1
|
Abel F, Schmaranzer F, Sutter R. Sports-related Hip Injuries. Semin Musculoskelet Radiol 2025; 29:442-456. [PMID: 40393502 DOI: 10.1055/s-0045-1805079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Sports-related injuries of the hip joint and surrounding structures are frequently encountered in athletes, encompassing a wide spectrum of osseous, intra-articular, and extra-articular pathologies. Early and accurate detection of typical injury patterns across various sports can expedite recovery. Delayed diagnosis often leads to prolonged return to play and progression of low grade to more severe injuries. These injuries, caused by repetitive stress or acute trauma, include fractures, hip dislocations, and intra-articular abnormalities, such as femoroacetabular impingement, labral tears, cartilage defects, and ligamentum teres tears. Extra-articular pathologies include apophyseal injuries, muscle strains, athletic pubalgia, greater trochanteric pain syndrome, or snapping hip syndrome, all of which can substantially impair athletic performance. Familiarity with hip anatomy and biomechanics, as well as the strengths of different imaging modalities, with magnetic resonance imaging often the preferred choice for many injuries, is essential for an efficient diagnostic work-up of the painful hip and reducing long-term complications.
Collapse
Affiliation(s)
- Frederik Abel
- Department of Radiology, Faculty of Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Florian Schmaranzer
- Department of Radiology, Faculty of Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Faculty of Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Quintiens J, Manske SL, Boyd SK, Coudyzer W, Bevers M, Vereecke E, van den Bergh J, van Lenthe GH. Accuracy and precision of segmentation and quantification of wrist bone microarchitecture using photon-counting computed tomography ex vivo. Bone 2025; 194:117443. [PMID: 40032018 DOI: 10.1016/j.bone.2025.117443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The quantification of bone microarchitecture provides insight into bone health and the effects of disease or treatment, and is therefore highly relevant clinical information. Nonetheless, in vivo quantification of bone microarchitecture is mostly limited to high-resolution peripheral quantitative CT (HR-pQCT). This is a small field of view CT modality of which the gantry size only allows scanning of distal radius and tibia. Photon-counting CT (PCCT) is a novel clinical full-body CT with improved image resolution and quality compared to other clinical CT modalities, yet data on its capabilities in quantifying bone microarchitecture are limited. The aim of this study was to quantify the accuracy of two methods for trabecular bone segmentation on PCCT images as compared to the segmentations on micro-CT (μCT) and to use these segmentations to quantify the accuracy and agreement of trabecular bone morphometry measurements as compared to μCT, as well as the short-term precision. This study analysed multimodal CT data, obtained from eight cadaveric forearms; the data includes two repeated PCCT scans, as well as a single HR-pQCT scan from the forearm, and μCT scans of all individual carpal bones. For each carpal bone, trabecular volumes of interest (VOI) were delineated on the μCT images, and the μCT reference segmentations and VOIs were resampled onto the PCCT and HR-pQCT images. HR-pQCT images were segmented with a global threshold of 320 mgHA/cm3; PCCT images were segmented with either an identical global threshold or with an adaptive thresholding algorithm. Trabecular bone-volume fraction (Tb.BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) were quantified for all segmented VOIs. Accuracy and agreement were calculated relative to μCT as the gold standard, short-term precision was calculated from the repeated PCCT scan. For PCCT, adaptive threshold segmentation had significantly increased sensitivity compared to global threshold segmentation, along with a lower variance in its sensitivity and specificity. Concerning the microarchitecture quantification, for global threshold segmentation of PCCT images, correlations with μCT were significant, except for Tb.Sp. Correlation coefficients of Tb.BV/TV and Tb.N were not significantly different from those between HR-pQCT and μCT. Adaptive threshold segmentation led to higher correlation coefficients between PCCT and μCT of Tb.Th, Tb.N and Tb.Sp, although correlations of Tb.N remained poor for both PCCT and HR-pQCT. Moreover, adaptive thresholding led to a constant bias of Tb.BV/TV, Tb.Th and Tb.Sp, unlike the bias of HR-pQCT which was proportionally increasing with the size of the measurement. Finally, adaptive threshold segmentation led to a higher short-term precision than global threshold segmentation, with a root-mean-squared coefficient of variation below 0.65 % for all parameters. We conclude that adaptive threshold segmentation is well-suited for the segmentation of PCCT images. Despite measurement error, our results indicate that these segmentations can be used for bone microarchitecture analyses of carpal bones with agreement and short-term precision comparable to HR-pQCT.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Belgium; McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - Sarah L Manske
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Canada
| | - Walter Coudyzer
- Department of Radiology, University Hospital Leuven, Belgium
| | - Melissa Bevers
- Department of Internal Medicine, VieCuri Medical Center, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - Evie Vereecke
- Department of Development and Regeneration, KU Leuven, Belgium
| | - Joop van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, the Netherlands
| | | |
Collapse
|
3
|
Strickland CD. Current Techniques in the Imaging of Gout. Semin Musculoskelet Radiol 2025; 29:267-274. [PMID: 40164082 DOI: 10.1055/s-0045-1802351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gout is a common inflammatory arthritis with well-described imaging characteristics. Radiography depicts erosive change and in advanced cases, tophus deposition near joints and in association with tendons or bursae. Computed tomography demonstrates the same features but may also use dual-energy or photon-counting techniques that allow for tissue composition analysis and the specific identification of monosodium urate deposition. Magnetic resonance imaging (MRI) is useful in identifying tophi and the damage associated with gout, such as bone erosion and cartilage loss in advanced cases. MRI also helps differentiate gout from other types of inflammatory arthritis, infection, or tumor that may have a similar clinical presentation. Ultrasound is widely used in the diagnosis of gout and also useful in procedural guidance of joint aspiration or soft tissue biopsy.
Collapse
Affiliation(s)
- Colin D Strickland
- Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Varga-Szemes A, Emrich T. Photon-counting detector CT: a disrupting innovation in medical imaging. Eur Radiol Exp 2025; 9:38. [PMID: 40131583 PMCID: PMC11936849 DOI: 10.1186/s41747-025-00571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/22/2024] [Indexed: 03/27/2025] Open
Abstract
Over the past decades, computed tomography (CT) imaging has profited from various technical innovations. Besides improvements such as higher temporal and spatial resolutions, lower radiation dose, and the introduction of dual- and multi-energy imaging, the development and recent clinical introduction of photon-counting detector CT (PCD-CT) represents a milestone with the potential to substantially change clinical CT imaging and expand its indications. This thematic series of European Radiology Experimental comprises a collection of original research papers and review articles demonstrating the benefits and challenges of this cutting-edge technology. The thematic series includes a wide range of relevant topics spanning from initial clinical experiences using PCD-CT to original research papers covering potential applications in various body regions.
Collapse
Affiliation(s)
- Akos Varga-Szemes
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
| | - Tilman Emrich
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
5
|
Latzko L, Schmit A, Glodny B, Grams AE, Birkl C, Crismani AG. Orthodontic appliances and their diagnostic impact to brain MRI. Clin Oral Investig 2025; 29:202. [PMID: 40119988 PMCID: PMC11929640 DOI: 10.1007/s00784-025-06275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE The aim of this study was to display and quantify signal loss artifacts in 1.5T and 3T brain MRI on a volunteer with different orthodontic appliances. MATERIALS AND METHODS In this experimental study, three different orthodontic appliances were examined on a 1.5T and a 3T MRI scanner in a healthy adult with normal dental occlusion: stainless-steel brackets paired with a nickel-titanium archwire; brackets, archwire, and stainless-steel molar bands; brackets, archwire, molar bands, and a stainless-steel trans-palatal archwire. Assessment of diverse anatomical structures, including different cerebral structures and blood vessels, was conducted using a six-point Likert scale. RESULTS Utilizing conventional stainless-steel brackets and a nickel-titanium archwire, with or without the inclusion of stainless-steel molar bands, all cerebral structures demonstrated satisfactory assessability with high diagnostic quality under both 1.5T and 3T MRI. For example, with an average rating of 85/85 for T2 and 77/85 for susceptibility-weighted imaging (SWI). Upon introduction of the stainless-steel trans-palatal archwire, additional artifacts were observed, predominantly manifesting in SWI (20/85), diffusion-weighted imaging (DWI) sequences (31/85), and phase contrast angiography (PCA) (17/20). Differences in artifact severity were mainly observed in the SWI and DWI sequences. CONCLUSION Based on the findings of this study, it is not imperative to entirely remove orthodontic appliances to achieve sufficient diagnostic quality in brain MRI. In instances where SWI or DWI sequences are necessitated, the removal of solely the trans-palatal stainless-steel archwire should be contemplated, given its straightforward execution. CLINICAL RELEVANCE These results highlight the potential to reduce injury risk during orthodontic appliance removal, expedite imaging procedures, and consequently accelerate diagnostic processes, particularly crucial in emergencies.
Collapse
Affiliation(s)
- Lisa Latzko
- Department of Dental and Oral Medicine and Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Schmit
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Bernhard Glodny
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Astrid E Grams
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Birkl
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria.
| | - Adriano G Crismani
- Department of Dental and Oral Medicine and Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Grunz JP, Huflage H. Photon-Counting Detector CT Applications in Musculoskeletal Radiology. Invest Radiol 2025; 60:198-204. [PMID: 39088264 PMCID: PMC11801470 DOI: 10.1097/rli.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024]
Abstract
ABSTRACT Photon-counting detectors (PCDs) have emerged as one of the most influential technical developments for medical imaging in recent memory. Surpassing conventional systems with energy-integrating detector technology in many aspects, PCD-CT scanners provide superior spatial resolution and dose efficiency for all radiological subspecialities. Demanding detailed display of trabecular microarchitecture and extensive anatomical coverage frequently within the same scan, musculoskeletal (MSK) imaging in particular can be a beneficiary of PCD-CT's remarkable performance. Since PCD-CT provides users with a plethora of customization options for both image acquisition and reconstruction, however, MSK radiologists need to be familiar with the scanner to unlock its full potential. From filter-based spectral shaping for artifact reduction over full field-of-view ultra-high-resolution scans to postprocessing of single- or dual-source multienergy data, almost every imaging task can be met with an optimized approach in PCD-CT. The objectives of this review were to give an overview of the most promising applications of PCD-CT in MSK imaging to date, to state current limitations, and to highlight directions for future research and developments.
Collapse
|
7
|
Hartung V, Huflage H, Augustin AM, Lichthardt S, Peter D, Kleefeldt F, Ergün S, Bley TA, Grunz JP, Gruschwitz P. Diagnostic limitations in advanced stage peripheral arterial disease in a cadaveric study comparing photon-counting and energy-integrating CT detectors. Sci Rep 2025; 15:6923. [PMID: 40011625 PMCID: PMC11865436 DOI: 10.1038/s41598-025-91239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
To evaluate the limits of 1st-generation dual-source photon-counting detector CT (PCD-CT) and 3rd-generation dual-source energy-integrating-detector (EID-CT) regarding imaging of advanced stage peripheral arterial disease (ASPAD) of the femoral runoff. One human cadaver with ASPAD of the superficial femoral arteries was surgically prepared to establish continuous extracorporeal perfusion of the right upper leg. In addition to one stent already in place, three more stents were deployed in positions with severe calcification and stenosis to create thirteen different scenarios of ASPAD. CT angiographies with different radiation dose (CTDIvol 10, 5, 3 mGy) and matching convolution kernels were performed with PCD-CT and EID-CT. In-stent lumen visibility, signal-to-noise ratio (SNR), and luminal attenuation were assessed quantitatively. Results were compared using analyses of variance with a PCD-CT maximum dose and resolution scan (96 mGy, BV89) serving as standard of reference. Highest and lowest stent lumen visibility was observed with PCD-CT BV76 (97 ± 2%) and EID BV40 (77 ± 5%), respectively. Severe stent underexpansion in conjunction with heavy calcification resulted in the worst lumen visibility. PCD-CT displayed superior dose efficiency, yielding comparable SNR at 3 mGy to EID-CT at 10 mGy (p = 0.27). Luminal attenuation was higher for PCD-CT regardless of dose and reconstruction settings (max. 369 ± 19 HU, BV76, 5 mGy vs. 329 ± 12 HU for EID, BV59, 5 mGy; p < 0.001). PCD-CT realises substantially higher image quality than EID-CT, thereby enhancing assessment of the femoral vasculature in ASPAD. Furthermore, this indicates substantial radiation dose and contrast agent volume saving potential. Both scanners show limitations in very low luminal diameters.
Collapse
Affiliation(s)
- Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Anne Marie Augustin
- Department of Interventional and Diagnostic Radiology, Bayreuth Hospital, Bayreuth, Germany
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, Center of Operative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, Center of Operative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
8
|
Trentadue TP, Thoreson A, Lopez C, Breighner RE, Leng S, Kakar S, Rizzo M, Zhao KD. Sex differences in photon-counting detector computed tomography-derived scaphotrapeziotrapezoid joint morphometrics. Skeletal Radiol 2025:10.1007/s00256-024-04863-5. [PMID: 39907791 DOI: 10.1007/s00256-024-04863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE The scaphotrapeziotrapezoid (STT) joint transmits load between the wrist and thumb. Despite its clinical importance, it has received less diagnostic attention than adjacent wrist and thumb joints. CT-derived three-dimensional models offer the ability to improve measurement of articular space by evaluating subchondral articular surfaces, which can be quantified using articular morphometrics. The objectives of this study were to investigate whether articular surface areas, interosseous proximities, and carpal bone positions differ between sexes. MATERIALS AND METHODS Thirty participants (50% female, median age 27.0 years) were prospectively recruited to a cohort study of normative wrist imaging and biomechanics. Carpal bones were meshed from CT-based segmentations using a marching cubes algorithm. Rigid body kinematic parameters of individual bones were calculated. Carpal bone postures were defined using projection angles between bone centroids. Articular surface areas and interosseous proximity distributions between adjacent bones were calculated. Morphometrics were compared between sexes using Wilcoxon rank sum or two-tailed Kolmogorov-Smirnov tests as appropriate. RESULTS Median articular surface area was significantly smaller in females than in males at the trapeziotrapezoid but not scaphotrapezium or scaphotrapezoid joints. Interosseous proximity distributions were closer in females at all joints (scaphotrapezium, 1.19 versus 1.42 mm; scaphotrapezoid, 1.15 versus 1.43 mm; trapeziotrapezoid, 0.45 versus 0.65 mm). Distal bones were more dorsally translated in females. CONCLUSION This study quantifies sex-stratified morphological variations at the STT joint. Interosseous proximity distributions may guide interpretation of imaging-derived STT joint space and can serve as reference ranges for studies of STT arthrokinematics.
Collapse
Affiliation(s)
- Taylor P Trentadue
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate Program in Biomedical Engineering and Physiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Andrew Thoreson
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ryan E Breighner
- Department of Radiology, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Shuai Leng
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Computed Tomography Clinical Innovation Center, Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Marco Rizzo
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Zech WD, Herr N, Schwendener N, Hartmann C, von Tengg-Kobligk H, Ruder TD. Technical note: An optimized protocol for standard unenhanced whole-body post-mortem Photon Counting CT imaging. Forensic Sci Int 2025; 367:112317. [PMID: 39644724 DOI: 10.1016/j.forsciint.2024.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
In recent years, Photon-counting detector CT (PCD CT) has emerged as a new and groundbreaking technology in clinical radiology. While clinical research and practical applications of PCD-CT are constantly evolving, it has not yet been integrated into post-mortem CT (PMCT) imaging. Documented research into the potential applications of PCD CT in the field of post-mortem human forensic pathology and anatomical pathology is scarce in literature. This is despite the fact that PCD CT shows promise in expanding PMCT imaging diagnostic due to features such as ultra-high resolution and intrinsic spectral multienergy imaging. The authors have recently started scanning forensic corpses with a PCD CT to explore its possibilities and limits in the post-mortem field. In this technical note, the PCD CT acquisition and reconstruction parameters that resulted in excellent image quality in terms of noise and contrast for a slice thickness up to 0.2 mm in unenhanced whole-body examinations are presented.
Collapse
Affiliation(s)
- Wolf-Dieter Zech
- Institute of Forensic Medicine, University of Bern, Bern, Switzerland.
| | - Nicolas Herr
- Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | | | - Conny Hartmann
- Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas D Ruder
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Chen W, Liu L, Zhao H, Li H, Luo J, Qu YL, Zhang D, He YH, Pan YS, Gao F, Liao HZ, Chen XL, Lei H, Tang DQ, Peng F. Dual-energy CT-derived virtual noncalcium imaging to assess bone marrow lesions in patients with knee osteoarthritis. Sci Rep 2025; 15:3331. [PMID: 39870692 PMCID: PMC11772839 DOI: 10.1038/s41598-025-86697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
To determine the diagnostic performance of dual-energy CT (DECT) virtual noncalcium (VNCa) technique in the detection of bone marrow lesions (BMLs) in knee osteoarthritis, and further analyze the correlation between the severity of BMLs on VNCa image and the degree of knee pain. 23 consecutive patients with clinically diagnosed knee osteoarthritis were underwent DECT and 3.0T MRI between August 2017 and November 2018. Evaluation of two pain assessment scales (WOMAC and KOOS) were collected. VNCa images and MRI were independently scored by three readers using a four-level scoring system over 15 anatomical subregions in each knee joint. Spearman correlation coefficient was used for total BML scores on DECT and MRI correlation with WOMAC and KOOS. Specificity, Sensitivity, NPV and PPV of reader 1 and reader 2 were 99.4%/99.2%, 89.4%/87.2%, 98.6%/98.3% and 95.5%/93.2%. A cutoff value of - 41.5 HU/- 46.5 HU provided sensitivities of 93.2%/90.9% and specificities of 100.0%/93.9% for diagnosing BMLs with AUC of 0.970/0.996. A stronger correlation was observed between the WOMAC and total BML score compared to the KOOS. DECT possessed excellent diagnostic performance in the detection of BMLs in knee osteoarthritis. And the pain degree increased with the severity of BMLs on VNCa images.
Collapse
Affiliation(s)
- Wei Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Limin Liu
- Department of Ultrasound, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Road No. 35, Hengyang, 421001, Hunan, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Hui Li
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
- Department of Radiology, The First People's Hospital of Zhaoqing, DonggangEast Road No.9, Zhaoqing, 526060, Guangdong, China
| | - Jing Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Yao-Lin Qu
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Dan Zhang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Ya-Han He
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Yi-Sha Pan
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Fang Gao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Hua-Zhi Liao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Xiao-Long Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - De-Qiu Tang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China.
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
11
|
Layer YC, Faby S, Haase V, Schmidt B, Mesropyan N, Kupczyk PA, Isaak A, Dell T, Luetkens JA, Kuetting D. Artifact Reduction in Interventional Devices Using Virtual Monoenergetic Images and Iterative Metal Artifact Reduction on Photon-Counting Detector CT. Invest Radiol 2025:00004424-990000000-00279. [PMID: 39745893 DOI: 10.1097/rli.0000000000001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
OBJECTIVES The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions. MATERIALS AND METHODS Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios. Image reconstructions were initially performed without iMAR and subsequently with iMAR settings. The latter was tested with 7 different metal presets for each case. Furthermore, iMAR-reconstructed images were paired with VMIs at energy levels of 70 keV, 110 keV, 150 keV, and 190 keV. Qualitative assessments were conducted to evaluate image quality, artifact expression, and the emergence of new artifacts using a Likert scale. Image quality was rated on a scale of 1 (nondiagnostic) to 5 (excellent), whereas artifact severity was rated from 0 (none) to 5 (massive). Preferences for specific iMAR presets were documented. Quantitative analysis involved calculating Hounsfield unit (HU) differences between artifact-rich and artifact-free tissues. RESULTS Overall, 96 different scanning series were evaluated. The optimal combination for artifact reduction was found to be iMAR neurocoils with VMIs at 150 keV and 190 keV, showcasing the most substantial reduction in artifacts with a median rating of 1 (standard: 4). VMIs at higher keV levels, such as 190 keV, resulted in reduced image quality, as indicated by a median rating of 3 (compared with 70 keV with a median of 5). Newly emerged artifact expression related to reconstructions varied among intervention devices, with iMAR thoracic coils exhibiting the least extent of artifacts (median: 2) and iMAR neurocoils displaying the most pronounced artifacts (median: 4). Qualitative analysis favored the combination of iMAR neurocoils with VMIs at 70 keV, showcasing the best results. Conversely, quantitative analysis revealed that the combination of iMAR neurocoils with VMIs at 190 keV yielded the best results, with an average artifact expression of 20.06 HU (standard: 167.98 HU; P < 0.0001). CONCLUSIONS The study underscores a substantial reduction in artifacts associated with intervention devices during PCDCT scans through the synergistic application of VMI and iMAR techniques. Specifically, the combination of VMIs at 70 keV with iMAR neurocoils was preferred, leading to enhanced diagnostic assessability of surrounding tissues and target lesions. The study demonstrates the potential of iMAR and VMIs for PCDCT-guided interventions. These advancements could improve accuracy, safety, efficiency, and patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Yannik Christian Layer
- From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (Y.C.L., N.M., P.A.K., A.I., T.D., J.A.L., D.K.); and Siemens Healthineers AG, Erlangen, Germany (S.F., V.H., B.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bette S, Risch F, Becker J, Popp D, Decker JA, Kaufmann D, Friedrich L, Scheurig-Münkler C, Schwarz F, Kröncke TJ. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. ROFO-FORTSCHR RONTG 2025; 197:34-43. [PMID: 38788741 DOI: 10.1055/a-2312-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The introduction of photon-counting detector CT (PCD-CT) marks a remarkable leap in innovation in CT imaging. The new detector technology allows X-rays to be converted directly into an electrical signal without an intermediate step via a scintillation layer and allows the energy of individual photons to be measured. Initial data show high spatial resolution, complete elimination of electronic noise, and steady availability of spectral image data sets. In particular, the new technology shows promise with respect to the imaging of osseous structures. Recently, PCD-CT was implemented in the clinical routine. The aim of this review was to summarize recent studies and to show our first experiences with photon-counting detector technology in the field of musculoskeletal radiology.We performed a literature search using Medline and included a total of 90 articles and reviews that covered recent experimental and clinical experiences with the new technology.In this review, we focus on (1) spatial resolution and delineation of fine anatomic structures, (2) reduction of radiation dose, (3) electronic noise, (4) techniques for metal artifact reduction, and (5) possibilities of spectral imaging. This article provides insight into our first experiences with photon-counting detector technology and shows results and images from experimental and clinical studies. · This review summarizes recent experimental and clinical studies in the field of photon-counting detector CT and musculoskeletal radiology.. · The potential of photon-counting detector technology in the field of musculoskeletal radiology includes improved spatial resolution, reduction in radiation dose, metal artifact reduction, and spectral imaging.. · PCD-CT enables imaging at lower radiation doses while maintaining or even enhancing spatial resolution, crucial for reducing patient exposure, especially in repeated or prolonged imaging scenarios.. · It offers promising results in reducing metal artifacts commonly encountered in orthopedic or dental implants, enhancing the interpretability of adjacent structures in postoperative and follow-up imaging.. · With its ability to routinely acquire spectral data, PCD-CT scans allow for material classification, such as detecting urate crystals in suspected gout or visualizing bone marrow edema, potentially reducing reliance on MRI in certain cases.. Bette S, Risch F, Becker J et al. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. Fortschr Röntgenstr 2024; DOI 10.1055/a-2312-6914.
Collapse
Affiliation(s)
- Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Judith Becker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Daniel Popp
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - David Kaufmann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Lena Friedrich
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Christian Scheurig-Münkler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Institute of Conventional and Interventional Radiology, Donauisar Hospital Deggendorf, Deggendorf, Germany
| | - Thomas J Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| |
Collapse
|
13
|
Quintiens J, Coudyzer W, Bevers M, Vereecke E, van den Bergh JP, Manske SL, van Lenthe GH. The quantification of bone mineral density using photon counting computed tomography and its implications for detecting bone remodeling. J Bone Miner Res 2024; 39:1774-1782. [PMID: 39365940 DOI: 10.1093/jbmr/zjae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
HR-pQCT has become standard practice when quantifying volumetric BMD (vBMD) in vivo. Yet, it is only accessible to peripheral sites, with small fields of view and lengthy scanning times. This limits general applicability in clinical workflows. The goal of this study was to assess the potential of photon counting CT (PCCT) in quantitative bone imaging. Using the European Forearm Phantom, PCCT was calibrated to hydroxyapatite (HA) density. Eight cadaveric forearms were scanned twice with PCCT and once with HR-pQCT. The dominant forearm of two volunteers was scanned twice with PCCT. In each scan, the carpals were delineated. At bone level, accuracy was assessed with a paired measurement of total vBMD (Tt.vBMD) calculated with PCCT and HR-pQCT. At voxel-level, repeatability was assessed by image registration and voxel-wise subtraction of the ex vivo PCCT scans. In an ideal scenario, this difference would be zero; any deviation was interpreted as falsely detected remodeling. For clinical usage, the least detectable remodeling was determined by finding a threshold in the PCCT difference image that resulted in a classification of bone formation and resorption below acceptable noise levels (<0.5%). The paired measurement of Tt.vBMD had a Pearson correlation of 0.986. Compared to HR-pQCT, PCCT showed a bias of 7.46 mgHA/cm3. At voxel-level, the repeated PCCT scans showed a bias of 17.66 mgHA/cm3 and a standard error of 96.23 mgHA/cm3. Least detectable remodeling was found to be 250 mgHA/cm3, for which 0.37% of the voxels was incorrectly classified as newly added or resorbed bone. In vivo, this volume increased to 0.97%. Based on the cadaver data, we conclude that PCCT can be used to quantify vBMD and bone turnover. We provided proof of principle that this technique is also accurate in vivo, hence, that it has high potential for clinical applications.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 3001 Heverlee, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Melissa Bevers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Evie Vereecke
- Department of Development and Regeneration, KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Sarah L Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - G Harry van Lenthe
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 3001 Heverlee, Belgium
| |
Collapse
|
14
|
Ogunfuwa FO, Needell S, Simovitch RW. Severe metallosis following catastrophic failure of total shoulder arthroplasty - a case report. Skeletal Radiol 2024; 53:2511-2517. [PMID: 38236295 DOI: 10.1007/s00256-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Metallosis is an unusual but consequential complication arising from orthopedic hardware implantation, characterized by the deposition of metallic particles in the periprosthetic soft tissues. The incidence of metallosis associated with shoulder arthroplasties is exceptionally rare since the shoulder is not a weight-bearing joint, making it less susceptible to mechanical wear and, consequently, to conditions like particle disease and metallosis. Nevertheless, anomalous metal-on-metal interactions can develop in total shoulder arthroplasties if the polyethylene component fails due to wear, fracture, or dissociation. If left unaddressed, metallosis can incite an adverse immune-mediated local tissue response, culminating in joint destruction and adjacent soft tissues and muscle necrosis. In this case report, the diagnosis of metallosis was made in a patient with an anatomic total shoulder arthroplasty using a state-of-the-art photon counting detector CT supplemented by post-processing metal artifact reduction algorithms. This advanced imaging approach was effective in discerning the source of implant failure and in identifying manifestations of severe metallosis including osteolysis and pseudotumor formation. Advanced imaging methods can accurately characterize the severity and extent of metallosis, thereby helping guide surgical planning to mitigate serious complications associated with this condition.
Collapse
Affiliation(s)
- Feyikemi O Ogunfuwa
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| | | | | |
Collapse
|
15
|
Diehn FE, Zhou Z, Thorne JE, Campeau NG, Nagelschneider AA, Eckel LJ, Benson JC, Madhavan AA, Bathla G, Lehman VT, Huber NR, Baffour F, Fletcher JG, McCollough CH, Yu L. High-Resolution Head CTA: A Prospective Patient Study Comparing Image Quality of Photon-Counting Detector CT and Energy-Integrating Detector CT. AJNR Am J Neuroradiol 2024; 45:1441-1449. [PMID: 39237360 PMCID: PMC11448985 DOI: 10.3174/ajnr.a8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND PURPOSE Photon-counting detector CT (PCD-CT) is now clinically available and offers ultra-high-resolution (UHR) imaging. Our purpose was to prospectively evaluate the relative image quality and impact on diagnostic confidence of head CTA images acquired by using a PCD-CT compared with an energy-integrating detector CT (EID-CT). MATERIALS AND METHODS Adult patients undergoing head CTA on EID-CT also underwent a PCD-CT research examination. For both CT examinations, images were reconstructed at 0.6 mm by using a matched standard resolution (SR) kernel. Additionally, PCD-CT images were reconstructed at the thinnest section thickness of 0.2 mm (UHR) with the sharpest kernel, and denoised with a deep convolutional neural network (CNN) algorithm (PCD-UHR-CNN). Two readers (R1, R2) independently evaluated image quality in randomized, blinded fashion in 2 sessions, PCD-SR versus EID-SR and PCD-UHR-CNN versus EID-SR. The readers rated overall image quality (1 [worst] to 5 [best]) and provided a Likert comparison score (-2 [significantly inferior] to 2 [significantly superior]) for the 2 series when compared side-by-side for several image quality features, including visualization of specific arterial segments. Diagnostic confidence (0-100) was rated for PCD versus EID for specific arterial findings, if present. RESULTS Twenty-eight adult patients were enrolled. The volume CT dose index was similar (EID: 37.1 ± 4.7 mGy; PCD: 36.1 ± 4.0 mGy). Overall image quality for PCD-SR and PCD-UHR-CNN was higher than EID-SR (eg, PCD-UHR-CNN versus EID-SR: 4.0 ± 0.0 versus 3.0 ± 0.0 (R1), 4.9 ± 0.3 versus 3.0 ± 0.0 (R2); all P values < .001). For depiction of arterial segments, PCD-SR was preferred over EID-SR (R1: 1.0-1.3; R2: 1.0-1.8), and PCD-UHR-CNN over EID-SR (R1: 0.9-1.4; R2: 1.9-2.0). Diagnostic confidence of arterial findings for PCD-SR and PCD-UHR-CNN was significantly higher than EID-SR: eg, PCD-UHR-CNN versus EID-SR: 93.0 ± 5.8 versus 78.2 ± 9.3 (R1), 88.6 ± 5.9 versus 70.4 ± 5.0 (R2); all P values < .001. CONCLUSIONS PCD-CT provides improved image quality for head CTA images compared with EID-CT, both when PCD and EID reconstructions are matched, and to an even greater extent when PCD-UHR reconstruction is combined with a CNN denoising algorithm.
Collapse
Affiliation(s)
- Felix E. Diehn
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Zhongxing Zhou
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - John C. Benson
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Ajay A. Madhavan
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Girish Bathla
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Vance T. Lehman
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Nathan R. Huber
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Francis Baffour
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Joel G. Fletcher
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Lifeng Yu
- From the Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Vosshenrich J, O'Donnell T, Fritz J. Photon-Counting CT in Musculoskeletal Imaging-10 Key Questions Answered. Semin Roentgenol 2024; 59:378-386. [PMID: 39490034 DOI: 10.1053/j.ro.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, New York University Grossman School of Medicine, New York, NY; Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, NY.
| |
Collapse
|
17
|
Mourad C, Gallego Manzano L, Viry A, Booij R, Oei EHG, Becce F, Omoumi P. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53:1889-1902. [PMID: 38441616 PMCID: PMC11303444 DOI: 10.1007/s00256-024-04622-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/09/2024]
Abstract
In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.
Collapse
Affiliation(s)
- Charbel Mourad
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Diagnostic Imaging and Interventional Therapeutics, Hôpital Libanais Geitaoui-CHU, Beyrouth, Lebanon
| | - Lucia Gallego Manzano
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anaïs Viry
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fabio Becce
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Leng S, Toia GV, Hoodeshenas S, Ramirez-Giraldo JC, Yagil Y, Maltz JS, Boedeker K, Li K, Baffour F, Fletcher JG. Standardizing technical parameters and terms for abdominopelvic photon-counting CT: laying the groundwork for innovation and evidence sharing. Abdom Radiol (NY) 2024; 49:3261-3273. [PMID: 38769199 DOI: 10.1007/s00261-024-04342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Photon-counting detector CT (PCD-CT) is a new technology that has multiple diagnostic benefits including increased spatial resolution, iodine signal, and radiation dose efficiency, as well as multi-energy imaging capability, but which also has unique challenges in abdominal imaging. The purpose of this work is to summarize key features, technical parameters, and terms, which are common amongst current abdominopelvic PCD-CT systems and to propose standardized terminology (where none exists). In addition, user-selectable protocol parameters are highlighted to facilitate both scientific evaluation and early clinical adoption. Unique features of PCD-CT systems include photon-counting detectors themselves, energy thresholds and bins, and tube potential considerations for preserved spectral separation. Key parameters for describing different PCD-CT systems are reviewed and explained. While PCD-CT can generate multi-energy images like dual-energy CT, there are new types of images such as threshold images, energy bin images, and special spectral images. The standardized terms and concepts herein build upon prior interdisciplinary consensus and have been endorsed by the newly created Society of Abdominal Radiology Photon-counting CT Emerging Technology Commission.
Collapse
Affiliation(s)
- Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Safa Hoodeshenas
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Yoad Yagil
- PD CT/AMI R&D Advanced Development, Philips Medical Systems, Haifa, Israel
| | - Jonathan S Maltz
- Molecular Imaging and Computed Tomography, GE Healthcare, Waukesha, WI, USA
| | | | - Ke Li
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Francis Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Mancino F, Fontalis A, Kayani B, Magan A, Plastow R, Haddad FS. The current role of CT in total knee arthroplasty. Bone Joint J 2024; 106-B:892-897. [PMID: 39216858 DOI: 10.1302/0301-620x.106b9.bjj-2023-1303.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon's philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation.
Collapse
Affiliation(s)
- Fabio Mancino
- Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK
| | - Andreas Fontalis
- Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK
| | - Babar Kayani
- Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK
| | - Ahmed Magan
- Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK
| | - Ricci Plastow
- Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK
| | - Fares S Haddad
- Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK
- The Bone & Joint Journal , London, UK
| |
Collapse
|
20
|
Frazer LL, Louis N, Zbijewski W, Vaishnav J, Clark K, Nicolella DP. Super-resolution of clinical CT: Revealing microarchitecture in whole bone clinical CT image data. Bone 2024; 185:117115. [PMID: 38740120 PMCID: PMC11176006 DOI: 10.1016/j.bone.2024.117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Osteoporotic fractures, prevalent in the elderly, pose a significant health and economic burden. Current methods for predicting fracture risk, primarily relying on bone mineral density, provide only modest accuracy. If better spatial resolution of trabecular bone in a clinical scan were available, a more complete assessment of fracture risk would be obtained using microarchitectural measures of bone (i.e. trabecular thickness, trabecular spacing, bone volume fraction, etc.). However, increased resolution comes at the cost of increased radiation or can only be applied at small volumes of distal skeletal locations. This study explores super-resolution (SR) technology to enhance clinical CT scans of proximal femurs and better reveal the trabecular microarchitecture of bone. Using a deep-learning-based (i.e. subset of artificial intelligence) SR approach, low-resolution clinical CT images were upscaled to higher resolution and compared to corresponding MicroCT-derived images. SR-derived 2-dimensional microarchitectural measurements, such as degree of anisotropy, bone volume fraction, trabecular spacing, and trabecular thickness were within 16 % error compared to MicroCT data, whereas connectivity density exhibited larger error (as high as 1094 %). SR-derived 3-dimensional microarchitectural metrics exhibited errors <18 %. This work showcases the potential of SR technology to enhance clinical bone imaging and holds promise for improving fracture risk assessments and osteoporosis detection. Further research, including larger datasets and refined techniques, can advance SR's clinical utility, enabling comprehensive microstructural assessment across whole bones, thereby improving fracture risk predictions and patient-specific treatment strategies.
Collapse
Affiliation(s)
| | - Nathan Louis
- Southwest Research Institute, USA; University of Michigan, USA
| | | | | | - Kal Clark
- University of Texas Health Science Center at San Antonio, USA
| | | |
Collapse
|
21
|
Quintiens J, van Lenthe GH. Photon-Counting Computed Tomography for Microstructural Imaging of Bone and Joints. Curr Osteoporos Rep 2024; 22:387-395. [PMID: 38833188 DOI: 10.1007/s11914-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Recently, photon-counting computed tomography (PCCT) has been introduced in clinical research and diagnostics. This review describes the technological advances and provides an overview of recent applications with a focus on imaging of bone. RECENT FINDINGS PCCT is a full-body scanner with short scanning times that provides better spatial and spectral resolution than conventional energy-integrating-detector CT (EID-CT), along with an up to 50% reduced radiation dose. It can be used to quantify bone mineral density, to perform bone microstructural analyses and to assess cartilage quality with adequate precision and accuracy. Using a virtual monoenergetic image reconstruction, metal artefacts can be greatly reduced when imaging bone-implant interfaces. Current PCCT systems do not allow spectral imaging in ultra-high-resolution (UHR) mode. Given its improved resolution, reduced noise and spectral imaging capabilities PCCT has diagnostic capacities in both qualitative and quantitative imaging that outperform those of conventional CT. Clinical use in monitoring bone health has already been demonstrated. The full potential of PCCT systems will be unlocked when UHR spectral imaging becomes available.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
22
|
Foley RA, Trentadue TP, Lopez C, Weber NM, Thoreson AR, Holmes DR, Murthy NS, Leng S, Kakar S, Zhao KD. Bilateral lunotriquetral coalition: a dynamic four-dimensional computed tomography technical case report. Skeletal Radiol 2024; 53:1423-1430. [PMID: 37943305 PMCID: PMC11078889 DOI: 10.1007/s00256-023-04490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Lunotriquetral coalitions are the most common form of carpal coalition wherein the cartilage between the lunate and triquetrum ossification centers failed to undergo apoptosis. This technical case report examines the arthrokinematics of bilateral lunotriquetral coalitions with dissimilar Minnaar types in one participant with one asymptomatic wrist and one wrist with suspected distal radioulnar joint injury. Static and dynamic (four-dimensional) CT images during pronosupination were captured using a photon-counting detector CT scanner. Interosseous proximity distributions were calculated between the lunotriquetral coalition and adjacent bones in both wrists to quantify arthrokinematics. Interosseous proximity distributions at joints adjacent to the lunotriquetral coalition demonstrate differences in median and minimum interosseous proximities between the asymptomatic and injured wrists during resisted pronosupination. Altered kinematics from lunotriquetral coalitions may be a source of ulnar-sided wrist pain and discomfort, limiting the functional range of motion. This case report highlights potential alterations to wrist arthrokinematics in the setting of lunotriquetral coalitions and possible associations with ulnar-sided wrist pain, highlighting anatomy to examine in radiographic follow-up. Furthermore, this case report demonstrates the technical feasibility of four-dimensional CT using photon-counting detector technology in assessing arthrokinematics in the setting of variant wrist anatomy.
Collapse
Affiliation(s)
- Robert A Foley
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Taylor P Trentadue
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate Program in Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Nikkole M Weber
- Computed Tomography Clinical Innovation Center, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andrew R Thoreson
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - David R Holmes
- Biomedical Imaging Resource Core Facility, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Shuai Leng
- Computed Tomography Clinical Innovation Center, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
23
|
Grunz JP, Huflage H. Photon-Counting Computed Tomography: Experience in Musculoskeletal Imaging. Korean J Radiol 2024; 25:662-672. [PMID: 38942460 PMCID: PMC11214923 DOI: 10.3348/kjr.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 06/30/2024] Open
Abstract
Since the emergence of the first photon-counting computed tomography (PCCT) system in late 2021, its advantages and a wide range of applications in all fields of radiology have been demonstrated. Compared to standard energy-integrating detector-CT, PCCT allows for superior geometric dose efficiency in every examination. While this aspect by itself is groundbreaking, the advantages do not stop there. PCCT facilitates an unprecedented combination of ultra-high-resolution imaging without dose penalty or field-of-view restrictions, detector-based elimination of electronic noise, and ubiquitous multi-energy spectral information. Considering the high demands of orthopedic imaging for the visualization of minuscule details while simultaneously covering large portions of skeletal and soft tissue anatomy, no subspecialty may benefit more from this novel detector technology than musculoskeletal radiology. Deeply rooted in experimental and clinical research, this review article aims to provide an introduction to the cosmos of PCCT, explain its technical basics, and highlight the most promising applications for patient care, while also mentioning current limitations that need to be overcome.
Collapse
Affiliation(s)
- Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Mark IT, Van Gompel J, Bancos I, Nagelschneider AA, Johnson DR, Bathla G, Madhavan AA, Weber NM, Yu L. Back to the Future: Dynamic Contrast-Enhanced Photon-Counting Detector CT for the Detection of Pituitary Adenoma in Cushing Disease. AJNR Am J Neuroradiol 2024; 45:743-746. [PMID: 38290737 PMCID: PMC11288598 DOI: 10.3174/ajnr.a8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Historically, MR imaging has been unable to detect a pituitary adenoma in up to one-half of patients with Cushing disease. This issue is problematic because the standard-of-care treatment is surgical resection, and its success is correlated with finding the tumor on imaging. Photon-counting detector CT is a recent advancement that has multiple benefits over conventional energy-integrating detector CT. We present the use of dynamic contrast-enhanced imaging using photon-counting detector CT for the detection of pituitary adenomas in patients with Cushing disease.
Collapse
Affiliation(s)
- Ian T Mark
- From the Department of Radiology (I.T.M. A.A.N., D.R.J., G.B., A.A.M., N.M.W., L.Y.), Mayo Clinic, Rochester, Minnesota
| | - Jamie Van Gompel
- Department of Neurosurgery (J.V.G.), Mayo Clinic, Rochester, Minnesota
| | - Irina Bancos
- Department of Endocrinology (I.B.), Mayo Clinic, Rochester, Minnesota
| | - Alex A Nagelschneider
- From the Department of Radiology (I.T.M. A.A.N., D.R.J., G.B., A.A.M., N.M.W., L.Y.), Mayo Clinic, Rochester, Minnesota
| | - Derek R Johnson
- From the Department of Radiology (I.T.M. A.A.N., D.R.J., G.B., A.A.M., N.M.W., L.Y.), Mayo Clinic, Rochester, Minnesota
| | - Girish Bathla
- From the Department of Radiology (I.T.M. A.A.N., D.R.J., G.B., A.A.M., N.M.W., L.Y.), Mayo Clinic, Rochester, Minnesota
| | - Ajay A Madhavan
- From the Department of Radiology (I.T.M. A.A.N., D.R.J., G.B., A.A.M., N.M.W., L.Y.), Mayo Clinic, Rochester, Minnesota
| | - Nikkole M Weber
- From the Department of Radiology (I.T.M. A.A.N., D.R.J., G.B., A.A.M., N.M.W., L.Y.), Mayo Clinic, Rochester, Minnesota
| | - Lifeng Yu
- From the Department of Radiology (I.T.M. A.A.N., D.R.J., G.B., A.A.M., N.M.W., L.Y.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Goller SS, Sutter R. Advanced Imaging of Total Knee Arthroplasty. Semin Musculoskelet Radiol 2024; 28:282-292. [PMID: 38768593 DOI: 10.1055/s-0044-1781470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The prevalence of total knee arthroplasty (TKA) is increasing with the aging population. Although long-term results are satisfactory, suspected postoperative complications often require imaging with the implant in place. Advancements in computed tomography (CT), such as tin prefiltration, metal artifact reduction algorithms, dual-energy CT with virtual monoenergetic imaging postprocessing, and the application of cone-beam CT and photon-counting detector CT, allow a better depiction of the tissues adjacent to the metal. For magnetic resonance imaging (MRI), high bandwidth (BW) optimization, the combination of view angle tilting and high BW, as well as multispectral imaging techniques with multiacquisition variable-resonance image combination or slice encoding metal artifact correction, have significantly improved imaging around metal implants, turning MRI into a useful clinical tool for patients with suspected TKA complications.
Collapse
Affiliation(s)
- Sophia Samira Goller
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Feldle P, Grunz JP, Huflage H, Kunz AS, Ergün S, Afat S, Gruschwitz P, Görtz L, Pennig L, Bley TA, Conrads N. Influence of helical pitch and gantry rotation time on image quality and file size in ultrahigh-resolution photon-counting detector CT. Sci Rep 2024; 14:9358. [PMID: 38653758 DOI: 10.1038/s41598-024-59729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The goal of this experimental study was to quantify the influence of helical pitch and gantry rotation time on image quality and file size in ultrahigh-resolution photon-counting CT (UHR-PCCT). Cervical and lumbar spine, pelvis, and upper legs of two fresh-frozen cadaveric specimens were subjected to nine dose-matched UHR-PCCT scan protocols employing a collimation of 120 × 0.2 mm with varying pitch (0.3/1.0/1.2) and rotation time (0.25/0.5/1.0 s). Image quality was analyzed independently by five radiologists and further substantiated by placing normed regions of interest to record mean signal attenuation and noise. Effective mAs, CT dose index (CTDIvol), size-specific dose estimate (SSDE), scan duration, and raw data file size were compared. Regardless of anatomical region, no significant difference was ascertained for CTDIvol (p ≥ 0.204) and SSDE (p ≥ 0.240) among protocols. While exam duration differed substantially (all p ≤ 0.016), the lowest scan time was recorded for high-pitch protocols (4.3 ± 1.0 s) and the highest for low-pitch protocols (43.6 ± 15.4 s). The combination of high helical pitch and short gantry rotation times produced the lowest perceived image quality (intraclass correlation coefficient 0.866; 95% confidence interval 0.807-0.910; p < 0.001) and highest noise. Raw data size increased with acquisition time (15.4 ± 5.0 to 235.0 ± 83.5 GByte; p ≤ 0.013). Rotation time and pitch factor have considerable influence on image quality in UHR-PCCT and must therefore be chosen deliberately for different musculoskeletal imaging tasks. In examinations with long acquisition times, raw data size increases considerably, consequently limiting clinical applicability for larger scan volumes.
Collapse
Affiliation(s)
- Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstraße 6, 97070, Wuerzburg, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str 3, 72076, Tuebingen, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Lukas Görtz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Nora Conrads
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany.
| |
Collapse
|
27
|
Kämmerling N, Tesselaar E, Booij R, Fornander L, Persson A, Farnebo S. A comparative study of image quality and diagnostic confidence in diagnosis and follow-up of scaphoid fractures using photon-counting detector CT and energy-integrating detector CT. Eur J Radiol 2024; 173:111383. [PMID: 38377892 DOI: 10.1016/j.ejrad.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Scaphoid fractures in patients and assessment of healing using PCD-CT have, as far as we know, not yet been studied. Therefore, the aim was to compare photon counting detector CT (PCD-CT) with energy integrating detector CT (EID-CT) in terms of fracture visibility and evaluation of fracture healing. METHOD Eight patients with scaphoid fracture were examined with EID-CT and PCD-CT within the first week post-trauma, and with additional scans at 4, 6 and 8 weeks. Our clinical protocol for wrist examination with EID-CT was used (CTDIvol 3.1 ± 0.1 mGy, UHR kernel Ur77). For PCD-CT matched radiation dose, reconstruction kernel Br89. Quantitative analyses of noise, CNR, trabecular and cortical sharpness, and bone volume fraction were conducted. Five radiologists evaluated the images for fracture visibility, fracture gap consolidation and image quality, and rated their confidence in the diagnosis. RESULTS The trabecular and cortical sharpness were superior in images obtained with PCD-CT compared with EID-CT. A successive reduction in trabecular bone volume fraction during the immobilized periods was found with both systems. Despite higher noise and lower CNR with PCD-CT, radiologists rated the image quality of PCD-CT as superior. The visibility of the fracture line within 1-week post-trauma was rated higher with PCD-CT as was diagnostic confidence, but the subsequent assessments of fracture gap consolidation during healing process and the confidence in diagnosis were found equivalent between both systems. CONCLUSION PCD-CT offers superior visibility of bone microstructure compared with EID-CT. The evaluation of fracture healing and confidence in diagnosis were rated equally with both systems, but the radiologists found primary fracture visibility and overall image quality superior with PCD-CT.
Collapse
Affiliation(s)
- Nina Kämmerling
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Erik Tesselaar
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Medical Radiation Physics, Linköping University, Linköping, Sweden
| | - Ronald Booij
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lotta Fornander
- Department of Orthopedic Surgery, Norrköping, and Department of Biomedical and Clinical Sciences, Linköping University, Norrköping, Sweden
| | - Anders Persson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Hand and Plastic Surgery, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Richtsmeier D, Rodesch PA, Iniewski K, Bazalova-Carter M. Material decomposition with a prototype photon-counting detector CT system: expanding a stoichiometric dual-energy CT method via energy bin optimization and K-edge imaging. Phys Med Biol 2024; 69:055001. [PMID: 38306974 DOI: 10.1088/1361-6560/ad25c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Objective.Computed tomography (CT) has advanced since its inception, with breakthroughs such as dual-energy CT (DECT), which extracts additional information by acquiring two sets of data at different energies. As high-flux photon-counting detectors (PCDs) become available, PCD-CT is also becoming a reality. PCD-CT can acquire multi-energy data sets in a single scan by spectrally binning the incident x-ray beam. With this, K-edge imaging becomes possible, allowing high atomic number (high-Z) contrast materials to be distinguished and quantified. In this study, we demonstrated that DECT methods can be converted to PCD-CT systems by extending the method of Bourqueet al(2014). We optimized the energy bins of the PCD for this purpose and expanded the capabilities by employing K-edge subtraction imaging to separate a high-atomic number contrast material.Approach.The method decomposes materials into their effective atomic number (Zeff) and electron density relative to water (ρe). The model was calibrated and evaluated using tissue-equivalent materials from the RMI Gammex electron density phantom with knownρevalues and elemental compositions. TheoreticalZeffvalues were found for the appropriate energy ranges using the elemental composition of the materials.Zeffvaried slightly with energy but was considered a systematic error. Anex vivobovine tissue sample was decomposed to evaluate the model further and was injected with gold chloride to demonstrate the separation of a K-edge contrast agent.Main results.The mean root mean squared percent errors on the extractedZeffandρefor PCD-CT were 0.76% and 0.72%, respectively and 1.77% and 1.98% for DECT. The tissue types in theex vivobovine tissue sample were also correctly identified after decomposition. Additionally, gold chloride was separated from theex vivotissue sample with K-edge imaging.Significance.PCD-CT offers the ability to employ DECT material decomposition methods, along with providing additional capabilities such as K-edge imaging.
Collapse
Affiliation(s)
- Devon Richtsmeier
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Pierre-Antoine Rodesch
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Kris Iniewski
- Redlen Techologies, 1763 Sean Heights, Saanichton, British Columbia V8M 1X6, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
29
|
Fukuda T, Yonenaga T, Akao R, Hashimoto T, Maeda K, Shoji T, Shioda S, Ishizaka Y, Ojiri H. Comparison of Bone Evaluation and Metal Artifact between Photon-Counting CT and Five Energy-Integrating-Detector CT under Standardized Conditions Using Cadaveric Forearms. Diagnostics (Basel) 2024; 14:350. [PMID: 38396389 PMCID: PMC10888094 DOI: 10.3390/diagnostics14040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND To compare the potential of various bone evaluations by considering photon-counting CT (PCCT) and multiple energy-integrating-detector CT (EIDCT), including three dual-energy CT (DECT) scanners with standardized various parameters in both standard resolution (STD) and ultra-high-resolution (UHR) modes. METHODS Four cadaveric forearms were scanned using PCCT and five EIDCTs, by applying STD and UHR modes. Visibility of bone architecture, image quality, and a non-displaced fracture were subjectively scored against a reference EIDCT image by using a five-point scale. Image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also compared. To assess metal artifacts, a forearm with radial plate fixation was scanned by with and without Tin filter (Sn+ and Sn-), and virtual monoenergetic image (VMI) at 120 keV was created. Regarding Sn+ and VMI, images were only obtained from the technically available scanners. Subjective scores and the areas of streak artifacts were compared. RESULTS PCCT demonstrated significantly lower noise (p < 0.001) and higher bone SNR and CNR (p < 0.001) than all EIDCTs in both resolution modes. However, there was no significant difference between PCCT and EIDCTs in almost all subjective scores, regardless of scan modes, except for image quality where a significant difference was observed, compared to several EIDCTs. Metal artifact analysis revealed PCCT had larger artifact in Sn- and Sn+ (p < 0.001), but fewer in VMIs than three DECTs (p < 0.001 or 0.001). CONCLUSIONS Under standardized conditions, while PCCT had almost no subjective superiority in visualizing bone structures and fracture line when compared to EIDCTs, it outperformed in quantitative analysis related to image quality, especially in lower noise and higher tissue contrast. When using PCCT to assess cases with metal implants, it may be recommended to use VMIs to minimize the possible tendency for artifact to be pronounced.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Takenori Yonenaga
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Ryo Akao
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tohru Hashimoto
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuhiro Maeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tomokazu Shoji
- Department of Radiology, Tha Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan
| | - Shoichi Shioda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yu Ishizaka
- Medicalscanning Tokyo, 3-1-17 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
30
|
Jerban S, Ma Y, Jang H, Chang EY, Bukata S, Du J, Chung CB. Bone Biomarkers Based on Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2024; 28:62-77. [PMID: 38330971 PMCID: PMC11786623 DOI: 10.1055/s-0043-1776431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Susan Bukata
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
31
|
McCollough CH. Reclassification of Coronary Artery Disease Status Using Photon-counting CT. Radiology 2024; 310:e240098. [PMID: 38376400 DOI: 10.1148/radiol.240098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Affiliation(s)
- Cynthia H McCollough
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
32
|
Roth TD. Editorial Comment: Better Images of the Pelvis With Less Dose Using Photon-Counting Detector CT. AJR Am J Roentgenol 2024; 222:e2330212. [PMID: 37753861 DOI: 10.2214/ajr.23.30212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
- Trenton D Roth
- Indiana University School of Medicine, Indianapolis, IN,
| |
Collapse
|
33
|
Hagen F, Soschynski M, Weis M, Hagar MT, Krumm P, Ayx I, Taron J, Krauss T, Hein M, Ruile P, von Zur Muehlen C, Schlett CL, Neubauer J, Tsiflikas I, Russe MF, Arnold P, Faby S, Froelich MF, Weiß J, Stein T, Overhoff D, Bongers M, Nikolaou K, Schönberg SO, Bamberg F, Horger M. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. ROFO-FORTSCHR RONTG 2024; 196:25-35. [PMID: 37793417 DOI: 10.1055/a-2119-5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) is a promising new technology with the potential to fundamentally change workflows in the daily routine and provide new quantitative imaging information to improve clinical decision-making and patient management. METHOD The contents of this review are based on an unrestricted literature search of PubMed and Google Scholar using the search terms "photon-counting CT", "photon-counting detector", "spectral CT", "computed tomography" as well as on the authors' own experience. RESULTS The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCD-CT allows for the counting of every single photon at the detector level. Based on the identified literature, PCD-CT phantom measurements and initial clinical studies have demonstrated that the new technology allows for improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. CONCLUSION For clinical practice, the potential benefits include fewer beam hardening artifacts, a radiation dose reduction, and the use of new or combinations of contrast agents. In particular, critical patient groups such as oncological, cardiovascular, lung, and head & neck as well as pediatric patient collectives benefit from the clinical advantages. KEY POINTS · Photon-counting computed tomography (PCD-CT) is being used for the first time in routine clinical practice, enabling a significant dose reduction in critical patient populations such as oncology, cardiology, and pediatrics.. · Compared to conventional CT, PCD-CT enables a reduction in electronic image noise.. · Due to the spectral data sets, PCD-CT enables fully comprehensive post-processing applications.. CITATION FORMAT · Hagen F, Soschynski M, Weis M et al. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. Fortschr Röntgenstr 2024; 196: 25 - 34.
Collapse
Affiliation(s)
- Florian Hagen
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Soschynski
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Meike Weis
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Muhammad Taha Hagar
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Krumm
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jana Taron
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Krauss
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Hein
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Philipp Ruile
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Constantin von Zur Muehlen
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Neubauer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilias Tsiflikas
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Arnold
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Faby
- Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jakob Weiß
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Stein
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malte Bongers
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Marcus RP, Nagy DA, Feuerriegel GC, Anhaus J, Nanz D, Sutter R. Photon-Counting Detector CT With Denoising for Imaging of the Osseous Pelvis at Low Radiation Doses: A Phantom Study. AJR Am J Roentgenol 2024; 222:e2329765. [PMID: 37646387 DOI: 10.2214/ajr.23.29765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND. Photon-counting detector (PCD) CT may allow lower radiation doses than used for conventional energy-integrating detector (EID) CT, with preserved image quality. OBJECTIVE. The purpose of this study was to compare PCD CT and EID CT, reconstructed with and without a denoising tool, in terms of image quality of the osseous pelvis in a phantom, with attention to low radiation doses. METHODS. A pelvic phantom comprising human bones in acrylic material mimicking soft tissue underwent PCD CT and EID CT at various tube potentials and radiation doses ranging from 0.05 to 5.00 mGy. Additional denoised reconstructions were generated using a commercial tool. Noise was measured in the acrylic material. Two readers performed independent qualitative assessments that entailed determining the denoised EID CT reconstruction with the lowest acceptable dose and then comparing this reference reconstruction with PCD CT reconstructions without and with denoising, using subjective Likert scales. RESULTS. Noise was lower for PCD CT than for EID CT. For instance, at 0.05 mGy and 100 kV with tin filter, noise was 38.4 HU for PCD CT versus 48.8 HU for EID CT. Denoising further reduced noise; for example, for PCD CT at 100 kV with tin filter at 0.25 mGy, noise was 19.9 HU without denoising versus 9.7 HU with denoising. For both readers, lowest acceptable dose for EID CT was 0.10 mGy (total score, 11 of 15 for both readers). Both readers somewhat agreed that PCD CT without denoising at 0.10 mGy (reflecting reference reconstruction dose) was relatively better than the reference reconstruction in terms of osseous structures, artifacts, and image quality. Both readers also somewhat agreed that denoised PCD CT reconstructions at 0.10 mGy and 0.05 mGy (reflecting matched and lower doses, respectively, with respect to reference reconstruction dose) were relatively better than the reference reconstruction for the image quality measures. CONCLUSION. PCD CT showed better-quality images than EID CT when performed at the lowest acceptable radiation dose for EID CT. PCD CT with denoising yielded better-quality images at a dose lower than lowest acceptable dose for EID CT. CLINICAL IMPACT. PCD CT with denoising could facilitate lower radiation doses for pelvic imaging.
Collapse
Affiliation(s)
- Roy P Marcus
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel A Nagy
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Georg C Feuerriegel
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | - Daniel Nanz
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Douek PC, Boccalini S, Oei EHG, Cormode DP, Pourmorteza A, Boussel L, Si-Mohamed SA, Budde RPJ. Clinical Applications of Photon-counting CT: A Review of Pioneer Studies and a Glimpse into the Future. Radiology 2023; 309:e222432. [PMID: 37787672 PMCID: PMC10623209 DOI: 10.1148/radiol.222432] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 10/04/2023]
Abstract
CT systems equipped with photon-counting detectors (PCDs), referred to as photon-counting CT (PCCT), are beginning to change imaging in several subspecialties, such as cardiac, vascular, thoracic, and musculoskeletal radiology. Evidence has been building in the literature underpinning the many advantages of PCCT for different clinical applications. These benefits derive from the distinct features of PCDs, which are made of semiconductor materials capable of converting photons directly into electric signal. PCCT advancements include, among the most important, improved spatial resolution, noise reduction, and spectral properties. PCCT spatial resolution on the order of 0.25 mm allows for the improved visualization of small structures (eg, small vessels, arterial walls, distal bronchi, and bone trabeculations) and their pathologies, as well as the identification of previously undetectable anomalies. In addition, blooming artifacts from calcifications, stents, and other dense structures are reduced. The benefits of the spectral capabilities of PCCT are broad and include reducing radiation and contrast material dose for patients. In addition, multiple types of information can be extracted from a single data set (ie, multiparametric imaging), including quantitative data often regarded as surrogates of functional information (eg, lung perfusion). PCCT also allows for a novel type of CT imaging, K-edge imaging. This technique, combined with new contrast materials specifically designed for this modality, opens the door to new applications for imaging in the future.
Collapse
Affiliation(s)
| | | | - Edwin H. G. Oei
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - David P. Cormode
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Amir Pourmorteza
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Loic Boussel
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Salim A. Si-Mohamed
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Ricardo P. J. Budde
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| |
Collapse
|
36
|
Lee YH, Lee IS. Photon-Counting Detector Computed Tomography: A Promising New Technique for Multiple Myeloma Evaluation That Warrants Further Investigation. Korean J Radiol 2023; 24:947-948. [PMID: 37793667 PMCID: PMC10550741 DOI: 10.3348/kjr.2023.0792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Affiliation(s)
- Young Han Lee
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In Sook Lee
- Pusan National University School of Medicine, Busan, Republic of Korea
- Department of Radiology, Pusan National University Hospital, Biomedical Research Institute, Busan, Republic of Korea.
| |
Collapse
|
37
|
Patzer TS, Kunz AS, Huflage H, Luetkens KS, Conrads N, Pannenbecker P, Jakuscheit A, Reppenhagen S, Ergün S, Bley TA, Grunz JP. Rotational alignment of the lower extremity in the presence of total knee endoprosthesis: Reproducibility of torsion analyses using ultra-low-dose photon-counting CT. Eur J Radiol 2023; 167:111055. [PMID: 37632998 DOI: 10.1016/j.ejrad.2023.111055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE Leg torsion analysis can provide valuable information in symptomatic patients after total knee arthroplasty. However, extensive beam-hardening and photon-starvation artifacts limit diagnostic assessability and dose reduction potential. For this study, we investigated the reproducibility of rotational measurements in ultra-low-dose photon-counting CT with spectral shaping via tin prefiltration. MATERIAL AND METHODS Employing a first-generation photon-counting CT, eight cadaveric specimens were examined with an established three-level scan protocol (hip: Sn 140, knee: Sn 100, ankle: Sn 100 kVp). In three body donors with unilateral knee endoprostheses, additional modified settings were applied (Sn 140 kVp at knee level). Protocols were executed with three dose levels (hip-knee-ankle, high-quality: 5.0-3.0-2.0 mGy, low-dose: 0.80-0.30-0.26 mGy, ultra-low-dose: 0.25-0.06-0.06 mGy). Six radiologists performed torsion analyses, additionally reporting their diagnostic confidence. Intraclass correlation coefficients (ICC) were calculated to assess interrater reliability. RESULTS No significant differences were ascertained for femoral (p = 0.330), tibial (p = 0.177), and overall leg rotation measurements (p = 0.358) among high-quality, low-dose, and ultra-low-dose protocols. Interrater reliability was excellent for torsion of the femur (ICC 0.915, 95% confidence interval 0.871-0.947), tibia (0.960, 0.938-0.976), and overall leg (0.967, 0.945-0.981). In specimens with total knee endoprostheses, absolute rotational measurements were unaffected by dose level and tube voltage despite superior diagnostic confidence on the ipsilateral and contralateral sides with modified settings (p < 0.001). CONCLUSIONS Combining the advantages of photon-counting CT and spectral shaping, reliable leg torsion analyses are feasible with ultra-low radiation exposure even in the presence of total knee endoprostheses.
Collapse
Affiliation(s)
- Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Karsten Sebastian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Nora Conrads
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Axel Jakuscheit
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Stephan Reppenhagen
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
38
|
Minopoulou I, Kleyer A, Yalcin-Mutlu M, Fagni F, Kemenes S, Schmidkonz C, Atzinger A, Pachowsky M, Engel K, Folle L, Roemer F, Waldner M, D'Agostino MA, Schett G, Simon D. Imaging in inflammatory arthritis: progress towards precision medicine. Nat Rev Rheumatol 2023; 19:650-665. [PMID: 37684361 DOI: 10.1038/s41584-023-01016-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Imaging techniques such as ultrasonography and MRI have gained ground in the diagnosis and management of inflammatory arthritis, as these imaging modalities allow a sensitive assessment of musculoskeletal inflammation and damage. However, these techniques cannot discriminate between disease subsets and are currently unable to deliver an accurate prediction of disease progression and therapeutic response in individual patients. This major shortcoming of today's technology hinders a targeted and personalized patient management approach. Technological advances in the areas of high-resolution imaging (for example, high-resolution peripheral quantitative computed tomography and ultra-high field MRI), functional and molecular-based imaging (such as chemical exchange saturation transfer MRI, positron emission tomography, fluorescence optical imaging, optoacoustic imaging and contrast-enhanced ultrasonography) and artificial intelligence-based data analysis could help to tackle these challenges. These new imaging approaches offer detailed anatomical delineation and an in vivo and non-invasive evaluation of the immunometabolic status of inflammatory reactions, thereby facilitating an in-depth characterization of inflammation. By means of these developments, the aim of earlier diagnosis, enhanced monitoring and, ultimately, a personalized treatment strategy looms closer.
Collapse
Affiliation(s)
- Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin-Mutlu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Kemenes
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Institute for Medical Engineering, University of Applied Sciences Amberg-Weiden, Weiden, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Milena Pachowsky
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Lukas Folle
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maximilian Waldner
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria-Antonietta D'Agostino
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation, Laboratory of Excellence Inflamex, Montigny-Le-Bretonneux, France
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
39
|
Abstract
In 1971, the first patient CT examination by Ambrose and Hounsfield paved the way for not only volumetric imaging of the brain but of the entire body. From the initial 5-minute scan for a 180° rotation to today's 0.24-second scan for a 360° rotation, CT technology continues to reinvent itself. This article describes key historical milestones in CT technology from the earliest days of CT to the present, with a look toward the future of this essential imaging modality. After a review of the beginnings of CT and its early adoption, the technical steps taken to decrease scan times-both per image and per examination-are reviewed. Novel geometries such as electron-beam CT and dual-source CT have also been developed in the quest for ever-faster scans and better in-plane temporal resolution. The focus of the past 2 decades on radiation dose optimization and management led to changes in how exposure parameters such as tube current and tube potential are prescribed such that today, examinations are more customized to the specific patient and diagnostic task than ever before. In the mid-2000s, CT expanded its reach from gray-scale to color with the clinical introduction of dual-energy CT. Today's most recent technical innovation-photon-counting CT-offers greater capabilities in multienergy CT as well as spatial resolution as good as 125 μm. Finally, artificial intelligence is poised to impact both the creation and processing of CT images, as well as automating many tasks to provide greater accuracy and reproducibility in quantitative applications.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | | |
Collapse
|
40
|
Lorentzon M, Burghardt AJ. The Added Value of High-Resolution Peripheral Quantitative Computed Tomography in Fracture Risk Prediction. J Bone Miner Res 2023; 38:1225-1226. [PMID: 37702108 DOI: 10.1002/jbmr.4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Affiliation(s)
- Mattias Lorentzon
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Sahlgrenska Osteoporosis Centre, Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
41
|
Ferrero A, Powell GM, Adaaquah DK, Rajendran K, Thorne JE, Krych AJ, Horst KK, McCollough CH, Baffour FI. Feasibility of photon-counting CT for femoroacetabular impingement syndrome evaluation: lower radiation dose and improved diagnostic confidence. Skeletal Radiol 2023; 52:1651-1659. [PMID: 36971838 DOI: 10.1007/s00256-023-04325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE The feasibility of low-dose photon-counting detector (PCD) CT to measure alpha and acetabular version angles of femoroacetabular impingement (FAI). MATERIAL AND METHODS FAI patients undergoing an energy-integrating detector (EID) CT underwent an IRB-approved prospective ultra-high-resolution (UHR) PCD-CT between 5/2021 and 12/2021. PCD-CT was dose-matched to the EID-CT or acquired at 50% dose. Simulated 50% dose EID-CT images were generated. Two radiologists evaluated randomized EID-CT and PCD-CT images and measured alpha and acetabular version angles on axial image slices. Image quality (noise, artifacts, and visualization of cortex) and confidence in non-FAI pathology were rated on a 4-point scale (3 = adequate). Preference tests of standard dose PCD-CT, 50% dose PCD-CT, and 50% dose EID-CT relative to standard dose EID-CT were performed using Wilcoxon Rank test. RESULTS 20 patients underwent standard dose EID-CT (~ CTDIvol, 4.5 mGy); 10 patients, standard dose PCD-CT (4.0 mGy); 10 patients, 50% PCD-CT (2.6 mGy). Standard dose EID-CT images were scored as adequate for diagnostic task in all categories (range 2.8-3.0). Standard dose PCD-CT images scored higher than the reference in all categories (range 3.5-4, p < 0.0033). Half-dose PCD-CT images also scored higher for noise and cortex visualization (p < 0.0033) and equivalent for artifacts and visualization of non-FAI pathology. Finally, simulated 50% EID-CT images scored lower in all categories (range 1.8-2.4, p < 0.0033). CONCLUSIONS Dose-matched PCD-CT is superior to EID-CT for alpha angle and acetabular version measurement in the work up of FAI. UHR-PCD-CT enables 50% radiation dose reduction compared to EID while remaining adequate for the imaging task.
Collapse
Affiliation(s)
- Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Garret M Powell
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Dennis K Adaaquah
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Jamison E Thorne
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Aaron J Krych
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kelly K Horst
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA.
| |
Collapse
|
42
|
Gillet R, Boubaker F, Hossu G, Thay A, Gillet P, Blum A, Teixeira PAG. Computed Tomography Bone Imaging: Pushing the Boundaries in Clinical Practice. Semin Musculoskelet Radiol 2023; 27:397-410. [PMID: 37748463 DOI: 10.1055/s-0043-1768451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bone microarchitecture has several clinical implications over and above estimating bone strength. Computed tomography (CT) analysis mainly uses high-resolution peripheral quantitative CT and micro-CT, research imaging techniques, most often limited to peripheral skeleton assessment. Ultra-high-resolution (UHR) CT and photon-counting detector CT, two commercially available techniques, provide images that can approach the spatial resolution of the trabeculae, bringing bone microarchitecture analysis into clinical practice and improving depiction of bone vascularization, tumor matrix, and cortical and periosteal bone. This review presents bone microarchitecture anatomy, principles of analysis, reference measurements, and an update on the performance and potential clinical applications of these new CT techniques. We also share our clinical experience and technical considerations using an UHR-CT device.
Collapse
Affiliation(s)
- Romain Gillet
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| | - Fatma Boubaker
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Gabriela Hossu
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| | | | | | - Alain Blum
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| |
Collapse
|
43
|
Demehri S, Baffour FI, Klein JG, Ghotbi E, Ibad HA, Moradi K, Taguchi K, Fritz J, Carrino JA, Guermazi A, Fishman EK, Zbijewski WB. Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions. Radiology 2023; 308:e230344. [PMID: 37606571 PMCID: PMC10477515 DOI: 10.1148/radiol.230344] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 08/23/2023]
Abstract
CT is one of the most widely used modalities for musculoskeletal imaging. Recent advancements in the field include the introduction of four-dimensional CT, which captures a CT image during motion; cone-beam CT, which uses flat-panel detectors to capture the lower extremities in weight-bearing mode; and dual-energy CT, which operates at two different x-ray potentials to improve the contrast resolution to facilitate the assessment of tissue material compositions such as tophaceous gout deposits and bone marrow edema. Most recently, photon-counting CT (PCCT) has been introduced. PCCT is a technique that uses photon-counting detectors to produce an image with higher spatial and contrast resolution than conventional multidetector CT systems. In addition, postprocessing techniques such as three-dimensional printing and cinematic rendering have used CT data to improve the generation of both physical and digital anatomic models. Last, advancements in the application of artificial intelligence to CT imaging have enabled the automatic evaluation of musculoskeletal pathologies. In this review, the authors discuss the current state of the above CT technologies, their respective advantages and disadvantages, and their projected future directions for various musculoskeletal applications.
Collapse
Affiliation(s)
- Shadpour Demehri
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Francis I. Baffour
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Joshua G. Klein
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elena Ghotbi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Hamza Ahmed Ibad
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Kamyar Moradi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Katsuyuki Taguchi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Jan Fritz
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - John A. Carrino
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Ali Guermazi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elliot K. Fishman
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Wojciech B. Zbijewski
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| |
Collapse
|
44
|
Luetkens KS, Grunz JP, Kunz AS, Huflage H, Weißenberger M, Hartung V, Patzer TS, Gruschwitz P, Ergün S, Bley TA, Feldle P. Ultra-High-Resolution Photon-Counting Detector CT Arthrography of the Ankle: A Feasibility Study. Diagnostics (Basel) 2023; 13:2201. [PMID: 37443595 DOI: 10.3390/diagnostics13132201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study was designed to investigate the image quality of ultra-high-resolution ankle arthrography employing a photon-counting detector CT. Bilateral arthrograms were acquired in four cadaveric specimens with full-dose (10 mGy) and low-dose (3 mGy) scan protocols. Three convolution kernels with different spatial frequencies were utilized for image reconstruction (ρ50; Br98: 39.0, Br84: 22.6, Br76: 16.5 lp/cm). Seven radiologists subjectively assessed the image quality regarding the depiction of bone, hyaline cartilage, and ligaments. An additional quantitative assessment comprised the measurement of noise and the computation of contrast-to-noise ratios (CNR). While an optimal depiction of bone tissue was achieved with the ultra-sharp Br98 kernel (S ≤ 0.043), the visualization of cartilage improved with lower modulation transfer functions at each dose level (p ≤ 0.014). The interrater reliability ranged from good to excellent for all assessed tissues (intraclass correlation coefficient ≥ 0.805). The noise levels in subcutaneous fat decreased with reduced spatial frequency (p < 0.001). Notably, the low-dose Br76 matched the CNR of the full-dose Br84 (p > 0.999) and superseded Br98 (p < 0.001) in all tissues. Based on the reported results, a photon-counting detector CT arthrography of the ankle with an ultra-high-resolution collimation offers stellar image quality and tissue assessability, improving the evaluation of miniscule anatomical structures. While bone depiction was superior in combination with an ultra-sharp convolution kernel, soft tissue evaluation benefited from employing a lower spatial frequency.
Collapse
Affiliation(s)
- Karsten Sebastian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery, University of Würzburg, König-Ludwig-Haus, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
45
|
Layer YC, Kravchenko D, Dell T, Kütting D. [CT technology: photon-counting detector computed tomography]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01166-z. [PMID: 37289254 DOI: 10.1007/s00117-023-01166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) is a CT technology that overcomes many limitations of conventional detectors. Direct conversion of photons hitting the detector into electrical signals combined with more sensitive and accurate photon detection simultaneously allows spectral evaluation and also potential reduction in radiation exposure to the patient. The combination of energy thresholds and elimination of detector septa allows for a reduction of electronic noise, an increase of spatial resolution, and an improvement of dose efficiency. ACHIEVEMENTS Recent research has confirmed significantly reduced image noise, reduced radiation dose, increased spatial resolution, improved iodine signal, and a reduction in artifacts. Spectral imaging potentiates these effects and also allows retrospective calculation of virtual monoenergetic images, virtual noncontrast images or iodine maps. Thus, the photon-counting technique offers the possibility of using various contrast agents, with the prospect of single-scan multiphase imaging or visualization of specific metabolic processes. Therefore, further research and complementary approval processes are necessary for clinical application. Likewise, further research is needed to develop and validate optimal settings and reconstructions for a wide variety of situations, as well as to test new application possibilities. CONCLUSIONS The only photon-counting detector CT device available on the market to date received clinical approval in 2021. It remains to be seen which other applications will become possible through improvements in hardware and software. This technology has already demonstrated an impressive superiority compared with the current standard of CT imaging, especially regarding high-resolution imaging of detailed structures and examinations with high radiation exposure.
Collapse
Affiliation(s)
- Yannik Christian Layer
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| | - Dmitrij Kravchenko
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Tatjana Dell
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Daniel Kütting
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| |
Collapse
|
46
|
Layer YC, Mesropyan N, Kupczyk PA, Luetkens JA, Isaak A, Dell T, Attenberger UI, Kuetting D. Combining iterative metal artifact reduction and virtual monoenergetic images severely reduces hip prosthesis-associated artifacts in photon-counting detector CT. Sci Rep 2023; 13:8955. [PMID: 37268675 DOI: 10.1038/s41598-023-35989-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Aim of this study was to assess the impact of virtual monoenergetic images (VMI) in combination and comparison with iterative metal artifact reduction (IMAR) on hip prosthesis-associated artifacts in photon-counting detector CT (PCD-CT). Retrospectively, 33 scans with hip prosthesis-associated artifacts acquired during clinical routine on a PCD-CT between 08/2022 and 09/2022 were analyzed. VMI were reconstructed for 100-190 keV with and without IMAR, and compared to polychromatic images. Qualitatively, artifact extent and assessment of adjacent soft tissue were rated by two radiologists using 5-point Likert items. Quantitative assessment was performed measuring attenuation and standard deviation in most pronounced hypodense and hyperdense artifacts, artifact-impaired bone, muscle, vessels, bladder and artifact-free corresponding tissue. To quantify artifacts, an adjusted attenuation was calculated as the difference between artifact-impaired tissue and corresponding tissue without artifacts. Qualitative assessment improved for all investigated image reconstructions compared to polychromatic images (PI). VMI100keV in combination with IMAR achieved best results (e.g. diagnostic quality of the bladder: median PI: 1.5 (range 1-4); VMI100keV+IMAR: 5 (3-5); p < 0.0001). In quantitative assessment VMI100keV with IMAR provided best artifact reduction with an adjusted attenuation closest to 0 (e.g. bone: PI: 302.78; VMI100keV+IMAR: 51.18; p < 0.0001). The combination of VMI and IMAR significantly reduces hip prosthesis-associated artifacts in PCD-CT and improves the diagnostic quality of surrounding tissue.
Collapse
Affiliation(s)
- Yannik C Layer
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patrick A Kupczyk
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tatjana Dell
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
47
|
Woisetschläger M, Booij R, Tesselaar E, Oei EHG, Schilcher J. Improved visualization of the bone-implant interface and osseointegration in ex vivo acetabular cup implants using photon-counting detector CT. Eur Radiol Exp 2023; 7:19. [PMID: 37121937 PMCID: PMC10149426 DOI: 10.1186/s41747-023-00335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Successful osseointegration of joint replacement implants is required for long-term implant survival. Accurate assessment of osseointegration could enable clinical discrimination of failed implants from other sources of pain avoiding unnecessary surgeries. Photon-counting detector computed tomography (PCD-CT) provides improvements in image resolution compared to conventional energy-integrating detector CT (EID-CT), possibly allowing better visualization of bone-implant-interfaces and osseointegration. The aim of this study was to assess the quality of visualization of bone-implant-interfaces and osseointegration in acetabular cup implants, using PCD-CT compared with EID-CT. METHODS Two acetabular implants (one cemented, one uncemented) retrieved during revision surgery were scanned using PCD-CT and EID-CT at equal radiation dose. Images were reconstructed using different reconstruction kernels and iterative strengths. Delineation of the bone-implant and bone-cement-interface as an indicator of osseointegration was scored subjectively for image quality by four radiologists on a Likert scale and assessed quantitatively. RESULTS Delineation of bone-implant and bone-cement-interfaces was better with PCD-CT compared with EID-CT (p ≤ 0.030). The highest ratings were given for PCD-CT at sharper kernels for the cemented cup (PCD-CT, median 5, interquartile range 4.25-5.00 versus EID-CT, 3, 2.00-3.75, p < 0.001) and the uncemented cup (5, 4.00-5.00 versus 2, 2-2, respectively, p < 0.001). The bone-implant-interface was 35-42% sharper and the bone-cement-interface was 28-43% sharper with PCD-CT compared with EID-CT, depending on the reconstruction kernel. CONCLUSIONS PCD-CT might enable a more accurate assessment of osseointegration of orthopedic joint replacement implants. KEY POINTS • The bone-implant interface ex vivo showed superior visualization using photon-counting detector computed tomography (PCD-CT) compared to energy-integrating detector computed tomography. • Harder reconstruction kernels in PCD-CT provide sharper images with lower noise levels. • These improvements in imaging might make it possible to visualize osseointegration in vivo.
Collapse
Affiliation(s)
- Mischa Woisetschläger
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Ronald Booij
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Tesselaar
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Schilcher
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Orthopedics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
48
|
Liew JW. Intra-articular Mineralization and Association with Osteoarthritis Development and Outcomes. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2023. [DOI: 10.1007/s40674-023-00203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|