1
|
Abughanimeh OK, Baljevic M, Nester A. Novel Heterozygous Missense Variants in Diacylglycerol Kinase Epsilon and Complement Factor I: Potential Pathogenic Association With Atypical Hemolytic Uremic Syndrome. Cureus 2024; 16:e52633. [PMID: 38374836 PMCID: PMC10876284 DOI: 10.7759/cureus.52633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy (TMA), which copresents with microangiopathic hemolytic anemia, thrombocytopenia, and kidney injury. While typical HUS is normally preceded by infections such as Shiga-toxin-producing Escherichia coli, atypical HUS (aHUS) has a genetic component that leads to dysregulation of the alternative complement pathway. We report a case of a 69-year-old female who developed aHUS after undergoing an elective knee surgery. Genetic testing revealed novel mutations affecting diacylglycerol kinase epsilon (DGKE) protein and complement factor I (CFI) that were not reported before as pathogenic. The patient was treated with eculizumab, leading to the complete resolution of TMA with no lasting organ damage.
Collapse
Affiliation(s)
- Omar K Abughanimeh
- Division of Hematology-Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Muhamed Baljevic
- Division of Hematology-Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Vanderbilt-Ingram Cancer Center, Nashville, USA
| | - Alex Nester
- Division of Hematology-Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
2
|
Hadar N, Schreiber R, Eskin-Schwartz M, Kristal E, Shubinsky G, Ling G, Cohen I, Geylis M, Nahum A, Yogev Y, Birk OS. X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome. Eur J Hum Genet 2023; 31:1101-1107. [PMID: 36599939 PMCID: PMC10545727 DOI: 10.1038/s41431-022-01278-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS), mostly secondary to infectious diseases, is a common cause of acute kidney injury in children. It is characterized by progressive acute kidney failure due to severe thrombotic microangiopathy, associated with nonimmune, Coombs-negative hemolytic anemia and thrombocytopenia. HUS is caused mostly by Shiga toxin-producing E. Coli, and to a lesser extent by Streptococcus pneumonia. In Streptococcus pneumonia HUS (pHUS), bacterial neuraminidase A exposes masked O-glycan sugar residues on erythrocytes, known as the T antigen, triggering a complement cascade causing thrombotic microangiopathy. Atypical HUS (aHUS) is a life-threatening genetic form of the disease, whose molecular mechanism is only partly understood. Through genetic studies, we demonstrate a novel X-linked form of aHUS that is caused by a de-novo missense mutation in C1GALT1C1:c.266 C > T,p.(T89I), encoding a T-synthase chaperone essential for the proper formation and incorporation of the T antigen on erythrocytes. We demonstrate the presence of exposed T antigen on the surface of mutant erythrocytes, causing aHUS in a mechanism similar to that suggested in pHUS. Our findings suggest that both aHUS caused by mutated C1GALT1C1 and pHUS are mediated by the lectin-complement-pathway, not comprehensively studied in aHUS. We thus delineate a shared molecular basis of aHUS and pHUS, highlighting possible therapeutic opportunities.
Collapse
Affiliation(s)
- Noam Hadar
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruth Schreiber
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eyal Kristal
- Pediatric Ambulatory Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - George Shubinsky
- Flow Cytometry Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Galina Ling
- Pediatric Ambulatory Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Geylis
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
| | - Amit Nahum
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
- The Primary Immunodeficiency Research Laboratory and Pediatric Department A, Soroka University Medical Center, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel.
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
3
|
Donadelli R, Sinha A, Bagga A, Noris M, Remuzzi G. HUS and TTP: traversing the disease and the age spectrum. Semin Nephrol 2023; 43:151436. [PMID: 37949684 DOI: 10.1016/j.semnephrol.2023.151436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenia purpura (TTP) are rare diseases sharing a common pathological feature, thrombotic microangiopathy (TMA). TMA is characterized by microvascular thrombosis with consequent thrombocytopenia, microangiopathic hemolytic anemia and/or multiorgan dysfunction. In the past, the distinction between HUS and TTP was predominantly based on clinical grounds. However, clinical presentation of the two syndromes often overlaps and, the differential diagnosis is broad. Identification of underlying pathogenic mechanisms has enabled the classification of these syndromes on a molecular basis: typical HUS caused by Shiga toxin-producing Escherichia coli (STEC-HUS); atypical HUS or complement-mediated TMA (aHUS/CM-TMA) associated with genetic or acquired defects leading to dysregulation of the alternative pathway (AP) of complement; and TTP that results from a severe deficiency of the von Willebrand Factor (VWF)-cleaving protease, ADAMTS13. The etiology of TMA differs between pediatric and adult patients. Childhood TMA is chiefly caused by STEC-HUS, followed by CM-TMA and pneumococcal HUS (Sp-HUS). Rare conditions such as congenital TTP (cTTP), vitamin B12 metabolism defects, and coagulation disorders (diacylglycerol epsilon mutation) present as TMA chiefly in children under 2 years of age. In contrast secondary causes and acquired ADAMT13 deficiency are more common in adults. In adults, compared to children, diagnostic delays are more frequent due to the wide range of differential diagnoses. In this review we focus on the three major forms of TMA, STEC-HUS, aHUS and TTP, outlining the clinical presentation, diagnosis and management of the affected patients, to help highlight the salient features and the differences between adult and pediatric patients which are relevant for management.
Collapse
Affiliation(s)
- Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy.
| |
Collapse
|
4
|
Piras R, Valoti E, Alberti M, Bresin E, Mele C, Breno M, Liguori L, Donadelli R, Rigoldi M, Benigni A, Remuzzi G, Noris M. CFH and CFHR structural variants in atypical Hemolytic Uremic Syndrome: Prevalence, genomic characterization and impact on outcome. Front Immunol 2023; 13:1011580. [PMID: 36793547 PMCID: PMC9923232 DOI: 10.3389/fimmu.2022.1011580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Introduction Atypical hemolytic uremic syndrome (aHUS) is a rare disease that manifests with microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure, and is associated with dysregulation of the alternative complement pathway. The chromosomal region including CFH and CFHR1-5 is rich in repeated sequences, favoring genomic rearrangements that have been reported in several patients with aHUS. However, there are limited data on the prevalence of uncommon CFH-CFHR genomic rearrangements in aHUS and their impact on disease onset and outcomes. Methods In this study, we report the results of CFH-CFHR Copy Number Variation (CNV) analysis and the characterization of resulting structural variants (SVs) in a large cohort of patients, including 258 patients with primary aHUS and 92 with secondary forms. Results We found uncommon SVs in 8% of patients with primary aHUS: 70% carried rearrangements involving CFH alone or CFH and CFHR (group A; n=14), while 30% exhibited rearrangements including only CFHRs (group B; n=6). In group A, 6 patients presented CFH::CFHR1 hybrid genes, 7 patients carried duplications in the CFH-CFHR region that resulted either in the substitution of the last CFHR1 exon(s) with those of CFH (CFHR1::CFH reverse hybrid gene) or in an internal CFH duplication. In group A, the large majority of aHUS acute episodes not treated with eculizumab (12/13) resulted in chronic ESRD; in contrast, anti-complement therapy induced remission in 4/4 acute episodes. aHUS relapse occurred in 6/7 grafts without eculizumab prophylaxis and in 0/3 grafts with eculizumab prophylaxis. In group B, 5 subjects had the CFHR31-5::CFHR410 hybrid gene and one had 4 copies of CFHR1 and CFHR4. Compared with group A, patients in group B exhibited a higher prevalence of additional complement abnormalities and earlier disease onset. However, 4/6 patients in this group underwent complete remission without eculizumab treatment. In secondary forms we identified uncommon SVs in 2 out of 92 patients: the CFHR31-5::CFHR410 hybrid and a new internal duplication of CFH. Discussion In conclusion, these data highlight that uncommon CFH-CFHR SVs are frequent in primary aHUS and quite rare in secondary forms. Notably, genomic rearrangements involving the CFH are associated with a poor prognosis but carriers respond to anti-complement therapy.
Collapse
|
5
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
6
|
Formeck CL, Manrique-Caballero CL, Gómez H, Kellum JA. Uncommon Causes of Acute Kidney Injury. Crit Care Clin 2022; 38:317-347. [DOI: 10.1016/j.ccc.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Hay E, Cullup T, Barnicoat A. A practical approach to the genomics of kidney disorders. Pediatr Nephrol 2022; 37:21-35. [PMID: 33675412 DOI: 10.1007/s00467-021-04995-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Rapid technological advances in genomic testing continue to increase our understanding of the genetic basis of a wide range of kidney disorders. Establishing a molecular diagnosis benefits the individual by bringing an end to what is often a protracted diagnostic odyssey, facilitates accurate reproductive counselling for families and, in the future, is likely to lead to the delivery of more targeted management and surveillance regimens. The selection of the most appropriate testing modality requires an understanding both of the technologies available and of the genetic architecture and heterogeneity of kidney disease. Whilst we are witnessing a far greater diagnostic yield with broader genetic testing, such approaches invariably generate variants of uncertain significance and secondary incidental findings, which are not only difficult to interpret but present ethical challenges with reporting and feeding back to patients and their families. Here, we review the spectrum of nephrogenetic disorders, consider the optimal approach to genetic testing, explore the clinical utility of obtaining a molecular diagnosis, reflect on the challenges of variant interpretation and look to the future of this dynamic field.
Collapse
Affiliation(s)
- Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK.
| | - Thomas Cullup
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital, London, UK
| | - Angela Barnicoat
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| |
Collapse
|
9
|
Knoers N, Antignac C, Bergmann C, Dahan K, Giglio S, Heidet L, Lipska-Ziętkiewicz BS, Noris M, Remuzzi G, Vargas-Poussou R, Schaefer F. Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice. Nephrol Dial Transplant 2021; 37:239-254. [PMID: 34264297 PMCID: PMC8788237 DOI: 10.1093/ndt/gfab218] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
The overall diagnostic yield of massively parallel sequencing–based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6–30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing–based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.
Collapse
Affiliation(s)
- Nine Knoers
- Department of Genetics, University Medical Centre Groningen, The Netherlands
| | - Corinne Antignac
- Institut Imagine (Inserm U1163) et Département de Génétique, 24 bd du Montparnasse, 75015, Paris, France
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany.,Department of Medicine, Nephrology, University Hospital Freiburg, Germany
| | - Karin Dahan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, B-1200, Brussels, Belgium.,Center of Human Genetics, Institut de Pathologie et de Génétique, Avenue Lemaître, 25, B-6041, Gosselies, Belgium
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, 75743, Paris, Cedex 15, France
| | - Beata S Lipska-Ziętkiewicz
- BSL-Z - ORCID 0000-0002-4169-9685, Centre for Rare Diseases, Medical University of Gdansk, Gdansk, Poland.,Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Rosa Vargas-Poussou
- Département de Génétique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75908, Paris, Cedex 15, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Germany
| | | |
Collapse
|
10
|
Marx D, Caillard S, Olagne J, Moulin B, Hannedouche T, Touchard G, Dupuis A, Gachet C, Molitor A, Bahram S, Carapito R. Atypical focal segmental glomerulosclerosis associated with a new PODXL nonsense variant. Mol Genet Genomic Med 2021; 9:e1658. [PMID: 33780168 PMCID: PMC8172202 DOI: 10.1002/mgg3.1658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Background Podocalyxin (PODXL) is a highly sialylated adhesion glycoprotein that plays an important role in podocyte's physiology. Recently, missense and nonsense dominant variants in the PODXL gene have been associated with focal segmental glomerulosclerosis (FSGS), a leading cause of nephrotic syndrome and kidney failure. Their histologic description, however, was superficial or absent. Methods We performed exome sequencing on a three‐generation family affected by an atypical glomerular nephropathy and characterized the disease by light and electron microscopy. Results The disease was characterized by FSGS features and glomerular basement membrane duplication. Six family members displayed chronic proteinuria, ranging from mild manifestations without renal failure, to severe forms with end‐stage renal disease. Exome sequencing of affected twin sisters, their affected mother, healthy father, and healthy maternal uncle revealed a new nonsense variant cosegregating with the disease (c.1453C>T, NM_001018111) in the PODXL gene, which is known to be expressed in the kidney and to cause nephropathy when mutated. The variant is predicted to lead to a premature stop codon (p.Q485*) that results in the loss of the intracytoplasmic tail of the protein. Conclusion This is the first description of a peculiar association combining a PODXL stop‐gain variant and both FSGS and membranoproliferative glomerulonephritis features, described by light and electron microscopy.
Collapse
Affiliation(s)
- David Marx
- Department of Nephrology and Transplantation, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC, UMR 7178, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sophie Caillard
- Department of Nephrology and Transplantation, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg, Strasbourg, France
| | - Jérôme Olagne
- Department of Nephrology and Transplantation, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Department of Pathology, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bruno Moulin
- Department of Nephrology and Transplantation, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg, Strasbourg, France
| | - Thierry Hannedouche
- Department of Nephrology and Dialysis, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guy Touchard
- Department of Nephrology and Transplantation, University Hospital of Poitiers, Poitiers, France
| | - Arnaud Dupuis
- Inserm, EFS Grand-Est, BPPS UMR_S 1255, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Christian Gachet
- Inserm, EFS Grand-Est, BPPS UMR_S 1255, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
11
|
Sharma J, Lobo V, Singhal J, Anand S, Kadam S, Ranade S, Gangodkar P, Ganesan K, Phadke N, Agarwal M. Novel Mutations in the DGKE Gene in Two Indian Patients with Early-onset Atypical Haemolytic Uraemic Syndrome. Indian J Nephrol 2021; 31:182-186. [PMID: 34267444 PMCID: PMC8240919 DOI: 10.4103/ijn.ijn_336_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 11/25/2022] Open
Abstract
Atypical haemolytic uremic syndrome (aHUS) is a clinically and genetically heterogeneous condition caused by a complex interplay between genomic susceptibility factors and environmental influences. Pathogenic variants in the DGKE gene are recently identified in cases with infantile-onset autosomal recessive aHUS. The presence of low serum C3 levels, however, has rarely been described in cases of DGKE-associated aHUS. Molecular genetic testing was performed by a commercial next-generation sequencing (NGS) panel as well and by an in-house developed targeted NGS for DGKE gene. Copy number variations (CNVs) were computed from NGS data by calculating a normalised copy number ratio of aligned number of reads at targeted genomic regions against multiple reference regions of the same sample and multiple controls. We report here two such novel clinically relevant variants (c.727_730delTTGT and c.251_259delGCGCCTTC) in the DGKE gene, in two families of infantile aHUS with low serum C3 levels.
Collapse
Affiliation(s)
- Jyoti Sharma
- Nephrology Unit, King Edward Memorial Hospital,, India
| | | | - Jyoti Singhal
- Nephrology Unit, King Edward Memorial Hospital,, India
| | - Siddharth Anand
- GenePath Diagnostics India Pvt. Ltd., 1260/B, J M Road, Pune, India
| | - Sandeep Kadam
- Paeditrics Department, King Edward Memorial Hospital, Pune, India
| | - Shatakshi Ranade
- GenePath Diagnostics India Pvt. Ltd., 1260/B, J M Road, Pune, India
| | | | | | - Nikhil Phadke
- GenePath Diagnostics India Pvt. Ltd., 1260/B, J M Road, Pune, India
- I-SHARE Foundation, 1260/B, J M Road, Pune, India
| | - Meenal Agarwal
- GenePath Diagnostics India Pvt. Ltd., 1260/B, J M Road, Pune, India
- I-SHARE Foundation, 1260/B, J M Road, Pune, India
| |
Collapse
|
12
|
Piras R, Iatropoulos P, Bresin E, Todeschini M, Gastoldi S, Valoti E, Alberti M, Mele C, Galbusera M, Cuccarolo P, Benigni A, Remuzzi G, Noris M. Molecular Studies and an ex vivo Complement Assay on Endothelium Highlight the Genetic Complexity of Atypical Hemolytic Uremic Syndrome: The Case of a Pedigree With a Null CD46 Variant. Front Med (Lausanne) 2020; 7:579418. [PMID: 33224962 PMCID: PMC7670076 DOI: 10.3389/fmed.2020.579418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is an ultra-rare disease characterized by microangiopathic hemolysis, thrombocytopenia, and renal impairment and is associated with dysregulation of the alternative complement pathway on the microvascular endothelium. Outcomes have improved greatly with pharmacologic complement C5 blockade. Abnormalities in complement genes (CFH, CD46, CFI, CFB, C3, and THBD), CFH–CFHR genomic rearrangements, and anti-FH antibodies have been reported in 40–60% of cases. The penetrance of aHUS is incomplete in carriers of complement gene abnormalities; and multiple hits, including the CFH–H3 and CD46GGAAC risk haplotypes and the CFHR1*B risk allele, as well as environmental factors, contribute to disease development. Here, we investigated the determinants of penetrance of aHUS associated with CD46 genetic abnormalities. We studied 485 aHUS patients and found CD46 rare variants (RVs) in about 10%. The c.286+2T>G RV was the most prevalent (13/485) and was associated with <30% penetrance. We conducted an in-depth study of a large pedigree including a proband who is heterozygous for the c.286+2T>G RV who experienced a severe form of aHUS and developed end-stage renal failure. The father and paternal uncle with the same variant in homozygosity and six heterozygous relatives are unaffected. Flow cytometry analysis showed about 50% reduction of CD46 expression on blood mononuclear cells from the heterozygous proband and over 90% reduction in cells from the proband's unaffected homozygous father and aunt. Further genetic studies did not reveal RVs in known aHUS-associated genes or common genetic modifiers that segregated with the disease. Importantly, a specific ex vivo test showed excessive complement deposition on endothelial cells exposed to sera from the proband, and also from his mother and maternal uncle, who do not carry the c.286+2T>G RV, indicating that they share a circulating defect that results in complement dysregulation on the endothelium. These results highlight the complexity of the genetics of aHUS and indicate that CD46 deficiency may not be enough to induce aHUS. We hypothesize that the proband inherited from his mother a genetic abnormality in a complement circulating factor that has not been identified yet, which synergized with the CD46 RV in predisposing him to the aHUS phenotype.
Collapse
Affiliation(s)
- Rossella Piras
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paraskevas Iatropoulos
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sara Gastoldi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elisabetta Valoti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Alberti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Galbusera
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paola Cuccarolo
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
13
|
Hanna RM, Hou J, Hasnain H, Arman F, Selamet U, Wilson J, Olanrewaju S, Zuckerman JE, Barsoum M, Yabu JM, Kurtz I. Diverse Clinical Presentations of C3 Dominant Glomerulonephritis. Front Med (Lausanne) 2020; 7:293. [PMID: 32695788 PMCID: PMC7338606 DOI: 10.3389/fmed.2020.00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
C3 dominant immunofluorescence staining is present in a subset of patients with idiopathic immune complex membranoproliferative glomerulonephritis (iMPGN). It is increasingly recognized that iMPGN may be complement driven, as are cases of "typical" C3 glomerulopathy (C3G). In both iMPGN and C3G, a frequent membranoproliferative pattern of glomerular injury may indicate common pathogenic mechanisms via complement activation and endothelial cell damage. Dysregulation of the alternative complement pathway and mutations in certain regulatory factors are highly implicated in C3 glomerulopathy (which encompasses C3 glomerulonephritis, dense deposit disease, and cases of C3 dominant MPGN). We report three cases that demonstrate that an initial biopsy diagnosis of iMPGN does not exclude complement alterations similar to the ones observed in patients with a diagnosis of C3G. The first patient is a 39-year-old woman with iMPGN and C3 dominant staining, with persistently low C3 levels throughout her course. The second case is a 22-year-old woman with elevated anti-factor H antibodies and C3 dominant iMPGN findings on biopsy. The third case is a 25-year-old woman with C3 dominant iMPGN, dense deposit disease, and a crescentic glomerulonephritis on biopsy. We present the varied phenotypic variations of C3 dominant MPGN and review clinical course, complement profiles, genetic testing, treatment course, and peri-transplantation plans. Testing for complement involvement in iMPGN is important given emerging treatment options and transplant planning.
Collapse
Affiliation(s)
- Ramy M Hanna
- Division of Nephrology, Department of Medicine, UCI School of Medicine, Irvine, CA, United States.,Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Huma Hasnain
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Farid Arman
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Umut Selamet
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States.,Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - James Wilson
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Samuel Olanrewaju
- David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Marina Barsoum
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Julie M Yabu
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States.,UCLA Brain Research Institute, Los Angeles, CA, United States
| |
Collapse
|
14
|
Brocklebank V, Kumar G, Howie AJ, Chandar J, Milford DV, Craze J, Evans J, Finlay E, Freundlich M, Gale DP, Inward C, Mraz M, Jones C, Wong W, Marks SD, Connolly J, Corner BM, Smith-Jackson K, Walsh PR, Marchbank KJ, Harris CL, Wilson V, Wong EKS, Malina M, Johnson S, Sheerin NS, Kavanagh D. Long-term outcomes and response to treatment in diacylglycerol kinase epsilon nephropathy. Kidney Int 2020; 97:1260-1274. [PMID: 32386968 PMCID: PMC7242908 DOI: 10.1016/j.kint.2020.01.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
Recessive mutations in diacylglycerol kinase epsilon (DGKE) display genetic pleiotropy, with pathological features reported as either thrombotic microangiopathy or membranoproliferative glomerulonephritis (MPGN), and clinical features of atypical hemolytic uremic syndrome (aHUS), nephrotic syndrome or both. Pathophysiological mechanisms and optimal management strategies have not yet been defined. In prospective and retrospective studies of aHUS referred to the United Kingdom National aHUS service and prospective studies of MPGN referred to the National Registry of Rare Kidney Diseases for MPGN we defined the incidence of DGKE aHUS as 0.009/million/year and so-called DGKE MPGN as 0.006/million/year, giving a combined incidence of 0.015/million/year. Here, we describe a cohort of sixteen individuals with DGKE nephropathy. One presented with isolated nephrotic syndrome. Analysis of pathological features reveals that DGKE mutations give an MPGN-like appearance to different extents, with but more often without changes in arterioles or arteries. In 15 patients presenting with aHUS, ten had concurrent substantial proteinuria. Identified triggering events were rare but coexistent developmental disorders were seen in six. Nine with aHUS experienced at least one relapse, although in only one did a relapse of aHUS occur after age five years. Persistent proteinuria was seen in the majority of cases. Only two individuals have reached end stage renal disease, 20 years after the initial presentation, and in one, renal transplantation was successfully undertaken without relapse. Six individuals received eculizumab. Relapses on treatment occurred in one individual. In four individuals eculizumab was withdrawn, with one spontaneously resolving aHUS relapse occurring. Thus we suggest that DGKE-mediated aHUS is eculizumab non-responsive and that in individuals who currently receive eculizumab therapy it can be safely withdrawn. This has important patient safety and economic implications.
Collapse
Affiliation(s)
- Vicky Brocklebank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gurinder Kumar
- Division of Paediatric Nephrology, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Alexander J Howie
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jayanthi Chandar
- Division of Pediatric Nephrology, University of Miami, Miami, Florida, USA
| | - David V Milford
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Janet Craze
- Department of General Paediatrics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jonathan Evans
- Children's Renal and Urology Unit, Nottingham Children's Hospital, Nottingham University Hospitals NHS Foundation Trust, Nottingham, UK
| | - Eric Finlay
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Michael Freundlich
- Division of Pediatric Nephrology, University of Miami, Miami, Florida, USA
| | - Daniel P Gale
- Department of Renal Medicine, University College London, UK
| | - Carol Inward
- Department of Paediatric Nephrology, Bristol Royal Hospital For Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Martin Mraz
- Department of Paediatric Nephrology, Bristol Royal Hospital For Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Caroline Jones
- Department of Paediatric Nephrology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - William Wong
- Department of Paediatric Nephrology, Starship Children's Hospital, Grafton, Auckland, New Zealand
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Connolly
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Bronte M Corner
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Smith-Jackson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick R Walsh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kevin J Marchbank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claire L Harris
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Valerie Wilson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Edwin K S Wong
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Malina
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle, UK
| | - Sally Johnson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle, UK
| | - Neil S Sheerin
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Berger BE. Atypical hemolytic uremic syndrome: a syndrome in need of clarity. Clin Kidney J 2019; 12:338-347. [PMID: 31198222 PMCID: PMC6543964 DOI: 10.1093/ckj/sfy066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy (TMA) originally understood to be limited to renal and hematopoietic involvement. Whereas aberrations in complement regulatory proteins (CRPs), C3 or complement factor B (CFB) are detected in ∼60% of patients, a complement-derived pathogenesis that reflects dysregulation of the alternative pathway (AP) of complement activation is present in ∼90% of patients. aHUS remains a diagnosis of exclusion. The discovery of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) and its utility in the diagnosis of thrombotic thrombocytopenic purpura (TTP) has resulted in the appreciation that cases of aHUS have been inappropriately diagnosed as TTP. Thus there has been an evolving appreciation of clinical manifestations of aHUS that renders the appellation aHUS misleading. This article will review the pathogenesis and the evolving clinical presentations of aHUS, present a hypothesis that there can be a phenotypic expression of aHUS due to a complement storm in a disorder where direct endothelial damage occurs and discuss future areas of research to more clearly define the clinical spectrum and management of aHUS.
Collapse
Affiliation(s)
- Bruce E Berger
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
de Holanda MI, Gomes CP, Araujo SDA, Wanderley DC, Eick RG, Dantas GC, Tino MKDS, Pesquero JB, Palma LMP. Diacylglycerol kinase epsilon nephropathy: late diagnosis and therapeutic implications. Clin Kidney J 2019; 12:641-644. [PMID: 31583090 PMCID: PMC6768293 DOI: 10.1093/ckj/sfz043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 01/05/2023] Open
Abstract
A 17-year-old male presented thrombotic microangiopathy (TMA) at 6 months of age with arterial hypertension, anemia, thrombocytopenia and kidney injury improving with plasma infusions. Fourteen years later, he was diagnosed with severe arterial hypertension, increase in serum creatinine and chronic TMA on kidney biopsy. Eculizumab was started and after 18 months of treatment, he persisted with hypertension, decline in renal function and proteinuria. Genetic analysis demonstrated mutation in diacylglycerol kinase epsilon (DGKe). Complement blockade was stopped. This case of late diagnosis of DGKe nephropathy highlights the importance of genetic testing in patients presenting TMA during the first year of life.
Collapse
Affiliation(s)
| | - Caio Perez Gomes
- Center for Research and Diagnostics of Genetics Diseases, Department of Biophysics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | | | | | - Renato George Eick
- Department of Nephrology, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | | | | | - João Bosco Pesquero
- Center for Research and Diagnostics of Genetics Diseases, Department of Biophysics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | | |
Collapse
|
17
|
Tseng MH, Tsai JD, Tsai IJ, Huang SM, Huang JL, Fan WL, Lee HJ, Wu TW, Lin SH. Whole-exome sequencing detects mutations in pediatric patients with atypical hemolytic uremic syndrome in Taiwan. Clin Chim Acta 2019; 494:143-150. [PMID: 30905589 DOI: 10.1016/j.cca.2019.03.1623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
Although atypical hemolytic uremic syndrome (aHUS) is a genetic disorder, molecular defects are detected in only 60% of patients. We aim to dissect the genetic background by whole exome sequence and the clinical characteristics of pediatric patients with aHUS. Ten patients (6 male and 4 female) with mean age 5.2 ± 5.0 years were enrolled. The age at onset ranged from 2 days to 11 years. Eighteen different mutations (17 missense, 2 nonsense, and 11 novel) on 7 complement and 3 coagulation genes were detected in all patients. The majority of mutation was heterozygous and S1191L on CFH were the recurrent mutation. Sixty percent of patients had multiple genetic mutations. Nine mutations were associated with genes known to be implicated in aHUS (CFH, CFI, CD46, CFHR5, and DGKE), while 4 and 5 mutations were detected on complement- (C8B, C9, and MASP1) and coagulation-associated (VWF and CD36) genes, respectively. CD36 may be a candidate gene act as disease modifier for aHUS through the contribution of thrombosis by impairing the interaction with TSP-1 and ADAMTS 13 shown in simulation model. Genetic defects on both complement and coagulation pathways play pathogenic roles on aHUS. CD36 may be a novel candidate gene act as disease modifier of aHUS.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Xiamen Chang Gung Hospital, Ximen, China
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - I-Jung Tsai
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Long Huang
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, US
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
18
|
Galbusera M, Noris M, Gastoldi S, Bresin E, Mele C, Breno M, Cuccarolo P, Alberti M, Valoti E, Piras R, Donadelli R, Vivarelli M, Murer L, Pecoraro C, Ferrari E, Perna A, Benigni A, Portalupi V, Remuzzi G. An Ex Vivo Test of Complement Activation on Endothelium for Individualized Eculizumab Therapy in Hemolytic Uremic Syndrome. Am J Kidney Dis 2019; 74:56-72. [PMID: 30851964 DOI: 10.1053/j.ajkd.2018.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE & OBJECTIVE Although primary atypical hemolytic uremic syndrome (aHUS) is associated with abnormalities in complement genes and antibodies to complement factor H, the role of complement in secondary aHUS remains debatable. We evaluated the usefulness of an ex vivo test to: (1) detect complement activation within the endothelium in primary and secondary aHUS, (2) differentiate active disease from remission, (3) monitor the effectiveness of eculizumab therapy, and (4) identify relapses during eculizumab dosage tapering and after discontinuation of treatment. STUDY DESIGN Case series. SETTING & PARTICIPANTS 121 patients with primary aHUS and 28 with secondary aHUS. Serum samples were collected during acute episodes, following remission, and during eculizumab treatment and were assessed using a serum-induced ex vivo C5b-9 endothelial deposition test. RESULTS Serum-induced C5b-9 deposition on cultured microvascular endothelium was quantified by calculating the endothelial area covered by C5b-9 staining; values were expressed as percentage of C5b-9 deposits induced by a serum pool from healthy controls. Testing with adenosine diphosphate-activated endothelium demonstrated elevated C5b-9 deposits for all untreated patients with aHUS independent of disease activity, while testing with unstimulated endothelium demonstrated deposits only in active disease. Similar findings were observed in secondary aHUS. Serum-induced C5b-9 deposits on activated and unstimulated endothelium normalized during eculizumab treatment. 96% (22/23) of patients receiving eculizumab at extended 3- or 4-week dosing intervals demonstrated normal C5b-9 deposits on activated endothelium, despite most patients having CH50Eq (serum complement activity) > 20 UEq/mL, indicating that adequate complement control was achieved even with incomplete blockade of circulating C5. During eculizumab dosage tapering or after treatment discontinuation, all patients experiencing relapses versus only 6% (1/17) of those in stable remission had elevated C5b-9 deposits on unstimulated endothelium. LIMITATIONS The C5b-9 endothelial deposition test can be performed in only specialized laboratories. Findings on eculizumab dosage tapering need to be confirmed with longitudinal monitoring of C5b-9 deposition. CONCLUSIONS The C5b-9 endothelial deposition assay may represent an advance in our ability to monitor aHUS activity and individualize therapy.
Collapse
Affiliation(s)
- Miriam Galbusera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| | - Sara Gastoldi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Elena Bresin
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Caterina Mele
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Matteo Breno
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Cuccarolo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Marta Alberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Elisabetta Valoti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Rossella Piras
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Marina Vivarelli
- Division of Nephrology and Dialysis, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Luisa Murer
- Unit of Pediatric Nephrology, Dialysis and Transplantation, Azienda Ospedaliera di Padova, Padua, Italy
| | - Carmine Pecoraro
- Pediatric Nephrology Unit, Santobono-Pausilipon Hospital, Naples, Italy
| | - Elisa Ferrari
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Annalisa Perna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Valentina Portalupi
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Yoshida Y, Kato H, Ikeda Y, Nangaku M. Pathogenesis of Atypical Hemolytic Uremic Syndrome. J Atheroscler Thromb 2018; 26:99-110. [PMID: 30393246 PMCID: PMC6365154 DOI: 10.5551/jat.rv17026] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a type of thrombotic microangiopathy (TMA) defined by thrombocytopenia, microangiopathic hemolytic anemia, and renal failure. aHUS is caused by uncontrolled complement activation in the alternative pathway (AP). A variety of genetic defects in complement-related factors or acquired autoantibodies to the complement regulators have been found in 50 to 60% of all cases. Recently, however, the classification and diagnosis of aHUS are becoming more complicated. One reason for this is that some factors, which have not been regarded as complement-related factors, have been reported as predisposing factors for phenotypic aHUS. Given that genotype is highly correlated with the phenotype of aHUS, careful analysis of underlying genetic abnormalities or acquired factors is needed to predict the prognosis or to decide an optimal treatment for the disease. Another reason is that complement dysregulation in the AP have also been found in a part of other types of TMA such as transplantation-related TMA and pregnancy-related complication. Based on these findings, it is now time to redefine aHUS according to the genetic or acquired background of abnormalities.Here, we review the pathogeneses and the corresponding phenotypes of aHUS and complement-related TMAs.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Hideki Kato
- Department of Prevention of Diabetes and Lifestyle-Related Diseases Graduate School of Medicine, the University of Tokyo
| | - Yoichiro Ikeda
- Division of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, the University of Tokyo Hospital
| |
Collapse
|
20
|
Gulati A, Somlo S. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology. Pediatr Nephrol 2018; 33:745-761. [PMID: 28660367 DOI: 10.1007/s00467-017-3698-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
Abstract
The genesis of whole exome sequencing as a powerful tool for detailing the protein coding sequence of the human genome was conceptualized based on the availability of next-generation sequencing technology and knowledge of the human reference genome. The field of pediatric nephrology enriched with molecularly unsolved phenotypes is allowing the clinical and research application of whole exome sequencing to enable novel gene discovery and provide amendment of phenotypic misclassification. Recent studies in the field have informed us that newer high-throughput sequencing techniques are likely to be of high yield when applied in conjunction with conventional genomic approaches such as linkage analysis and other strategies used to focus subsequent analysis. They have also emphasized the need for the validation of novel genetic findings in large collaborative cohorts and the production of robust corroborative biological data. The well-structured application of comprehensive genomic testing in clinical and research arenas will hopefully continue to advance patient care and precision medicine, but does call for attention to be paid to its integrated challenges.
Collapse
Affiliation(s)
- Ashima Gulati
- Division of Nephrology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Basak R, Wang X, Keane C, Woroniecki R. Atypical presentation of atypical haemolytic uraemic syndrome. BMJ Case Rep 2018; 2018:bcr-2017-222560. [PMID: 29440240 DOI: 10.1136/bcr-2017-222560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A 17-year-old girl presented with fever, myalgia, vomiting for 1 month and oliguria and dyspnoea for 4 days. She was tachycardic,hypertensive, with pedal oedema and decreased breath sounds. She had high serum creatinine (3 mg/dL), anaemia, thrombocytopenia, leucocytosis and eosinophilia with schistocytes. Lactate dehydrogenase, transaminases were high , with low haptoglobin and high ferritin (5269 ng/mL). Complement C3/C4 and fibrinogen were normal. Urinalysis showed large blood and protein and stool studies were negative. Her ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) was normal. Kidney biopsy showed acute interstitial nephritis (AIN) in addition to thrombotic angiopathy. The differentials - haemolytic uraemic syndrome (HUS), thrombotic thrombocytopenia (TTP) and haemophagocytic lymphohistiocytosis (HLH) were ruled out. Her genetic testing was abnormal for large CFHR1-CFHR3 homozygous deletion and heterozygous missense variant in exon 2 of DGKE making the diagnosis of atypical HUS. She received eculizumab and was discharged on oral steroids for AIN and biweekly eculizumab infusions with excellent recovery.
Collapse
Affiliation(s)
- Ratna Basak
- Department of Pediatrics, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Xiaotong Wang
- Department of Pathology, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Caitlin Keane
- Department of Pediatrics, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Robert Woroniecki
- Department of Pediatrics, Stony Brook University Hospital, Stony Brook, New York, USA
| |
Collapse
|
22
|
Abstract
Thrombotic microangiopathy can manifest in a diverse range of diseases and is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and organ injury, including AKI. It can be associated with significant morbidity and mortality, but a systematic approach to investigation and prompt initiation of supportive management and, in some cases, effective specific treatment can result in good outcomes. This review considers the classification, pathology, epidemiology, characteristics, and pathogenesis of the thrombotic microangiopathies, and outlines a pragmatic approach to diagnosis and management.
Collapse
Affiliation(s)
- Vicky Brocklebank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne, Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and
| | - Katrina M. Wood
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne, Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and
| |
Collapse
|
23
|
Abstract
Technologies such as next-generation sequencing and chromosomal microarray have advanced the understanding of the molecular pathogenesis of a variety of renal disorders. Genetic findings are increasingly used to inform the clinical management of many nephropathies, enabling targeted disease surveillance, choice of therapy, and family counselling. Genetic analysis has excellent diagnostic utility in paediatric nephrology, as illustrated by sequencing studies of patients with congenital anomalies of the kidney and urinary tract and steroid-resistant nephrotic syndrome. Although additional investigation is needed, pilot studies suggest that genetic testing can also provide similar diagnostic insight among adult patients. Reaching a genetic diagnosis first involves choosing the appropriate testing modality, as guided by the clinical presentation of the patient and the number of potential genes associated with the suspected nephropathy. Genome-wide sequencing increases diagnostic sensitivity relative to targeted panels, but holds the challenges of identifying causal variants in the vast amount of data generated and interpreting secondary findings. In order to realize the promise of genomic medicine for kidney disease, many technical, logistical, and ethical questions that accompany the implementation of genetic testing in nephrology must be addressed. The creation of evidence-based guidelines for the utilization and implementation of genetic testing in nephrology will help to translate genetic knowledge into improved clinical outcomes for patients with kidney disease.
Collapse
Affiliation(s)
- Emily E Groopman
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| |
Collapse
|
24
|
Nestor JG, Groopman EE, Gharavi AG. Towards precision nephrology: the opportunities and challenges of genomic medicine. J Nephrol 2017; 31:47-60. [PMID: 29043570 DOI: 10.1007/s40620-017-0448-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
The expansion of genomic medicine is furthering our understanding of many human diseases. This is well illustrated in the field of nephrology, through the characterization, discovery, and growing insight into various renal diseases through use of Next Generation Sequencing (NGS) technologies. This review will provide an overview of the diagnostic opportunities of using genetic testing in the clinical setting by describing notable discoveries regarding inherited forms of renal disease that have advanced the field and by highlighting some of the potential benefits of establishing a molecular diagnosis in a clinical practice. In addition, it will discuss some of the challenges associated with the expansion of genetic testing into the clinical setting, including clinical variant interpretation and return of genetic results.
Collapse
Affiliation(s)
- Jordan G Nestor
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Ave, Room 413, New York, NY, 10032, USA
| | - Emily E Groopman
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Ave, Room 413, New York, NY, 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Ave, Room 413, New York, NY, 10032, USA.
| |
Collapse
|
25
|
Azukaitis K, Simkova E, Majid MA, Galiano M, Benz K, Amann K, Bockmeyer C, Gajjar R, Meyers KE, Cheong HI, Lange-Sperandio B, Jungraithmayr T, Frémeaux-Bacchi V, Bergmann C, Bereczki C, Miklaszewska M, Csuka D, Prohászka Z, Killen P, Gipson P, Sampson MG, Lemaire M, Schaefer F. The Phenotypic Spectrum of Nephropathies Associated with Mutations in Diacylglycerol Kinase ε. J Am Soc Nephrol 2017; 28:3066-3075. [PMID: 28526779 PMCID: PMC5619969 DOI: 10.1681/asn.2017010031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/16/2017] [Indexed: 01/01/2023] Open
Abstract
The recent discovery of mutations in the gene encoding diacylglycerol kinase ε (DGKE) identified a novel pathophysiologic mechanism leading to HUS and/or MPGN. We report ten new patients from eight unrelated kindreds with DGKE nephropathy. We combined these cases with all previously published cases to characterize the phenotypic spectrum and outcomes of this new disease entity. Most patients presented with HUS accompanied by proteinuria, whereas a subset of patients exhibited clinical and histologic patterns of MPGN without TMA. We also report the first two patients with clinical and histologic HUS/MPGN overlap. DGKE-HUS typically manifested in the first year of life but was not exclusively limited to infancy, and viral triggers frequently preceded HUS episodes. We observed signs of complement activation in some patients with DGKE-HUS, but the role of complement activation remains unclear. Most patients developed a slowly progressive proteinuric nephropathy: 80% of patients did not have ESRD within 10 years of diagnosis. Many patients experienced HUS remission without specific treatment, and a few patients experienced HUS recurrence despite complete suppression of the complement pathway. Five patients received renal allografts, with no post-transplant recurrence reported. In conclusion, we did not observe a clear genotype-phenotype correlation in patients with DGKE nephropathy, suggesting additional factors mediating phenotypic heterogeneity. Furthermore, the benefits of anti-complement therapy are questionable but renal transplant may be a feasible option in the treatment of patients with this condition.
Collapse
Affiliation(s)
- Karolis Azukaitis
- Clinic of Pediatrics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania;
| | - Eva Simkova
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | | | | | - Kerstin Benz
- Departments of Pediatrics and Adolescent Medicine, and
| | - Kerstin Amann
- Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Bockmeyer
- Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Radha Gajjar
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kevin E Meyers
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hae Il Cheong
- Department of Paediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
| | - Bärbel Lange-Sperandio
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | | | - Véronique Frémeaux-Bacchi
- Department of Immunology, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Unité Mixte de Recherche en Santé 872, Centre de Recherche des Cordeliers, Paris, France
| | | | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Monika Miklaszewska
- Department of Pediatric Nephrology, Jagiellonian University Medical College, Cracow, Poland
| | - Dorottya Csuka
- Third Department of Internal Medicine, Research Laboratory and George Füst Complement Diagnostic Laboratory, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Third Department of Internal Medicine, Research Laboratory and George Füst Complement Diagnostic Laboratory, Semmelweis University, Budapest, Hungary
| | | | - Patrick Gipson
- Nephrology Division, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew G Sampson
- Nephrology Division, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Mathieu Lemaire
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Nephrology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; and
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Brocklebank V, Kavanagh D. Complement C5-inhibiting therapy for the thrombotic microangiopathies: accumulating evidence, but not a panacea. Clin Kidney J 2017; 10:600-624. [PMID: 28980670 PMCID: PMC5622895 DOI: 10.1093/ckj/sfx081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Thrombotic microangiopathy (TMA), characterized by organ injury occurring consequent to severe endothelial damage, can manifest in a diverse range of diseases. In complement-mediated atypical haemolytic uraemic syndrome (aHUS) a primary defect in complement, such as a mutation or autoantibody leading to over activation of the alternative pathway, predisposes to the development of disease, usually following exposure to an environmental trigger. The elucidation of the pathogenesis of aHUS resulted in the successful introduction of the complement inhibitor eculizumab into clinical practice. In other TMAs, although complement activation may be seen, its role in the pathogenesis remains to be confirmed by an interventional trial. Although many case reports in TMAs other than complement-mediated aHUS hint at efficacy, publication bias, concurrent therapies and in some cases the self-limiting nature of disease make broader interpretation difficult. In this article, we will review the evidence for the role of complement inhibition in complement-mediated aHUS and other TMAs.
Collapse
Affiliation(s)
- Vicky Brocklebank
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
|
28
|
Ars E, Torra R. Rare diseases, rare presentations: recognizing atypical inherited kidney disease phenotypes in the age of genomics. Clin Kidney J 2017; 10:586-593. [PMID: 28980669 PMCID: PMC5622904 DOI: 10.1093/ckj/sfx051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/03/2017] [Indexed: 12/11/2022] Open
Abstract
A significant percentage of adults (10%) and children (20%) on renal replacement therapy have an inherited kidney disease (IKD). The new genomic era, ushered in by the next generation sequencing techniques, has contributed to the identification of new genes and facilitated the genetic diagnosis of the highly heterogeneous IKDs. Consequently, it has also allowed the reclassification of diseases and has broadened the phenotypic spectrum of many classical IKDs. Various genetic, epigenetic and environmental factors may explain ‘atypical’ phenotypes. In this article, we examine different mechanisms that may contribute to phenotypic variability and also provide case examples that illustrate them. The aim of the article is to raise awareness, among nephrologists and geneticists, of rare presentations that IKDs may show, to facilitate diagnosis.
Collapse
Affiliation(s)
- Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| |
Collapse
|
29
|
Rafat C, Coppo P, Fakhouri F, Frémeaux-Bacchi V, Loirat C, Zuber J, Rondeau E. [Hemolytic and uremic syndrome and related thrombotic microangiopathies: Epidemiology, pathophysiology and clinics]. Rev Med Interne 2017; 38:817-824. [PMID: 28711159 DOI: 10.1016/j.revmed.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 01/25/2023]
Abstract
Thrombotic microangiopathies (TMA) represent an eclectic group of conditions, which share hemolytic anemia and thrombocytopenia as a common defining basis. Remarkable breakthroughs in the physiopathological setting have allowed for a thorough recomposition of the disparate syndromes, which form the constellation of TMA. In this view, clinicians now discriminate thrombocytopenic thrombotic purpura (TTP) defined by a severe deficiency in ADAMTS13, which is rarely associated with a severe renal involvement and the hemolytic and uremic syndrome (HUS) in which renal impairment is the most prominent clinical feature. HUS can result from toxins stemming from bacterial infections of the digestive tract, alternate complement pathway abnormalities, metabolic or coagulation disorders or, lastly, drug and various toxic compounds. The diverse forms of HUS reflect the insights gained in the understanding of the pathophysiological mechanisms underpinning TMA. In this first part, a broad overview of the epidemiological, physiopathological and clinical aspects of HUS and related TMA syndromes is presented.
Collapse
Affiliation(s)
- C Rafat
- Urgences néphrologiques et transplantation rénale, hôpital Tenon, Assistance publique des Hôpitaux de Paris, Paris, France; Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France.
| | - P Coppo
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service d'hématologie, hôpital Saint-Antoine, Assistance publique des Hôpitaux de Paris, Paris, France; Unité Inserm UMR 1170, Villejuif, France
| | - F Fakhouri
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service de néphrologie et d'immunologie, unité Inserm UMR 643, centre hospitalo-universitaire de Nantes, Nantes, France
| | - V Frémeaux-Bacchi
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Laboratoire d'immunologie, hôpital européen Georges-Pompidou, Assistance publique des Hôpitaux de Paris, Paris, France
| | - C Loirat
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service de néphrologie pédiatrique, hôpital Robert-Debré, Assistance publique des Hôpitaux de Paris, Paris, France
| | - J Zuber
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service de transplantation rénale, unité Inserm UMR_S1163, institut imagine, hôpital Necker, Assistance publique des Hôpitaux de Paris, Paris, France
| | - E Rondeau
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Urgences néphrologiques et transplantation rénale, unité Inserm UMR 1155, hôpital Tenon, Assistance publique des Hôpitaux de Paris, Paris, France
| |
Collapse
|
30
|
Alge JL, Wenderfer SE, Hicks J, Bekheirnia MR, Schady DA, Kain JS, Braun MC. Hemolytic uremic syndrome as the presenting manifestation of WT1 mutation and Denys-Drash syndrome: a case report. BMC Nephrol 2017; 18:243. [PMID: 28720077 PMCID: PMC5516385 DOI: 10.1186/s12882-017-0643-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Hemolytic uremic syndrome (HUS) can occur as a primary process due to mutations in complement genes or secondary to another underlying disease. HUS sometimes occurs in the setting of glomerular diseases, and it has been described in association with Denys-Drash syndrome (DDS), which is characterized by the triad of abnormal genitourinary development; a pathognomonic glomerulopathy, diffuse mesangial sclerosis; and the development of Wilms tumor. Case presentation We report the case of a 46, XX female infant who presented with HUS and biopsy-proven thrombotic microangiopathy. Next generation sequencing of genes with known mutations causative of atypical HUS found that she was homozygous for the Complement Factor H H3 haplotype and heterozygous for a variant of unknown significance in the DGKE gene. Whole exome sequencing identified a de novo heterozygous WT1 c.1384C > T; p.R394W mutation, which is classically associated with Denys-Drash syndrome (DDS). At the time of bilateral nephrectomy five months after her initial biopsy, she had diffuse mesangial sclerosis, typical of Denys-Drash syndrome, without evidence of thrombotic microangiopathy. Conclusion This unique case highlights HUS as a rare but important manifestation of WT1 mutation and provides new insight into the genetics underlying this association.
Collapse
Affiliation(s)
- Joseph L Alge
- Baylor College of Medicine, Department of Pediatrics, Pediatrician-Scientist Training and Development Program, Houston, TX, USA.
| | - Scott E Wenderfer
- Baylor College of Medicine, Department of Pediatrics, Renal Section, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - John Hicks
- Baylor College of Medicine, Department of Pathology and Immunology, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Mir Reza Bekheirnia
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, 77030, USA
| | - Deborah A Schady
- Baylor College of Medicine, Department of Pathology and Immunology, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | | | - Michael C Braun
- Baylor College of Medicine, Department of Pediatrics, Renal Section, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
31
|
Epand RM, So V, Jennings W, Khadka B, Gupta RS, Lemaire M. Diacylglycerol Kinase-ε: Properties and Biological Roles. Front Cell Dev Biol 2016; 4:112. [PMID: 27803897 PMCID: PMC5067486 DOI: 10.3389/fcell.2016.00112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022] Open
Abstract
In mammals there are at least 10 isoforms of diacylglycerol kinases (DGK). All catalyze the phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PA). Among DGK isoforms, DGKε has several unique features. It is the only DGK isoform with specificity for a particular species of DAG, i.e., 1-stearoyl-2-arachidonoyl glycerol. The smallest of all known DGK isoforms, DGKε, is also the only DGK devoid of a regulatory domain. DGKε is the only DGK isoform that has a hydrophobic segment that is predicted to form a transmembrane helix. As the only membrane-bound, constitutively active DGK isoform with exquisite specificity for particular molecular species of DAG, the functional overlap between DGKε and other DGKs is predicted to be minimal. DGKε exhibits specificity for DAG containing the same acyl chains as those found in the lipid intermediates of the phosphatidylinositol-cycle. It has also been shown that DGKε affects the acyl chain composition of phosphatidylinositol in whole cells. It is thus likely that DGKε is responsible for catalyzing one step in the phosphatidylinositol-cycle. Steps of this cycle take place in both the plasma membrane and the endoplasmic reticulum membrane. DGKε is likely present in both of these membranes. DGKε is the only DGK isoform that is associated with a human disease. Indeed, recessive loss-of-function mutations in DGKε cause atypical hemolytic-uremic syndrome (aHUS). This condition is characterized by thrombosis in the small vessels of the kidney. It causes acute renal insufficiency in infancy and most patients develop end-stage renal failure before adulthood. Disease pathophysiology is poorly understood and there is no therapy. There are also data suggesting that DGKε may play a role in epilepsy and Huntington disease. Thus, DGKε has many unique molecular and biochemical properties when compared to all other DGK isoforms. DGKε homologs also contain a number of conserved sequence features that are distinctive characteristics of either the rodents or specific groups of primate homologs. How cells, tissues and organisms harness DGKε's catalytic prowess remains unclear. The discovery of DGKε's role in causing aHUS will hopefully boost efforts to unravel the mechanisms by which DGKε dysfunction causes disease.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Vincent So
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences CentreHamilton, ON, Canada; Nephrology Division and Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada
| | - William Jennings
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Mathieu Lemaire
- Nephrology Division and Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada; Department of Biochemistry, University of TorontoToronto, ON, Canada; Institute of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
32
|
Epand RM, So V, Jennings W, Khadka B, Gupta RS, Lemaire M. Diacylglycerol Kinase-ε: Properties and Biological Roles. Front Cell Dev Biol 2016. [PMID: 27803897 DOI: 10.3389/fcell.2016.00112)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In mammals there are at least 10 isoforms of diacylglycerol kinases (DGK). All catalyze the phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PA). Among DGK isoforms, DGKε has several unique features. It is the only DGK isoform with specificity for a particular species of DAG, i.e., 1-stearoyl-2-arachidonoyl glycerol. The smallest of all known DGK isoforms, DGKε, is also the only DGK devoid of a regulatory domain. DGKε is the only DGK isoform that has a hydrophobic segment that is predicted to form a transmembrane helix. As the only membrane-bound, constitutively active DGK isoform with exquisite specificity for particular molecular species of DAG, the functional overlap between DGKε and other DGKs is predicted to be minimal. DGKε exhibits specificity for DAG containing the same acyl chains as those found in the lipid intermediates of the phosphatidylinositol-cycle. It has also been shown that DGKε affects the acyl chain composition of phosphatidylinositol in whole cells. It is thus likely that DGKε is responsible for catalyzing one step in the phosphatidylinositol-cycle. Steps of this cycle take place in both the plasma membrane and the endoplasmic reticulum membrane. DGKε is likely present in both of these membranes. DGKε is the only DGK isoform that is associated with a human disease. Indeed, recessive loss-of-function mutations in DGKε cause atypical hemolytic-uremic syndrome (aHUS). This condition is characterized by thrombosis in the small vessels of the kidney. It causes acute renal insufficiency in infancy and most patients develop end-stage renal failure before adulthood. Disease pathophysiology is poorly understood and there is no therapy. There are also data suggesting that DGKε may play a role in epilepsy and Huntington disease. Thus, DGKε has many unique molecular and biochemical properties when compared to all other DGK isoforms. DGKε homologs also contain a number of conserved sequence features that are distinctive characteristics of either the rodents or specific groups of primate homologs. How cells, tissues and organisms harness DGKε's catalytic prowess remains unclear. The discovery of DGKε's role in causing aHUS will hopefully boost efforts to unravel the mechanisms by which DGKε dysfunction causes disease.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Vincent So
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences CentreHamilton, ON, Canada; Nephrology Division and Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada
| | - William Jennings
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre Hamilton, ON, Canada
| | - Mathieu Lemaire
- Nephrology Division and Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada; Department of Biochemistry, University of TorontoToronto, ON, Canada; Institute of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
33
|
Arnold DM, Patriquin CJ, Nazy I. Thrombotic microangiopathies: a general approach to diagnosis and management. CMAJ 2016; 189:E153-E159. [PMID: 27754896 DOI: 10.1503/cmaj.160142] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Donald M Arnold
- Michael G. DeGroote School of Medicine, Department of Medicine (Arnold, Patriquin, Nazy), McMaster University; Canadian Blood Services (Arnold), Hamilton, Ont.
| | - Christopher J Patriquin
- Michael G. DeGroote School of Medicine, Department of Medicine (Arnold, Patriquin, Nazy), McMaster University; Canadian Blood Services (Arnold), Hamilton, Ont
| | - Ishac Nazy
- Michael G. DeGroote School of Medicine, Department of Medicine (Arnold, Patriquin, Nazy), McMaster University; Canadian Blood Services (Arnold), Hamilton, Ont
| |
Collapse
|
34
|
Cheong HI, Jo SK, Yoon SS, Cho H, Kim JS, Kim YO, Koo JR, Park Y, Park YS, Shin JI, Yoo KH, Oh D. Clinical Practice Guidelines for the Management of Atypical Hemolytic Uremic Syndrome in Korea. J Korean Med Sci 2016; 31:1516-28. [PMID: 27550478 PMCID: PMC4999392 DOI: 10.3346/jkms.2016.31.10.1516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/10/2016] [Indexed: 12/19/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare syndrome characterized by micro-angiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The major pathogenesis of aHUS involves dysregulation of the complement system. Eculizumab, which blocks complement C5 activation, has recently been proven as an effective agent. Delayed diagnosis and treatment of aHUS can cause death or end-stage renal disease. Therefore, a diagnosis that differentiates aHUS from other forms of thrombotic microangiopathy is very important for appropriate management. These guidelines aim to offer recommendations for the diagnosis and treatment of patients with aHUS in Korea. The guidelines have largely been adopted from the current guidelines due to the lack of evidence concerning the Korean population.
Collapse
Affiliation(s)
- Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
| | - Sang Kyung Jo
- Division of Nephrology, Department of Internal Medicine, Korea University School of Medicine, Seoul, Korea
| | - Sung Soo Yoon
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Young Ok Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Ja Ryong Koo
- Division of Nephrology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Korea
| | - Yong Park
- Division of Hematology, Department of Internal Medicine, Korea University School of Medicine, Seoul, Korea
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Il Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Seoul, Korea
| | - Doyeun Oh
- Department of Internal Medicine, School of Medicine, CHA University, Seongnam, Korea.
| |
Collapse
|
35
|
Du C, Pusey BN, Adams CJ, Lau CC, Bone WP, Gahl WA, Markello TC, Adams DR. Explorations to improve the completeness of exome sequencing. BMC Med Genomics 2016; 9:56. [PMID: 27568008 PMCID: PMC5002202 DOI: 10.1186/s12920-016-0216-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/05/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Exome sequencing has advanced to clinical practice and proven useful for obtaining molecular diagnoses in rare diseases. In approximately 75 % of cases, however, a clinical exome study does not produce a definitive molecular diagnosis. These residual cases comprise a new diagnostic challenge for the genetics community. The Undiagnosed Diseases Program of the National Institutes of Health routinely utilizes exome sequencing for refractory clinical cases. Our preliminary data suggest that disease-causing variants may be missed by current standard-of-care clinical exome analysis. Such false negatives reflect limitations in experimental design, technical performance, and data analysis. RESULTS We present examples from our datasets to quantify the analytical performance associated with current practices, and explore strategies to improve the completeness of data analysis. In particular, we focus on patient ascertainment, exome capture, inclusion of intronic variants, and evaluation of medium-sized structural variants. CONCLUSIONS The strategies we present may recover previously-missed, disease causing variants in second-pass exome analysis. Understanding the limitations of the current clinical exome search space provides a rational basis to improve methods for disease variant detection using genome-scale sequencing techniques.
Collapse
Affiliation(s)
- Chen Du
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Barbara N Pusey
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Christopher J Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - C Christopher Lau
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - William P Bone
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
36
|
The expanding phenotypic spectra of kidney diseases: insights from genetic studies. Nat Rev Nephrol 2016; 12:472-83. [PMID: 27374918 DOI: 10.1038/nrneph.2016.87] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) has led to the identification of previously unrecognized phenotypes associated with classic kidney disease genes. In addition to improving diagnostics for genetically heterogeneous diseases and enabling a faster rate of gene discovery, NGS has enabled an expansion and redefinition of nephrogenetic disease categories. Findings from these studies raise the question of whether disease diagnoses should be made on clinical grounds, on genetic evidence or a combination thereof. Here, we discuss the major kidney disease-associated genes and gene categories for which NGS has expanded the phenotypic spectrum. For example, COL4A3-5 genes, which are classically associated with Alport syndrome, are now understood to also be involved in the aetiology of focal segmental glomerulosclerosis. DGKE, which is associated with nephrotic syndrome, is also mutated in patients with atypical haemolytic uraemic syndrome. We examine how a shared genetic background between diverse clinical phenotypes can provide insight into the function of genes and novel links with essential pathophysiological mechanisms. In addition, we consider genetic and epigenetic factors that contribute to the observed phenotypic heterogeneity of kidney diseases and discuss the challenges in the interpretation of genetic data. Finally, we discuss the implications of the expanding phenotypic spectra associated with kidney disease genes for clinical practice, genetic counselling and personalized care, and present our recommendations for the use of NGS-based tests in routine nephrology practice.
Collapse
|
37
|
Berger BE. The Alternative Pathway of Complement and the Evolving Clinical-Pathophysiological Spectrum of Atypical Hemolytic Uremic Syndrome. Am J Med Sci 2016; 352:177-90. [PMID: 27524217 DOI: 10.1016/j.amjms.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 01/31/2023]
Abstract
Complement-mediated atypical hemolytic uremic syndrome (aHUS) comprises approximately 90% of cases of aHUS, and results from dysregulation of endothelial-anchored complement activation with resultant endothelial damage. The discovery of biomarker ADAMTS13 has enabled a more accurate diagnosis of thrombotic thrombocytopenic purpura (TTP) and an appreciation of overlapping clinical features of TTP and aHUS. Given our present understanding of the pathogenic pathways involved in aHUS, it is unlikely that a specific test will be developed. Rather the use of biomarker data, complement functional analyses, genomic analyses and clinical presentation will be required to diagnose aHUS. This approach would serve to clarify whether a thrombotic microangiopathy present in a complement-amplifying condition arises from the unmasking of a genetically driven aHUS versus a time-limited complement storm-mediated aHUS due to direct endothelial damage in which no genetic predisposition is present. Although both scenarios result in the phenotypic expression of aHUS and involve the alternate pathway of complement activation, long-term management would differ.
Collapse
Affiliation(s)
- Bruce E Berger
- School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
38
|
|
39
|
Anastaze Stelle K, Gonzalez E, Wilhelm-Bals A, Michelet PR, Korff CM, Parvex P. Successful treatment of neonatal atypical hemolytic uremic syndrome with C5 monoclonal antibody. Arch Pediatr 2016; 23:283-6. [PMID: 26775886 DOI: 10.1016/j.arcped.2015.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/12/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022]
Abstract
Hemolytic uremic syndrome (HUS) is rare in neonates. We report the case of atypical HUS (aHUS) revealed by neonatal seizures. This 18-day-old baby presented with repeated clonus of the left arm and eye deviation. Four days earlier, she had suffered from gastroenteritis (non-bloody diarrhea and vomiting without fever). Her work-up revealed hemolytic anemia (120 g/L), thrombocytopenia (78 g/L), and impaired renal function (serum creatinine=102 μmol/L) compatible with the diagnosis of HUS. Levels of C3 and C4 in the serum were normal. Shiga-toxin in the stools as well as the IgM and IgG against Escherichia coli O157 were negative. ADAMTS 13 deficiency, inborn error of the cobalamin pathway, deficiency in the H and I protein, and factor H antibodies were excluded and we concluded in aHUS. Genetic screening of the alternative complement pathway was normal. Cerebral magnetic resonance imaging performed after 24 h and 1 week showed restricted diffusion areas with periventricular white matter ischemic-hemorrhagic lesions. Extensive infectious work-up was negative. Upon admission the baby received antiepileptic drugs and 2 days later C5 monoclonal antibody (eculizumab) and two transfusions of packed erythrocytes because the hemoglobin value had dropped to 55 g/L. The platelet value was minimal at 30 g/L. Renal function normalized in 48 h without dialysis and neurological examination was normal in 1 week. She was discharged from the hospital at day 10 with eculizumab perfusions (300 mg) planned every 3 weeks. After 24 months, she was relapse-free and seizure-free, with a normal neurological examination.
Collapse
Affiliation(s)
- K Anastaze Stelle
- Pediatric Nephrology Unit, Department of Pediatrics, University Hospital of Geneva, rue Willy Donzé 6, 1211 Geneva, Switzerland.
| | - E Gonzalez
- Pediatric Nephrology Unit, Department of Pediatrics, University Hospital of Geneva, rue Willy Donzé 6, 1211 Geneva, Switzerland
| | - A Wilhelm-Bals
- Pediatric Nephrology Unit, Department of Pediatrics, University Hospital of Geneva, rue Willy Donzé 6, 1211 Geneva, Switzerland
| | - P-R Michelet
- Pediatric Nephrology Unit, Department of Pediatrics, University Hospital of Geneva, rue Willy Donzé 6, 1211 Geneva, Switzerland
| | - C M Korff
- Pediatric Neurology, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - P Parvex
- Pediatric Nephrology Unit, Department of Pediatrics, University Hospital of Geneva, rue Willy Donzé 6, 1211 Geneva, Switzerland
| |
Collapse
|
40
|
|