasound. These are attenuation coefficient, backscatter coefficient, and speed of sound. All of them use the raw data of the ultrasound beam to estimate liver fat content. This guidance has the aim of helping the reader in understanding how they work and interpret the results. Confounding factors are discussed and a standardized protocol for measurement acquisition is suggested to mitigate them. The recommendations were based on published studies and experts' opinion but were not formally graded because the body of evidence remained low at the time of drafting this document.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Richard Gary Barr
- Department of Radiology, Northeastern Ohio Medical University, Youngstown, OH, USA
| | - Annalisa Berzigotti
- Department for Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ioan Sporea
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Center for Advanced Research in Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Thomas Karlas
- Department of Medicine II, Division of Gastroenterology, Leipzig University Medical Center, Leipzig, Germany
| | - Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ana Carolina Cardoso
- Hepatology Division, School of Medicine, Federal University of Rio de Janeiro, Clementino, Fraga Filho Hospital, Rio de Janeiro, RJ, Brazil
| | - Oyekoya Taiwo Ayonrinde
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Crawley, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Laurent Castera
- Université Paris-Cité, Inserm UMR1149, Centre de Recherche sur l'Inflammation, Paris, France; Service d'Hépatologie, Hôpital Beaujon, Assistance-Publique Hôpitaux de Paris, Clichy, France
| | - Christoph Frank Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem and Permancence, Bern, Switzerland
| | - Hiroko Iijima
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Dong Ho Lee
- Department of Radiology, College of Medicine, Seoul National University Hospital, Seoul National University, Seoul, Republic of Korea
| | - William Kemp
- Department of Gastroenterology, Alfred Hospital, Melbourne, Australia; Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Claudia P Oliveira
- Gastroenterology Department, Laboratório de Investigação (LIM07), Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
17
|
Ezenwuba BN, Hynes CM. Ultrasound screening of paediatric non-alcoholic fatty liver disease (NAFLD): A critical literature review. Radiography (Lond) 2024; 30:1317-1325. [PMID: 39059181 DOI: 10.1016/j.radi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Paediatric NAFLD is an increasing global health concern, which can be effectively managed with early detection. Screening, using accurate, affordable, and accessible tests is recommended, however, there is currently no consensus on the most appropriate tests. Although ultrasound techniques are widely used, their performance against reference tests have not been fully assessed. METHODS A literature search of related databases for peer-reviewed original articles published from January 2010-March 2024 was conducted. Appropriate tools were used to systematise and document the search results and selected studies were quality assessed and critically appraised. Extracted data was subjected to thematic analysis and narrative synthesis. RESULTS Eighteen articles met the inclusion criteria. B-mode and Quantitative ultrasound techniques were compared against MR spectroscopy, MRI-PDFF and Liver biopsy. CONCLUSION Liver echogenicity and Steato-scores were the B-mode methods used. The former was less effective, with a maximum reported sensitivity of 70%. The latter reached up to 100% sensitivity, and >80% specificity. Ultrasound performed better with moderate-severe steatosis. There was not enough evidence to support steatosis grading, possibly due to small sample sizes and lack of established cut-off values. QUS (Quantitative Ultrasound)) methods including Continuous Attenuation Parameter (CAP), Attenuation Coefficient (AC), Ultrasound derived fat fraction (UDFF), Tissue Scatter Imaging (TSI) Hepato-Renal Index (HRI), Heterogeneity Index (HIA), Computer Assisted Ultrasound (CAUS) and Picture Archiving and Communication System (PACS-based Image analysis performed better than B-mode methods. Although QUS demonstrated excellent performance, with sensitivity and specificity of up to 100%, this will require further verification before implementation in practice. PRACTICE IMPLICATIONS Ultrasound techniques can effectively be used for paediatric NAFLD screening, especially in higher-risk subjects. The steato-scores method is currently recommendable for this, with excellent potential for the use of QUS, after cut-off values and validation requirements have been addressed.
Collapse
Affiliation(s)
| | - C M Hynes
- Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
18
|
Ferraioli G, De Silvestri A, Torres G, Barr RG. Ultrasound backscatter coefficient for fat quantification is affected by the measurement depth. Abdom Radiol (NY) 2024; 49:2622-2628. [PMID: 38834778 DOI: 10.1007/s00261-024-04413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE It has been reported that the estimate of ultrasound attenuation coefficient (AC) is affected by depth of measurement, with linear decrease of values with depth. It is unknown whether backscatter coefficient (BSC) has similar behavior. METHODS This retrospective study was performed with Sequoia US system equipped with ultrasound derived fat fraction (UDFF) algorithm (Siemens Healthineers, Issaquah, WA, USA) that combines BSC with AC. UDFF was obtained positioning upper edge of the region of interest at 1.5,2,3,4,5 cm below liver capsule. BSC data were extracted from UDFF offline. A fractional polynomial regression, which selects the best model considering the polynomial development of the variables of interest, was used. Covariates included were age, sex, skin-to-liver-capsule distance, stiffness. Distance was included as linear factor or with a power ranging from - 2 to 3, and the best fitting model was chosen according to partial F test. Body mass index (BMI) was not included because of collinearity with skin-to-liver capsule distance. RESULTS 104 individuals (56 females; age: 57.9 ± 13.0 years; BMI: 29.0 ± 6.5 kg/m2; skin-to-liver-capsule distance: 2.3 ± 0.7 cm; liver stiffness: 7.5 ± 5.5 kiloPascal) were studied. Best fitting model for BSC included a combination of depth as linear factor and square root. BSC showed a decrease of - 13.98 dB/cm-steradian for each logarithmic increase of 1 cm depth (coefficient: - 13.98; 95% CI: - 21.016; - 5.379; p = .001). Skin-to-liver-capsule distance and stiffness also were independent predictors of BSC. CONCLUSIONS The estimation of the BSC in the liver exhibits a depth dependence that significantly affects results. A standardized acquisition protocol is needed to compare results and reliably assess changes over time.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, Viale Brambilla 74, 27100, Pavia, Italy.
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometric Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA
- Southwoods Imaging, Youngstown, OH, USA
| |
Collapse
|
19
|
Dominik N, Semmler G, Hartl L, Balcar L, Schwarz M, Hofer BS, Reiberger T, Bauer DJM. Editorial: ARFI-based techniques are better than VCTE for diagnosing advanced fibrosis in severe obesity-Authors' reply. Aliment Pharmacol Ther 2024; 60:282-283. [PMID: 38795370 DOI: 10.1111/apt.18043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
LINKED CONTENTThis article is linked to Vuijk et al papers. To view these articles, visit https://doi.org/10.1111/apt.18019 and https://doi.org/10.1111/apt.18036
Collapse
Affiliation(s)
- Nina Dominik
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt S Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - David J M Bauer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine IV, Klinik Ottakring, Vienna, Austria
| |
Collapse
|
20
|
Kubale R, Schneider G, Lessenich CPN, Buecker A, Wassenberg S, Torres G, Gurung A, Hall T, Labyed Y. Ultrasound-Derived Fat Fraction for Hepatic Steatosis Assessment: Prospective Study of Agreement With MRI PDFF and Sources of Variability in a Heterogeneous Population. AJR Am J Roentgenol 2024; 222:e2330775. [PMID: 38506537 DOI: 10.2214/ajr.23.30775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND. Metabolic dysfunction-associated steatotic liver disease is a growing global public health concern. Quantitative ultrasound measurements, such as ultrasound-derived fat fraction (UDFF), could provide noninvasive, cost-effective, and portable steatosis evaluation. OBJECTIVE. The purpose of this article was to evaluate utility of UDFF for steatosis assessment using proton density fat fraction (PDFF) as reference in patients undergoing liver MRI for heterogeneous indications and to assess UDFF variability. METHODS. This prospective study included a primary analysis of 187 patients (mean age, 53.8 years; 112 men, 75 women) who underwent 3-T liver MRI for any clinical indication from December 2020 to July 2021. Patients underwent investigational PDFF measurement, including determination of PDFFwhole-liver (mean PDFF of entire liver), and PDFFvoxel (PDFF in single voxel within right lobe, measured by MR spectroscopy), as well as investigational ultrasound with UDFF calculation (mean of five inter-costal measurements) within 1 hour after MRI. In a subanalysis, 21 of these patients underwent additional UDFF measurements 1, 3, and 5 hours after meal consumption. The study also included repeatability and reproducibility analysis of 30 patients (mean age, 26.3 years; 10 men, 20 women) who underwent clinical abdominal ultrasound between November 2022 and January 2023; in these patients, three operators sequentially performed UDFF measurements. RESULTS. In primary analysis, UDFF and PDFFwhole-liver measurements showed intra-class correlation coefficient (ICC) of 0.79. In Bland-Altman analysis, UDFF and PDFFvoxel measurements showed mean difference of 1.5% (95% CI, 0.6-2.4%), with 95% limits of agreement from -11.0% to 14.0%. UDFF measurements exhibited AUC for detecting PDFFvoxel at historic thresholds of 6.5% and greater, 17.4% and greater, and 22.1% and greater of 0.90, 0.95, and 0.95, respectively. In subanalysis, mean UDFF was not significantly different across time points with respect to meal consumption (p = .21). In repeatability and reproducibility analysis, ICC for intraoperator repeatability ranged from 0.98 to 0.99 and for interoperator reproducibility from 0.90 to 0.96. Visual assessment of patient-level data plots indicated increasing variability of mean UDFF measurements across operators and of intercostal measurements within individual patients with increasing steatosis. CONCLUSION. UDFF showed robust agreement with PDFF, diagnostic performance for steatosis grades, and intraoperator repeatability and interoperator reproducibility. Nonetheless, UDFF exhibited bias toward slightly larger values versus PDFF; intraoperator and interoperator variation increased with increasing steatosis. CLINICAL IMPACT. UDFF shows promise for steatosis assessment across diverse populations, although continued optimization remains warranted.
Collapse
Affiliation(s)
- Reinhard Kubale
- Clinic of Diagnostic and Interventional Radiology, Saarland University Hospital, Kirrberger Strasse Geb. 50.1, 66424 Homburg, Germany
| | - Guenther Schneider
- Clinic of Diagnostic and Interventional Radiology, Saarland University Hospital, Kirrberger Strasse Geb. 50.1, 66424 Homburg, Germany
| | - Carl P N Lessenich
- Clinic of Diagnostic and Interventional Radiology, Saarland University Hospital, Kirrberger Strasse Geb. 50.1, 66424 Homburg, Germany
| | - Arno Buecker
- Clinic of Diagnostic and Interventional Radiology, Saarland University Hospital, Kirrberger Strasse Geb. 50.1, 66424 Homburg, Germany
| | | | | | - Arati Gurung
- Siemens Healthineers Ultrasound Division, Issaquah, WA
| | - Timothy Hall
- Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Yassin Labyed
- Siemens Healthineers Ultrasound Division, Issaquah, WA
| |
Collapse
|
21
|
Li J, Delamarre A, Wong VWS, de Lédinghen V. Diagnosis and assessment of disease severity in patients with nonalcoholic fatty liver disease. United European Gastroenterol J 2024; 12:219-225. [PMID: 37987101 PMCID: PMC10954424 DOI: 10.1002/ueg2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/07/2023] [Indexed: 11/22/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and eventually cirrhosis and hepatocellular carcinoma (HCC). The diagnosis of NAFLD is based on the detection of excess fat disposition in the liver, which is the first step to trigger further evaluation of NAFLD, including necroinflammation and fibrosis. In this review, we discuss non-invasive biomarkers and imaging tools that are currently and potentially available for different features (steatosis, necroinflammation and fibrosis) and disease severity assessment of NAFLD. In the past 2 decades, advances in non-invasive tests of fibrosis have transformed the management of NAFLD. Blood and imaging biomarkers have already been evaluated in multiple studies for the diagnosis of fibrosis and cirrhosis. Among the various histological features of NAFLD, the degree of fibrosis has the strongest correlation with liver-related morbidity and mortality. Non-invasive tests of fibrosis have been shown to predict liver-related outcomes, both in the general population and among patients with NAFLD. What is lacking, however, is good data to support the use of non-invasive tests as monitoring and response biomarkers. With the conclusion of several large phase 3 studies in the next few years, the availability of paired liver biopsy, non-invasive test and clinical outcome data will likely advance the field and shed light on new biomarkers and the way to use various non-invasive tests in a longitudinal manner.
Collapse
Affiliation(s)
- Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, University Medical School, Nanjing, China
| | - Adèle Delamarre
- Hepatology Unit, CHU Bordeaux, & BRIC, INSERM U1312, Bordeaux University, Bordeaux, France
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Victor de Lédinghen
- Hepatology Unit, CHU Bordeaux, & BRIC, INSERM U1312, Bordeaux University, Bordeaux, France
| |
Collapse
|
22
|
Tavaglione F, Flagiello V, Terracciani F, Gallo P, Capparelli E, Spiezia C, De Vincentis A, Palermo A, Scriccia S, Galati G, Napoli N, Daniels SJ, Blau JE, Carlsson B, Khazrai YM, Incalzi RA, Picardi A, Vespasiani-Gentilucci U. Non-invasive assessment of hepatic steatosis by ultrasound-derived fat fraction in individuals at high-risk for metabolic dysfunction-associated steatotic liver disease. Diabetes Metab Res Rev 2024; 40:e3787. [PMID: 38461408 DOI: 10.1002/dmrr.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/11/2024]
Abstract
AIMS Given the increasing number of individuals developing metabolic dysfunction-associated steatotic liver disease (MASLD) and the low rate of those with progressive liver disease, there is a pressing need to conceive affordable biomarkers to assess MASLD in general population settings. Herein, we aimed to investigate the performance of the ultrasound-derived fat fraction (UDFF) for hepatic steatosis in high-risk individuals. METHODS A total of 302 Europeans with obesity, type 2 diabetes, or a clinical history of hepatic steatosis were included in the analyses. Clinical, laboratory, and imaging data were collected using standardized procedures during a single screening visit in Rome, Italy. Hepatic steatosis was defined by controlled attenuation parameter (CAP) or ultrasound-based Hamaguchi's score. UDFF performance for hepatic steatosis was estimated by the area under the receiver operating characteristic curve (AUC). RESULTS Overall, median (IQR) UDFF was 12% (7-20). UDFF was positively correlated with CAP (ρ = 0.73, p < 0.0001) and Hamaguchi's score (ρ = 0.79, p < 0.0001). Independent predictors of UDFF were circulating triglycerides, alanine aminotransferase (ALT), and ultrasound-measured visceral adipose tissue (VAT). UDFF AUC was 0.89 (0.85-0.93) and 0.92 (0.88-0.95) for CAP- and ultrasound-diagnosed hepatic steatosis, respectively. UDFF AUC for hepatic steatosis was higher than those of fatty liver index (FLI), hepatic steatosis index (HSI), CAP-score (CAPS), and ALT (p < 0.0001). Lower age, ALT, and VAT were associated with discordance between UDFF and ultrasound. CONCLUSIONS UDFF may be a simple and accurate imaging biomarker to assess hepatic steatosis and monitor changes in hepatic fat content over time or in response to therapeutic interventions beyond clinical trials.
Collapse
Affiliation(s)
- Federica Tavaglione
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Valentina Flagiello
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Terracciani
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Paolo Gallo
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Emma Capparelli
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Chiara Spiezia
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Antonio De Vincentis
- Research Unit of Internal Medicine, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Andrea Palermo
- Research Unit of Metabolic Bone and Thyroid Disorders, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Sara Scriccia
- Check-up Center, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Giovanni Galati
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Nicola Napoli
- Research Unit of Metabolic Bone and Thyroid Disorders, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Samuel J Daniels
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jenny E Blau
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Björn Carlsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Yeganeh M Khazrai
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Nutrition and Prevention, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Raffaele Antonelli Incalzi
- Research Unit of Internal Medicine, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Antonio Picardi
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
23
|
Jeon SK, Lee JM. Inter-platform reproducibility of ultrasound-based fat fraction for evaluating hepatic steatosis in nonalcoholic fatty liver disease. Insights Imaging 2024; 15:46. [PMID: 38353856 PMCID: PMC10866839 DOI: 10.1186/s13244-024-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES To evaluate the inter-platform reproducibility of ultrasound-based fat fraction examination in nonalcoholic fatty liver disease (NAFLD). METHODS Patients suspected of having NAFLD were prospectively enrolled from January 2023. Ultrasound-based fat fraction examinations were performed using two different platforms (ultrasound-derived fat fraction [UDFF] and quantitative ultrasound-derived estimated fat fraction [USFF]) on the same day. The correlation between UDFF and USFF was assessed using Pearson correlation coefficient. Intraclass correlation coefficient (ICC), Bland-Altman analysis with 95% limits of agreement (LOAs), and the coefficient of variation (CV) were used to assess inter-platform reproducibility. RESULTS A total of 41 patients (21 men and 20 women; mean age, 53.9 ± 12.6 years) were analyzed. Moderate correlation was observed between UDFF and USFF (Pearson's r = 0.748; 95% confidence interval [CI]: 0.572-0.858). On Bland-Altman analysis, the mean difference between UDFF and USFF values was 1.3% with 95% LOAs ranging from -8.0 to 10.6%. The ICC between UDFF and USFF was 0.842 (95% CI: 0.703-0.916), with a CV of 29.9%. CONCLUSION Substantial inter-platform variability was observed among different ultrasound-based fat fraction examinations. Therefore, it is not appropriate to use ultrasound-based fat fraction values obtained from different vendors interchangeably. CRITICAL RELEVANCE STATEMENT Considering the substantial inter-platform variability in ultrasound-based fat fraction assessments, caution is imperative when interpreting and comparing fat fraction values obtained from different ultrasound platforms in clinical practice. KEY POINTS • Inter-platform reproducibility of ultrasound-based fat fraction examinations is important for its clinical application. • Significant variability across different ultrasound-based fat fraction examinations was observed. • Using ultrasound-based fat fraction values from different vendors interchangeably is not advisable.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-Gu, Seoul, 03080, South Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-Gu, Seoul, 03080, South Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
24
|
De Robertis R, Spoto F, Autelitano D, Guagenti D, Olivieri AM, Zanutto P, Incarbone GM, D'Onofrio M. Response to "Ultrasound-derived fat fraction is not yet ready for widespread clinical use" by Low et al. LA RADIOLOGIA MEDICA 2024; 129:348-349. [PMID: 38286869 DOI: 10.1007/s11547-024-01775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Affiliation(s)
- Riccardo De Robertis
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| | - Flavio Spoto
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Daniele Autelitano
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Daniela Guagenti
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Antonia Maria Olivieri
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Piero Zanutto
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Greta Maria Incarbone
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
25
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
26
|
Kadi D, Loomba R, Bashir MR. Diagnosis and Monitoring of Nonalcoholic Steatohepatitis: Current State and Future Directions. Radiology 2024; 310:e222695. [PMID: 38226882 DOI: 10.1148/radiol.222695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease, with a worldwide prevalence of 25%. NAFLD is a spectrum that includes nonalcoholic fatty liver defined histologically by isolated hepatocytes steatosis without inflammation and nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of NAFLD and is associated with disease progression, development of cirrhosis, and increased rates of liver-specific and overall mortality. The differentiation between NAFLD and NASH as well as staging NASH are important yet challenging clinical problems. Liver biopsy is currently the standard for disease diagnosis and fibrosis staging. However, this procedure is invasive, costly, and cannot be used for longitudinal monitoring. Therefore, several noninvasive quantitative imaging biomarkers have been proposed that can estimate the severity of hepatic steatosis and fibrosis. Despite this, noninvasive diagnosis of NASH and accurate risk stratification remain unmet needs. In this work, the most relevant available imaging biomarkers are reviewed and their application in patients with NAFLD are discussed.
Collapse
Affiliation(s)
- Diana Kadi
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Rohit Loomba
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Mustafa R Bashir
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| |
Collapse
|
27
|
Pickhardt PJ, Blake GM, Kimmel Y, Weinstock E, Shaanan K, Hassid S, Abbas A, Fox MA. Detection of Moderate Hepatic Steatosis on Portal Venous Phase Contrast-Enhanced CT: Evaluation Using an Automated Artificial Intelligence Tool. AJR Am J Roentgenol 2023; 221:748-758. [PMID: 37466185 DOI: 10.2214/ajr.23.29651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND. Precontrast CT is an established means of evaluating for hepatic steatosis; postcontrast CT has historically been limited for this purpose. OBJECTIVE. The purpose of this study was to evaluate the diagnostic performance of portal venous phase postcontrast CT in detecting at least moderate hepatic steatosis using liver and spleen attenuation measurements determined by an automated artificial intelligence (AI) tool. METHODS. This retrospective study included 2917 patients (1381 men, 1536 women; mean age, 56.8 years) who underwent a CT examination that included at least two series through the liver. Examinations were obtained from an AI vendor's data lake of data from 24 centers in one U.S. health care network and 29 centers in one Israeli health care network. An automated deep learning tool extracted liver and spleen attenuation measurements. The reference for at least moderate steatosis was precontrast liver attenuation of less than 40 HU (i.e., estimated liver fat > 15%). A radiologist manually reviewed examinations with outlier AI results to confirm portal venous timing and identify issues impacting attenuation measurements. RESULTS. After outlier review, analysis included 2777 patients with portal venous phase images. Prevalence of at least moderate steatosis was 13.9% (387/2777). Patients without and with at least moderate steatosis, respectively, had mean postcontrast liver attenuation of 104.5 ± 18.1 (SD) HU and 67.1 ± 18.6 HU (p < .001); a mean difference in postcontrast attenuation between the liver and the spleen (hereafter, postcontrast liver-spleen attenuation difference) of -7.6 ± 16.4 (SD) HU and -31.8 ± 20.3 HU (p < .001); and mean liver enhancement of 49.3 ± 15.9 (SD) HU versus 38.6 ± 13.6 HU (p < .001). Diagnostic performance for the detection of at least moderate steatosis was higher for postcontrast liver attenuation (AUC = 0.938) than for the postcontrast liver-spleen attenuation difference (AUC = 0.832) (p < .001). For detection of at least moderate steatosis, postcontrast liver attenuation had sensitivity and specificity of 77.8% and 93.2%, respectively, at less than 80 HU and 90.5% and 78.4%, respectively, at less than 90 HU; the postcontrast liver-spleen attenuation difference had sensitivity and specificity of 71.4% and 79.3%, respectively, at less than -20 HU and 87.0% and 62.1%, respectively, at less than -10 HU. CONCLUSION. Postcontrast liver attenuation outperformed the postcontrast liver-spleen attenuation difference for detecting at least moderate steatosis in a heterogeneous patient sample, as evaluated using an automated AI tool. Splenic attenuation likely is not needed to assess for at least moderate steatosis on postcontrast images. CLINICAL IMPACT. The technique could promote early detection of clinically significant nonalcoholic fatty liver disease through individualized or large-scale opportunistic evaluation.
Collapse
Affiliation(s)
- Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252
| | - Glen M Blake
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
| | | | | | | | | | - Ahmad Abbas
- Department of Radiology, Barzilai University Medical Center, Ashkelon, Israel
| | - Matthew A Fox
- Nanox-AI, Ltd., Neve Ilan, Israel
- Department of Radiology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| |
Collapse
|
28
|
Dillman JR, Trout AT. Multisample Ultrasound Point Shear Wave Elastography of the Liver: Repeatability and Agreement With Conventional Point Shear Wave Elastography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2749-2756. [PMID: 37615225 DOI: 10.1002/jum.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE To characterize the technical performance of a multisample ultrasound point shear wave elastography (pSWE) technique that allows 15 individual measurements of liver stiffness in a single acquisition. METHODS In 56 overweight and obese adults, research ultrasound examinations were performed using conventional pSWE and multisample pSWE (Sequoia; Siemens Healthineers). Five independent measurements were acquired with the conventional technique over five consecutive breath holds (5C1 and DAX transducers). A single multisample acquisition (DAX transducer) of up to 15 unique measurements was acquired during a single breath hold. All imaging was performed before (baseline) and after a "coffee break" (repeat). Median liver stiffness measurements between techniques and between baseline and repeat imaging were compared using Pearson correlation (r) and intra-class correlation (ICC) coefficients. RESULTS Mean participant age was 33.7 ± 11.4 years; 40 participants were female. There was high correlation between conventional pSWE measurements obtained using the 5C1 and DAX transducers at baseline (r = .75 [95% CI: 0.61-0.85], P < .0001) and repeat (r = .88 [95% CI: 0.78-0.92], P < .0001). There was moderate agreement between conventional pSWE measurements obtained using the 5C1 and DAX transducers at baseline (ICC = 0.69 [95% CI: 0.52-0.81]), and good agreement at repeat (ICC = 0.81 [95% CI: 0.65-0.90]). There was moderate correlation (r = .59 [95% CI: 0.39-0.74], P < .0001) and moderate agreement (ICC = 0.58 [95% CI: 0.38-0.73]) between baseline conventional and multisample pSWE measurements acquired using the DAX transducer; there was high correlation (r = .73 [95% CI: 0.57-0.83], P < .0001) and moderate agreement (ICC = 0.72 [95% CI: 0.56-0.82] between techniques at repeat. There was moderate correlation (r = .65 [95% CI: 0.46-0.78], P < .0001) and moderate agreement (ICC = 0.64 [95% CI: 0.45-0.77]) between baseline and repeat multisample pSWE measurements. CONCLUSIONS Multisample pSWE, allowing up to 15 measurements in a single breath hold, showed moderate to high correlation and moderate agreement with conventional pSWE.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
29
|
Zalcman M, Barth RA, Rubesova E. Real-time ultrasound-derived fat fraction in pediatric population: feasibility validation with MR-PDFF. Pediatr Radiol 2023; 53:2466-2475. [PMID: 37667050 DOI: 10.1007/s00247-023-05752-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. To avoid limitations of liver biopsy and MRI, quantitative ultrasound has become a research focus. Ultrasound-derived fat fraction (UDFF) is based on a combination of backscatter coefficient and attenuation parameter. OBJECTIVE The objectives of the study were to determine (1) agreement between UDFF/MRI proton density fat fraction (MR-PDFF) and (2) whether BMI and age are predictive for UDFF. MATERIALS AND METHODS This cross-sectional prospective study included a convenience sample of 46 children referred for clinically indicated abdominal MRI. MR-PDFF and five acquisitions of UDFF were collected. Intraclass correlation coefficient (ICC) and Bland-Altman analysis were used to assess agreement between MR-PDFF and UDFF. Receiver operating characteristic curves were calculated for UDFF prediction of liver steatosis (MR-PDFF ≥ 6%). Multivariable regression was performed to assess BMI and age as predictors for UDFF. RESULTS Twenty-two participants were male, 24 were female, and the mean age was 14 ± 3 (range: 7-18) years. Thirty-six out of 46 participants had normal liver fat fraction <6%, and 10/46 had liver steatosis. UDFF was positively associated with MR-PDFF (ICC 0.92 (95% CI, 0.89-0.96). The mean bias between UDFF and MR-PDFF was 0.64% (95% LOA, -5.3-6.6%). AUROC of UDFF for steatosis was of 0.95 (95% CI, 0.89-0.99). UDFF cutoff of 6% had a sensitivity of 90% (95% CI, 55-99%) and a specificity of 94% (95% CI, 81-0.99%). BMI was an independent predictor of UDFF (correlation: 0.55 (95% CI, 0.35-0.95)). CONCLUSIONS UDFF shows strong agreement with MR-PDFF in children. A UDFF cutoff of 6% provides good sensitivity and specificity for detection of MR-PDFF of ≥ 6%.
Collapse
Affiliation(s)
- Max Zalcman
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA.
| | - Richard A Barth
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Erika Rubesova
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
30
|
Ozturk A, Kumar V, Pierce TT, Li Q, Baikpour M, Rosado-Mendez I, Wang M, Guo P, Schoen S, Gu Y, Dayavansha S, Grajo JR, Samir AE. The Future Is Beyond Bright: The Evolving Role of Quantitative US for Fatty Liver Disease. Radiology 2023; 309:e223146. [PMID: 37934095 PMCID: PMC10695672 DOI: 10.1148/radiol.223146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 11/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common cause of morbidity and mortality. Nonfocal liver biopsy is the historical reference standard for evaluating NAFLD, but it is limited by invasiveness, high cost, and sampling error. Imaging methods are ideally situated to provide quantifiable results and rule out other anatomic diseases of the liver. MRI and US have shown great promise for the noninvasive evaluation of NAFLD. US is particularly well suited to address the population-level problem of NAFLD because it is lower-cost, more available, and more tolerable to a broader range of patients than MRI. Noninvasive US methods to evaluate liver fibrosis are widely available, and US-based tools to evaluate steatosis and inflammation are gaining traction. US techniques including shear-wave elastography, Doppler spectral imaging, attenuation coefficient, hepatorenal index, speed of sound, and backscatter-based estimation have regulatory clearance and are in clinical use. New methods based on channel and radiofrequency data analysis approaches have shown promise but are mostly experimental. This review discusses the advantages and limitations of clinically available and experimental approaches to sonographic liver tissue characterization for NAFLD diagnosis as well as future applications and strategies to overcome current limitations.
Collapse
Affiliation(s)
- Arinc Ozturk
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Viksit Kumar
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Theodore T. Pierce
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Qian Li
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Masoud Baikpour
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Ivan Rosado-Mendez
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Michael Wang
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Peng Guo
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Scott Schoen
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Yuyang Gu
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Sunethra Dayavansha
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Joseph R. Grajo
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Anthony E. Samir
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| |
Collapse
|
31
|
Dillman JR. Commentary on "Real time ultrasound derived fat fraction in pediatric population: Feasibility validation with MR-PDFF". Pediatr Radiol 2023; 53:2476-2477. [PMID: 37667049 DOI: 10.1007/s00247-023-05755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
32
|
De Robertis R, Spoto F, Autelitano D, Guagenti D, Olivieri A, Zanutto P, Incarbone G, D'Onofrio M. Ultrasound-derived fat fraction for detection of hepatic steatosis and quantification of liver fat content. LA RADIOLOGIA MEDICA 2023; 128:1174-1180. [PMID: 37568072 PMCID: PMC10547617 DOI: 10.1007/s11547-023-01693-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
PURPOSE To compare ultrasound (US) and US-derived fat fraction (UDFF) with magnetic resonance proton density fat fraction (MRI-PDFF) for the detection of hepatic steatosis and quantification of liver fat content. MATERIALS AND METHODS Between October and December 2022, 149 patients scheduled for an abdominal MRI agreed to participate in this study and underwent MRI-PDFF, US and UDFF. Inclusion criteria were: (a) no chronic liver disease or jaundice; (b) no MRI motion artifacts; (c) adequate liver examination at US. Exclusion criteria were: (a) alcohol abuse, chronic hepatitis, cirrhosis, or jaundice; (b) MRI artifacts or insufficient US examination. The median of 10 MRI-PDFF and UDFF measurements in the right hepatic lobe was analyzed. UDFF and MRI-PDFF were compared by Bland-Altman difference plot and Pearson's test. Sensitivity, specificity, positive and negative predictive values, accuracy, and area under the receiver-operator curve (AUC-ROC) of US and UDFF were calculated using an MRI-PDFF cut-off value of 5%. p values ≤ 0.05 were statistically significant. RESULTS 122 patients were included (61 men, mean age 60 years, standard deviation 15 years). The median MRI-PDFF value was 4.1% (interquartile range 2.9-6); 37.7% patients had a median MRI-PDFF value ≥ 5%. UDFF and MRI-PDFF had high agreement (p = 0.11) and positive correlation (⍴ = 0.81, p < 0.001). UDFF had a higher diagnostic value than US for the detection of steatosis, with AUC-ROCs of 0.75 (95% CI 0.65, 0.84) and 0.53 (95% CI 0.42, 0.64), respectively. CONCLUSIONS UDFF reliably quantifies liver fat content and improves the diagnostic value of US for the detection of hepatic steatosis.
Collapse
Affiliation(s)
- Riccardo De Robertis
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy.
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| | - Flavio Spoto
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Daniele Autelitano
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Daniela Guagenti
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Antonia Olivieri
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Piero Zanutto
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Greta Incarbone
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Mirko D'Onofrio
- Department of Radiology, Ospedale G.B. Rossi AOUI Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
33
|
Jeon SK, Lee JM, Cho SJ, Byun YH, Jee JH, Kang M. Development and validation of multivariable quantitative ultrasound for diagnosing hepatic steatosis. Sci Rep 2023; 13:15235. [PMID: 37709827 PMCID: PMC10502048 DOI: 10.1038/s41598-023-42463-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
This study developed and validated multivariable quantitative ultrasound (QUS) model for diagnosing hepatic steatosis. Retrospective secondary analysis of prospectively collected QUS data was performed. Participants underwent QUS examinations and magnetic resonance imaging proton density fat fraction (MRI-PDFF; reference standard). A multivariable regression model for estimating hepatic fat fraction was determined using two QUS parameters from one tertiary hospital (development set). Correlation between QUS-derived estimated fat fraction(USFF) and MRI-PDFF and diagnostic performance of USFF for hepatic steatosis (MRI-PDFF ≥ 5%) were assessed, and validated in an independent data set from the other health screening center(validation set). Development set included 173 participants with suspected NAFLD with 126 (72.8%) having hepatic steatosis; and validation set included 452 health screening participants with 237 (52.4%) having hepatic steatosis. USFF was correlated with MRI-PDFF (Pearson r = 0.799 and 0.824; development and validation set). The model demonstrated high diagnostic performance, with areas under the receiver operating characteristic curves of 0.943 and 0.924 for development and validation set, respectively. Using cutoff of 6.0% from development set, USFF showed sensitivity, specificity, positive predictive value, and negative predictive value of 87.8%, 78.6%, 81.9%, and 85.4% for diagnosing hepatic steatosis in validation set. In conclusion, multivariable QUS parameters-derived estimated fat fraction showed high diagnostic performance for detecting hepatic steatosis.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Soo Jin Cho
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| | - Young-Hye Byun
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Jae Hwan Jee
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Mira Kang
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
- Department of Digital Health, Samsung Advanced Institute of Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Digital Innovation Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Fetzer DT, Pierce TT, Robbin ML, Cloutier G, Mufti A, Hall TJ, Chauhan A, Kubale R, Tang A. US Quantification of Liver Fat: Past, Present, and Future. Radiographics 2023; 43:e220178. [PMID: 37289646 DOI: 10.1148/rg.220178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fatty liver disease has a high and increasing prevalence worldwide, is associated with adverse cardiovascular events and higher long-term medical costs, and may lead to liver-related morbidity and mortality. There is an urgent need for accurate, reproducible, accessible, and noninvasive techniques appropriate for detecting and quantifying liver fat in the general population and for monitoring treatment response in at-risk patients. CT may play a potential role in opportunistic screening, and MRI proton-density fat fraction provides high accuracy for liver fat quantification; however, these imaging modalities may not be suited for widespread screening and surveillance, given the high global prevalence. US, a safe and widely available modality, is well positioned as a screening and surveillance tool. Although well-established qualitative signs of liver fat perform well in moderate and severe steatosis, these signs are less reliable for grading mild steatosis and are likely unreliable for detecting subtle changes over time. New and emerging quantitative biomarkers of liver fat, such as those based on standardized measurements of attenuation, backscatter, and speed of sound, hold promise. Evolving techniques such as multiparametric modeling, radiofrequency envelope analysis, and artificial intelligence-based tools are also on the horizon. The authors discuss the societal impact of fatty liver disease, summarize the current state of liver fat quantification with CT and MRI, and describe past, currently available, and potential future US-based techniques for evaluating liver fat. For each US-based technique, they describe the concept, measurement method, advantages, and limitations. © RSNA, 2023 Online supplemental material is available for this article. Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- David T Fetzer
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Theodore T Pierce
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Michelle L Robbin
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Guy Cloutier
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Arjmand Mufti
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Timothy J Hall
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Anil Chauhan
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Reinhard Kubale
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - An Tang
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| |
Collapse
|
35
|
Guglielmo FF, Barr RG, Yokoo T, Ferraioli G, Lee JT, Dillman JR, Horowitz JM, Jhaveri KS, Miller FH, Modi RY, Mojtahed A, Ohliger MA, Pirasteh A, Reeder SB, Shanbhogue K, Silva AC, Smith EN, Surabhi VR, Taouli B, Welle CL, Yeh BM, Venkatesh SK. Liver Fibrosis, Fat, and Iron Evaluation with MRI and Fibrosis and Fat Evaluation with US: A Practical Guide for Radiologists. Radiographics 2023; 43:e220181. [PMID: 37227944 DOI: 10.1148/rg.220181] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Quantitative imaging biomarkers of liver disease measured by using MRI and US are emerging as important clinical tools in the management of patients with chronic liver disease (CLD). Because of their high accuracy and noninvasive nature, in many cases, these techniques have replaced liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. The most commonly evaluated imaging biomarkers are surrogates for liver fibrosis, fat, and iron. MR elastography is now routinely performed to evaluate for liver fibrosis and typically combined with MRI-based liver fat and iron quantification to exclude or grade hepatic steatosis and iron overload, respectively. US elastography is also widely performed to evaluate for liver fibrosis and has the advantage of lower equipment cost and greater availability compared with those of MRI. Emerging US fat quantification methods can be performed along with US elastography. The author group, consisting of members of the Society of Abdominal Radiology (SAR) Liver Fibrosis Disease-Focused Panel (DFP), the SAR Hepatic Iron Overload DFP, and the European Society of Radiology, review the basics of liver fibrosis, fat, and iron quantification with MRI and liver fibrosis and fat quantification with US. The authors cover technical requirements, typical case display, quality control and proper measurement technique and case interpretation guidelines, pitfalls, and confounding factors. The authors aim to provide a practical guide for radiologists interpreting these examinations. © RSNA, 2023 See the invited commentary by Ronot in this issue. Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Flavius F Guglielmo
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Richard G Barr
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Takeshi Yokoo
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Giovanna Ferraioli
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - James T Lee
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Jonathan R Dillman
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Jeanne M Horowitz
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Kartik S Jhaveri
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Frank H Miller
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Roshan Y Modi
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Amirkasra Mojtahed
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Michael A Ohliger
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Ali Pirasteh
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Scott B Reeder
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Krishna Shanbhogue
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Alvin C Silva
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Elainea N Smith
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Venkateswar R Surabhi
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Bachir Taouli
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Christopher L Welle
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Benjamin M Yeh
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| | - Sudhakar K Venkatesh
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Philadelphia, PA 19107 (F.F.G.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy (G.F.); Department of Radiology, University of Kentucky, Lexington, Ky (J.T.L.); Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.R.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.M.H., F.H.M.); Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.S.J.); Department of Radiology, ChristianaCare, Newark, Del (R.Y.M.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (A.M.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (M.A.O., B.M.Y.); Departments of Radiology and Medical Physics (A.P.) and Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, NYU Langone Health, New York, NY (K.S.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (A.C.S.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (E.N.S.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S.); Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (B.T.); and Department of Radiology, Mayo Clinic, Rochester, Minn (C.L.W., S.K.V.)
| |
Collapse
|
36
|
Zeng KY, Bao WYG, Wang YH, Liao M, Yang J, Huang JY, Lu Q. Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications. World J Gastroenterol 2023; 29:2534-2550. [PMID: 37213404 PMCID: PMC10198053 DOI: 10.3748/wjg.v29.i17.2534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases. Therefore, early detection and quantified measurement of hepatic fat content are of great importance. Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis. However, liver biopsy has several limitations, namely, its invasiveness, sampling error, high cost and moderate intraobserver and interobserver reproducibility. Recently, various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content, including ultrasound- or magnetic resonance-based methods. These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content, which is useful for longitudinal follow-up. In this review, we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.
Collapse
Affiliation(s)
- Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wu-Yong-Ga Bao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Han Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Min Liao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
37
|
Nogami A, Yoneda M, Iwaki M, Kobayashi T, Honda Y, Ogawa Y, Imajo K, Saito S, Nakajima A. Non-invasive imaging biomarkers for liver steatosis in non-alcoholic fatty liver disease: present and future. Clin Mol Hepatol 2023; 29:S123-S135. [PMID: 36503207 PMCID: PMC10029939 DOI: 10.3350/cmh.2022.0357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is currently the most common chronic liver disease, affecting up to 25% of the global population. Simple fatty liver, in which fat is deposited in the liver without fibrosis, has been regarded as a benign disease in the past, but it is now known to be prognostic. In the future, more emphasis should be placed on the quantification of liver fat. Traditionally, fatty liver has been assessed by histological evaluation, which requires an invasive examination; however, technological innovations have made it possible to evaluate fatty liver by non-invasive imaging methods, such as ultrasonography, computed tomography, and magnetic resonance imaging. In addition, quantitative as well as qualitative measurements for the detection of fatty liver have become available. In this review, we summarize the currently used qualitative evaluations of fatty liver and discuss quantitative evaluations that are expected to further develop in the future.
Collapse
Affiliation(s)
- Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
- Department of Gastroenterology and Endoscopy, Shinyurigaoka General Hospital, Kawasaki, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| |
Collapse
|
38
|
Sidhu PS, Fang C. US-based Hepatic Fat Quantification: An Emerging Technique and Game Changer? Radiology 2023; 307:e223002. [PMID: 36594839 DOI: 10.1148/radiol.223002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Paul S Sidhu
- From the Department of Radiology, King's College London, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Cheng Fang
- From the Department of Radiology, King's College London, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|