1
|
Akiyama T, Kubota T, Murayama K, Fujiwara M, Ohata Y, Ozono K, Tajika M, Ichimoto K, Sugiyama Y, Akiyama M, Shibata T, Tsuchiya H. Vitamin B6 Status in Hypophosphatasia: Association With Clinical Severity, Diagnostic Utility, and Effects on Vitamin B6 Metabolism by Supplementation and Enzyme Replacement Therapy. J Inherit Metab Dis 2025; 48:e70036. [PMID: 40387451 DOI: 10.1002/jimd.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
This study reports the concentrations of major vitamin B6 (VB6) vitamers (pyridoxal 5'-phospate [PLP], pyridoxal [PL], and 4-pyridoxic acid [PA]) in over 100 hypophosphatasia (HPP) cases to explore clues for clinical severity, to improve diagnostic sensitivity, and to examine VB6 changes by supplementation and enzyme replacement therapy. Serum samples were collected from HPP and non-HPP patients. When available, cerebrospinal fluid (CSF) samples were also analyzed to determine PLP, PL, and PA concentrations. Serum PLP concentrations, PLP-to-PL ratios, and PLP-to-PA ratios were higher in untreated HPP patients compared to non-HPP patients and reflected clinical severity. Perinatal severe HPP showed lower PL concentrations than perinatal benign HPP and the lowest PA concentrations among all clinical forms. Combining PLP-to-PL ratios with PLP concentrations improved diagnostic sensitivity. Under VB6 therapy, PLP concentrations and PLP-to-PL ratios remained higher in HPP patients than in non-HPP patients. VB6 changes produced by ERT were most clearly reflected by the reduction of PLP-to-PL ratios. CSF PLP concentrations and PLP-to-PL ratios were higher in untreated HPP patients than in non-HPP patients, while CSF PL concentrations were higher in patients on ERT compared to those not on ERT. Co-evaluation of serum PLP, PL, and PA concentrations may help understand clinical severity, can improve diagnostic sensitivity, and can demonstrate the effect of ERT on VB6 metabolism more effectively than the assay of PLP concentrations alone. Altered VB6 status in the CSF suggests that tissue-nonspecific alkaline phosphatase plays a key role in VB6 transport from peripheral blood to the brain via the blood-CSF barrier.
Collapse
Affiliation(s)
- Tomoyuki Akiyama
- Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Center for Promoting Treatment of Intractable Diseases, ISEIKAI International General Hospital, Osaka, Japan
| | - Makiko Tajika
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Keiko Ichimoto
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Yohei Sugiyama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mari Akiyama
- Department of Pediatric Neurology, Okayama University Hospital, Okayama, Japan
| | - Takashi Shibata
- Department of Pediatric Neurology, Okayama University Hospital, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Pediatric Neurology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
2
|
He L, Fan Y, Hu Y, Tian C, Tian Y, Zhang J, Ren Y, Tan J. The potential hazards of high doses of vitamin B6 in treating nausea and vomiting in pregnancy: A systematic review. Int J Gynaecol Obstet 2025; 169:38-50. [PMID: 39569767 DOI: 10.1002/ijgo.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Vitamin B6 is frequently utilized as a therapeutic agent for nausea and vomiting of pregnancy (NVP). Research indicates that excessive intake of vitamin B6 can have implications on neurological function, underscoring the importance of cautious consideration when administering vitamin B6 treatment during early pregnancy. This systematic review investigates the effects of high doses of vitamin B6 on pregnant women experiencing NVP. We searched the PubMed® MEDLINE® database for articles using the following terms: "pregnancy" or "nausea and vomiting during pregnancy" and "vitamin B6." Women with nausea and vomiting symptoms during pregnancy use more than the tolerable amount of vitamin B6. A total of 136 articles were identified from the PubMed® MEDLINE® database. The etiology and treatment of NVP are briefly outlined, followed by a summary and analysis of 19 relevant literature sources. Among these sources, 12 reports detailed the adverse effects of excessive vitamin B6 intake in women; 164/1226 individuals experienced neurological symptoms such as burning, tingling, paresthesia, ataxia, or perioral numbness. Additionally, out of 245 women, four experienced miscarriages and one had an intrauterine demise. The overconsumption of vitamin B6 has the potential to impact nerve function, particularly during the critical first trimester of embryonic development. It might result in adverse outcomes such as miscarriage, intrauterine fetal demise, and congenital abnormalities.
Collapse
Affiliation(s)
- Ling He
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Yulin Fan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Yuanmei Hu
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Chunhua Tian
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Ying Tian
- Laboratory of Morphology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yanping Ren
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Zagubnaya OA, Nartsissov YR. MOLECULAR MECHANISMS UNDERLYING THERAPEUTIC ACTION OF VITAMIN B6. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-500-514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aim of the study was to analyze the molecular mechanisms that determine the possibility of using vitamin B6 in clinical practice for the correction of various pathological conditions.Materials and methods. Information retrieval (Scopus, PubMed) and library (eLibrary) databases were used as research tools. In some cases, the ResearchGate application was used for a semantic search. The analysis and generalization of the scientific literature on the topic of research, covering the period from 1989 to the present, has been carried out in the work.Results. It has been shown that all chemical forms of vitamin B6 are able to penetrate the membranes of most cells by free diffusion, while forming phosphorylated forms inside. Pyridoxal phosphate is a biologically important metabolite that is directly involved as a cofactor in a variety of intracellular reactions. Requirements for this cofactor depend on the age, sex and condition of the patient. Pregnancy and lactation play a special role in the consumption of vitamin B6. In most cases, a balanced diet will provide an acceptable level of this vitamin. At the same time, its deficiency leads to the development of a number of pathological conditions, including neurodegenerative diseases, inflammations and diabetes. Negative manifestations from the central nervous system are also possible with an excessive consumption of B6.Conclusion. Replenishment of the vitamin B6 level in case of its identified deficiency is a necessary condition for the successful treatment of the central nervous system diseases, diabetes and correction of patients’ immune status. At the same time, it is necessary to observe a balanced intake of this cofactor in order to avoid negative effects on metabolism in case of its excess.
Collapse
Affiliation(s)
- O. A. Zagubnaya
- Institute of Cytochemistry and Molecular Pharmacology;
Biomedical Research Group, BiDiPharma GmbH
| | - Y. R. Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology;
Biomedical Research Group, BiDiPharma GmbH
| |
Collapse
|
4
|
Koerich S, Parreira GM, de Almeida DL, Vieira RP, de Oliveira ACP. Receptors for Advanced Glycation End Products (RAGE): Promising Targets Aiming at the Treatment of Neurodegenerative Conditions. Curr Neuropharmacol 2023; 21:219-234. [PMID: 36154605 PMCID: PMC10190138 DOI: 10.2174/1570159x20666220922153903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Advanced glycation end products (AGEs) are compounds formed after the non-enzymatic addition of reducing sugars to lipids, proteins, and nucleic acids. They are associated with the development of various clinical complications observed in diabetes and cardiovascular diseases, such as retinopathy, nephropathy, diabetic neuropathy, and others. In addition, compelling evidence indicates that these molecules participate in the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Multiple cellular and molecular alterations triggered by AGEs that could alter homeostasis have been identified. One of the main targets for AGE signaling is the receptor for advanced glycation end-products (RAGE). Importantly, this receptor is the target of not only AGEs, but also amyloid β peptides, HMGB1 (high-mobility group box-1), members of the S100 protein family, and glycosaminoglycans. The activation of this receptor induces intracellular signaling cascades that are involved in pathological processes and cell death. Therefore, RAGE represents a key target for pharmacological interventions in neurodegenerative diseases. This review will discuss the various effects of AGEs and RAGE activation in the pathophysiology of neurodegenerative diseases, as well as the currently available pharmacological tools and promising drug candidates.
Collapse
Affiliation(s)
- Suélyn Koerich
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gabriela Machado Parreira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
5
|
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183:18-29. [PMID: 33421502 PMCID: PMC11273822 DOI: 10.1016/j.biochi.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammed Al Mughram
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Akiyama T, Hyodo Y, Hasegawa K, Oboshi T, Imai K, Ishihara N, Dowa Y, Koike T, Yamamoto T, Shibasaki J, Shimbo H, Fukuyama T, Takano K, Shiraku H, Takeshita S, Okanishi T, Baba S, Kubota M, Hamano SI, Kobayashi K. Pyridoxal in the Cerebrospinal Fluid May Be a Better Indicator of Vitamin B6-dependent Epilepsy Than Pyridoxal 5'-Phosphate. Pediatr Neurol 2020; 113:33-41. [PMID: 32980745 DOI: 10.1016/j.pediatrneurol.2020.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND We aimed to demonstrate the biochemical characteristics of vitamin B6-dependent epilepsy, with a particular focus on pyridoxal 5'-phosphate and pyridoxal in the cerebrospinal fluid. METHODS Using our laboratory database, we identified patients with vitamin B6-dependent epilepsy and extracted their data on the concentrations of pyridoxal 5'-phosphate, pyridoxal, pipecolic acid, α-aminoadipic semialdehyde, and monoamine neurotransmitters. We compared the biochemical characteristics of these patients with those of other epilepsy patients with low pyridoxal 5'-phosphate concentrations. RESULTS We identified seven patients with pyridoxine-dependent epilepsy caused by an ALDH7A1 gene abnormality, two patients with pyridoxal 5'-phosphate homeostasis protein deficiency, and 28 patients with other epilepsies with low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. Cerebrospinal fluid pyridoxal and pyridoxal 5'-phosphate concentrations were low in patients with vitamin B6-dependent epilepsy but cerebrospinal fluid pyridoxal concentrations were not reduced in most patients with other epilepsies with low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. Increase in 3-O-methyldopa and 5-hydroxytryptophan was demonstrated in some patients with vitamin B6-dependent epilepsy, suggestive of pyridoxal 5'-phosphate deficiency in the brain. CONCLUSIONS Low cerebrospinal fluid pyridoxal concentrations may be a better indicator of pyridoxal 5'-phosphate deficiency in the brain in vitamin B6-dependent epilepsy than low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. This finding is especially helpful in individuals with suspected pyridoxal 5'-phosphate homeostasis protein deficiency, which does not have known biomarkers.
Collapse
Affiliation(s)
- Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yuki Hyodo
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Taikan Oboshi
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Osaka, Japan; Department of Pediatrics, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Katsumi Imai
- Department of Pediatrics, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Japan
| | - Yuri Dowa
- Department of Neurology, Gunma Children's Medical Center, Gunma, Japan
| | - Takayoshi Koike
- Department of Pediatrics, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Toshiyuki Yamamoto
- Institute of Clinical Genomics, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Shibasaki
- Department of Neonatology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Hiroko Shimbo
- Clinical Institute, Kanagawa Children's Medical Center, Kanagawa, Japan
| | | | - Kyoko Takano
- Center for Medical Genetics, Shinshu University Hospital, Nagano, Japan
| | - Hiroshi Shiraku
- Department of Pediatrics, JA Toride Medical Center, Ibaraki, Japan
| | - Saoko Takeshita
- Department of Pediatrics, Yokohama City University Medical Center, Kanagawa, Japan
| | - Tohru Okanishi
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Shimpei Baba
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Johnstone DL, Al-Shekaili HH, Tarailo-Graovac M, Wolf NI, Ivy AS, Demarest S, Roussel Y, Ciapaite J, van Roermund CWT, Kernohan KD, Kosuta C, Ban K, Ito Y, McBride S, Al-Thihli K, Abdelrahim RA, Koul R, Al Futaisi A, Haaxma CA, Olson H, Sigurdardottir LY, Arnold GL, Gerkes EH, Boon M, Heiner-Fokkema MR, Noble S, Bosma M, Jans J, Koolen DA, Kamsteeg EJ, Drögemöller B, Ross CJ, Majewski J, Cho MT, Begtrup A, Wasserman WW, Bui T, Brimble E, Violante S, Houten SM, Wevers RA, van Faassen M, Kema IP, Lepage N, Lines MA, Dyment DA, Wanders RJA, Verhoeven-Duif N, Ekker M, Boycott KM, Friedman JM, Pena IA, van Karnebeek CDM. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain 2020; 142:542-559. [PMID: 30668673 DOI: 10.1093/brain/awy346] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.
Collapse
Affiliation(s)
- Devon L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hilal H Al-Shekaili
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia.,Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam University Medical Centres, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Autumn S Ivy
- Division of Child Neurology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, CO, USA
| | - Yann Roussel
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jolita Ciapaite
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Carlo W T van Roermund
- Department of Pediatrics and Clinical Chemistry, Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Ceres Kosuta
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Ban
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Skye McBride
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Khalid Al-Thihli
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Rana A Abdelrahim
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Roshan Koul
- Paediatric Neurology Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amna Al Futaisi
- Paediatric Neurology Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute of Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Heather Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, USA
| | - Laufey Yr Sigurdardottir
- Department of Neurology, University of Central Florida, Nemours Children's Hospital, Orlando, FL, USA
| | - Georgianne L Arnold
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Boon
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Noble
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Marjolein Bosma
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Judith Jans
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Britt Drögemöller
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Ross
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | | | - Wyeth W Wasserman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tuan Bui
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Elise Brimble
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, CA, USA
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron A Wevers
- United for Metabolic Diseases, The Netherlands.,Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nathalie Lepage
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Matthew A Lines
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Metabolics and Newborn Screening, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Ronald J A Wanders
- Department of Pediatrics and Clinical Chemistry, Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Nanda Verhoeven-Duif
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Clara D M van Karnebeek
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,United for Metabolic Diseases, The Netherlands.,Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Centre for Molecular Medicine and Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Akiyama T, Kubota T, Ozono K, Michigami T, Kobayashi D, Takeyari S, Sugiyama Y, Noda M, Harada D, Namba N, Suzuki A, Utoyama M, Kitanaka S, Uematsu M, Mitani Y, Matsunami K, Takishima S, Ogawa E, Kobayashi K. Pyridoxal 5'-phosphate and related metabolites in hypophosphatasia: Effects of enzyme replacement therapy. Mol Genet Metab 2018; 125:174-180. [PMID: 30049651 DOI: 10.1016/j.ymgme.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the utility of serum pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) as a diagnostic marker of hypophosphatasia (HPP) and an indicator of the effect of, and patient compliance with, enzyme replacement therapy (ERT), we measured PLP, PL, and PA concentrations in serum samples from HPP patients with and without ERT. METHODS Blood samples were collected from HPP patients and serum was frozen as soon as possible (mostly within one hour). PLP, PL, and PA concentrations were analyzed using high-performance liquid chromatography with fluorescence detection after pre-column derivatization by semicarbazide. We investigated which metabolites are associated with clinical phenotypes and how these metabolites change with ERT. RESULTS Serum samples from 20 HPP patients were analyzed. The PLP-to-PL ratio and PLP concentration were elevated in all HPP patients. They correlated negatively with serum alkaline phosphatase (ALP) activity and showed higher values in more severe phenotypes (perinatal severe and infantile HPP) compared with other phenotypes. PL concentration was reduced only in perinatal severe HPP. ERT reduced the PLP-to-PL ratio to mildly reduced or low-normal levels and the PLP concentration was reduced to normal or mildly elevated levels. Urine phosphoethanolamine (PEA) concentration did not return to normal levels with ERT in most patients. CONCLUSIONS The serum PLP-to-PL ratio is a better indicator of the effect of ERT for HPP than serum PLP and urine PEA concentrations, and a PLP-to-PL ratio of <4.0 is a good indicator of the effect of, and patient compliance with, ERT.
Collapse
Affiliation(s)
- Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Daisuke Kobayashi
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Sugiyama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Masahiro Noda
- Department of Pediatrics, Showa General Hospital, Tokyo, Japan
| | - Daisuke Harada
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Osaka, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Osaka, Japan
| | - Atsushi Suzuki
- Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Maiko Utoyama
- Department of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachiko Kitanaka
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yusuke Mitani
- Department of Pediatrics, Kanazawa University Hospital, Ishikawa, Japan
| | - Kunihiro Matsunami
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu, Japan
| | | | - Erika Ogawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Wetzels S, Wouters K, Miyata T, Scheijen JLJM, Hendriks JJA, Schalkwijk CG, Vanmierlo T. Advanced Glycation Endproducts Are Increased in the Animal Model of Multiple Sclerosis but Cannot Be Reduced by Pyridoxamine Treatment or Glyoxalase 1 Overexpression. Int J Mol Sci 2018; 19:ijms19051311. [PMID: 29702605 PMCID: PMC5983766 DOI: 10.3390/ijms19051311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS). The immune response in MS patients leads to the infiltration of immune cells in the CNS and their subsequent activation. Immune cell activation induces a switch towards glycolysis. During glycolysis, the dicarbonyl product methylglyoxal (MGO) is produced. MGO is a glycating agent that can rapidly form advanced glycation endproducts (AGEs). In turn, AGEs are able to induce inflammatory responses. The glyoxalase system is the endogenous defense system of the body to reduce the burden of MGO thereby reducing AGE formation. This system consists of glyoxalase-1 and glyoxalase-2 which are able to detoxify MGO to D-lactate. We investigated whether AGE levels are induced in experimental autoimmune encephalitis (EAE), an inflammatory animal model of MS. Twenty seven days post EAE induction, MGO and AGE (Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), 5-hydro-5-methylimidazolone (MG-H1)) levels were significantly increased in the spinal cord of mice subjected to EAE. Yet, pyridoxamine treatment and glyoxalase-1 overexpression were unable to counteract AGE production during EAE and did not influence the clinical course of EAE. In conclusion, AGEs levels increase during EAE in the spinal cord, but AGE-modifying treatments do not inhibit EAE-induced AGE production and do not affect disease progression.
Collapse
Affiliation(s)
- Suzan Wetzels
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42 3500 Hasselt, Belgium.
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Kristiaan Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, 980-8577 Sendai, Japan.
| | - Jean L J M Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Jerome J A Hendriks
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42 3500 Hasselt, Belgium.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42 3500 Hasselt, Belgium.
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
10
|
Infantile hypophosphatasia combined with vitamin B6-responsive seizures and reticular formation lesions on magnetic resonance imaging: A case report. Brain Dev 2018; 40:140-144. [PMID: 28802630 DOI: 10.1016/j.braindev.2017.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hypophosphatasia (HPP) is a rare genetic disorder characterized by rachitic bone manifestations and a low serum alkaline phosphatase (ALP) level. It is caused by mutations in the tissue non-specific alkaline phosphatase (TNSALP) gene, which encodes the tissue non-specific isozyme of ALP. HPP patients exhibit various presentations depending on their age at onset, such as infantile HPP combined with vitamin B6-responsive seizures. CASE PRESENTATION A newborn with infantile HPP presented with tonic convulsions from day 5 after birth and received intravenous vitamin B6 (10mg/kg/day pyridoxal phosphate). Eleven days later, frequent apneic episodes occurred, and head magnetic resonance imaging (MRI) showed bilateral reticular formation lesions in the brain stem, including the medulla oblongata. After the pyridoxal phosphate dose was increased (to 40mg/kg/day), the patient's seizures and apnea resolved, and her MRI findings also improved. Genetic testing revealed that she was homozygous for the 1559delT mutation of TNSALP. CONCLUSIONS High-dose pyridoxal phosphate is a useful treatment for HPP-induced seizures and might improve reticular formation lesions.
Collapse
|
11
|
Ramos RJ, Pras-Raves ML, Gerrits J, van der Ham M, Willemsen M, Prinsen H, Burgering B, Jans JJ, Verhoeven-Duif NM. Vitamin B6 is essential for serine de novo biosynthesis. J Inherit Metab Dis 2017; 40:883-891. [PMID: 28801717 DOI: 10.1007/s10545-017-0061-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.
Collapse
Affiliation(s)
- Rúben J Ramos
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Mia L Pras-Raves
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Marcel Willemsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Hubertus Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Boudewijn Burgering
- Department of Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Judith J Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
12
|
Akiyama T, Hayashi Y, Hanaoka Y, Shibata T, Akiyama M, Tsuchiya H, Yamaguchi T, Kobayashi K. Pyridoxal 5'-phosphate, pyridoxal, and 4-pyridoxic acid in the paired serum and cerebrospinal fluid of children. Clin Chim Acta 2017; 472:118-122. [PMID: 28778380 DOI: 10.1016/j.cca.2017.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in paired serum and cerebrospinal fluid (CSF) samples from children and investigated the effect of age on the concentrations and CSF-to-serum ratios of these vitamers. METHODS Serum and CSF samples prospectively collected from 49 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age on these vitamers, the PLP-to-PL ratio, CSF-to-serum PLP ratio, and CSF-to-serum PL ratio were evaluated using correlation analysis. RESULTS The PLP, PL, and PA concentrations in the serum and CSF were higher at younger ages, except for CSF PA concentrations that were mostly below the limit of detection (<1.2nmol/l). The PLP-to-PL ratios in the serum and CSF correlated positively with age. The CSF-to-serum PLP ratio and CSF-to-serum PL ratio were independent of age. CONCLUSIONS Age-related changes in PLP, PL, and PA in serum and in CSF from pediatric patients and CSF-to-serum ratios of PLP and PL demonstrated in this study will provide valuable information for evaluating PLP supply to the central nervous system from the peripheral blood.
Collapse
Affiliation(s)
- Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yumiko Hayashi
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Yoshiyuki Hanaoka
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Mari Akiyama
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tokito Yamaguchi
- Department of Pediatrics, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Baghel MS, Thakur MK. Differential proteome profiling in the hippocampus of amnesic mice. Hippocampus 2017; 27:845-859. [PMID: 28449397 DOI: 10.1002/hipo.22735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022]
Abstract
Amnesia or memory loss is associated with brain aging and several neurodegenerative pathologies including Alzheimer's disease (AD). This can be induced by a cholinergic antagonist scopolamine but the underlying molecular mechanism is poorly understood. This study of proteome profiling in the hippocampus could provide conceptual insights into the molecular mechanisms involved in amnesia. To reveal this, mice were administered scopolamine to induce amnesia and memory impairment was validated by novel object recognition test. Using two-dimensional gel electrophoresis coupled with MALDI-MS/MS, we have analyzed the hippocampal proteome and identified 18 proteins which were differentially expressed. Out of these proteins, 11 were downregulated and 7 were upregulated in scopolamine-treated mice as compared to control. In silico analysis showed that the majority of identified proteins are involved in metabolism, catalytic activity, and cytoskeleton architectural functions. STRING interaction network analysis revealed that majority of identified proteins exhibit common association with Actg1 cytoskeleton and Vdac1 energy transporter protein. Furthermore, interaction map analysis showed that Fascin1 and Coronin 1b individually interact with Actg1 and regulate the actin filament dynamics. Vdac1 was significantly downregulated in amnesic mice and showed interaction with other proteins in interaction network. Therefore, we silenced Vdac1 in the hippocampus of normal young mice and found similar impairment in recognition memory of Vdac1 silenced and scopolamine-treated mice. Thus, these findings suggest that Vdac1-mediated disruption of energy metabolism and cytoskeleton architecture might be involved in scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Meghraj Singh Baghel
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
14
|
Akiyama T, Akiyama M, Hayashi Y, Shibata T, Hanaoka Y, Toda S, Imai K, Hamano SI, Okanishi T, Yoshinaga H, Kobayashi K. Measurement of pyridoxal 5′-phosphate, pyridoxal, and 4-pyridoxic acid in the cerebrospinal fluid of children. Clin Chim Acta 2017; 466:1-5. [DOI: 10.1016/j.cca.2016.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
15
|
Sechi G, Sechi E, Fois C, Kumar N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr Rev 2016; 74:281-300. [PMID: 27034475 DOI: 10.1093/nutrit/nuv107] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
B vitamin deficiency is a leading cause of neurological impairment and disability throughout the world. Multiple B vitamin deficiencies often coexist, and thus an understanding of the complex relationships between the different biochemical pathways regulated in the brain by these vitamins may facilitate prompter diagnosis and improved treatment. Particular populations at risk for multiple B vitamin deficiencies include the elderly, people with alcoholism, patients with heart failure, patients with recent obesity surgery, and vegetarians/vegans. Recently, new clinical settings that predispose individuals to B vitamin deficiency have been highlighted. Moreover, other data indicate a possible pathogenetic role of subclinical chronic B vitamin deficiency in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In light of these findings, this review examines the clinical manifestations of B vitamin deficiency and the effect of B vitamin deficiency on the adult nervous system. The interrelationships of multiple B vitamin deficiencies are emphasized, along with the clinical phenotypes related to B vitamin deficiencies. Recent advances in the clinical determinants and diagnostic clues of B vitamin deficiency, as well as the suggested therapies for B vitamin disorders, are described.
Collapse
Affiliation(s)
- GianPietro Sechi
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA.
| | - Elia Sechi
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA
| | - Chiara Fois
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA
| | - Neeraj Kumar
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Fryar-Williams S, Strobel JE. Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis. Biomark Res 2015; 3:3. [PMID: 25729574 PMCID: PMC4342893 DOI: 10.1186/s40364-015-0028-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Mental Health Biomarker Project (2010-2014) selected commercial biochemistry markers related to monoamine synthesis and metabolism and measures of visual and auditory processing performance. Within a case-control discovery design with exclusion criteria designed to produce a highly characterised sample, results from 67 independently DSM IV-R-diagnosed cases of schizophrenia and schizoaffective disorder were compared with those from 67 control participants selected from a local hospital, clinic and community catchment area. Participants underwent protocol-based diagnostic-checking, functional-rating, biological sample-collection for thirty candidate markers and sensory-processing assessment. RESULTS Fifteen biomarkers were identified on ROC analysis. Using these biomarkers, odds ratios, adjusted for a case-control design, indicated that schizophrenia and schizoaffective disorder were highly associated with dichotic listening disorder, delayed visual processing, low visual span, delayed auditory speed of processing, low reverse digit span as a measure of auditory working memory and elevated levels of catecholamines. Other nutritional and biochemical biomarkers were identified as elevated hydroxyl pyrroline-2-one as a marker of oxidative stress, vitamin D, B6 and folate deficits with elevation of serum B12 and free serum copper to zinc ratio. When individual biomarkers were ranked by odds ratio and correlated with clinical severity, five functional domains of visual processing, auditory processing, oxidative stress, catecholamines and nutritional-biochemical variables were formed. When the strengths of their inter-domain relationships were predicted by Lowess (non-parametric) regression, predominant bidirectional relationships were found between visual processing and catecholamine domains. At a cellular level, the nutritional-biochemical domain exerted a pervasive influence on the auditory domain as well as on all other domains. CONCLUSIONS The findings of this biomarker research point towards a much-required advance in Psychiatry: quantification of some theoretically-understandable, translationally-informative, treatment-relevant underpinnings of serious mental illness. This evidence reveals schizophrenia and schizoaffective disorder in a somewhat different manner, as a conglomerate of several disorders many of which are not currently being assessed-for or treated in clinical settings. Currently available remediation techniques for these underlying conditions have potential to reduce treatment-resistance, relapse-prevention, cost burden and social stigma in these conditions. If replicated and validated in prospective trials, such findings will improve progress-monitoring and treatment-response for schizophrenia and schizoaffective disorder.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- />The University of Adelaide, Adelaide, SA Australia
- />The Queen Elizabeth Hospital, Woodville, SA Australia
- />Basil Hetzel Institute for Translational Health Research, Woodville, SA Australia
- />Youth in Mind Research Institute, Norwood, SA Australia
| | | |
Collapse
|
17
|
Abstract
Two observations stimulated the interest in vitamin B-6 and alkaline phosphatase in brain: the marked increase in plasma pyridoxal phosphate and the occurrence of pyridoxine responsive seizures in hypophosphatasia. The increase in plasma pyridoxal phosphate indicates the importance of tissue non-specific alkaline phosphatase (TNAP) in transferring vitamin B-6 into the tissues. Vitamin B-6 is involved in the biosynthesis of most of the neurotransmitters. Decreased gamma-aminobutyrate (GABA) appears to be most directly related to the development of seizures in vitamin B-6 deficiency. Cytosolic pyridoxal phosphatase/chronophin may interact with vitamin B-6 metabolism and neuronal development and function. Ethanolaminephosphate phospholyase interacts with phosphoethanolamine metabolism. Extracellular pyridoxal phosphate may interact with purinoceptors and calcium channels. In conclusion, TNAP clearly influences extracellular and intracellular metabolism of vitamin B-6 in brain, particularly during developmental stages. While effects on GABA metabolism appear to be the major contributor to seizures, multiple other intra- and extra-cellular metabolic systems may be affected directly and/or indirectly by altered vitamin B-6 hydrolysis and uptake resulting from variations in alkaline phosphatase activity.
Collapse
|
18
|
Abstract
Hypophosphatasia (HPP) is a bone metabolic disorder caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL), which encodes tissue-nonspecific alkaline phosphatase (TNAP). This disease is characterized by disrupted bone and tooth mineralization, and reduced serum AP activity. Along with bone and tooth symptoms, many neurological symptoms, seizure, encephalopathy, intracranial hypertension, mental retardation, deafness, and growth hormone deficiency (GHD), are frequently found in HPP patients. Seizure occurs in severe HPP types soon after birth, and responds to pyridoxine, but is an indicator of lethal prognosis. Encephalopathy rarely presents in severe HPP types, but has severe sequelae. Intracranial hypertension complicated in mild HPP types develops after the age of 1 year and sometimes need neurosurgical intervention. Mental retardation, deafness and GHD are more frequently found in Japanese HPP patients. Mental retardation occurs in all HPP types. Deafness in perinatal lethal type is both conductive and sensorineural. GHD develops in all but perinatal lethal type and the diagnosis tends to delay. The pathogenesis of these neural features of HPP might be due to impairment of both vitamin B6 metabolism and central nervous system development by ALPL mutations.
Collapse
|
19
|
Négyessy L, Györffy B, Hanics J, Bányai M, Fonta C, Bazsó F. Signal Transduction Pathways of TNAP: Molecular Network Analyses. Subcell Biochem 2015. [PMID: 26219713 DOI: 10.1007/978-94-017-7197-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.
Collapse
Affiliation(s)
- László Négyessy
- Theoretical Neuroscience and Complex Systems Research Group, Wigner Research Center for Physics, Budapest, Hungary,
| | | | | | | | | | | |
Collapse
|
20
|
Jagadeesh S, Suresh B, Murugan V, Suresh S, Salomans GS, Struys EA, Jacobs C. Pyridoxine-dependent epilepsy owing to antiquitin deficiency--mutation in the ALDH7A1 gene. Paediatr Int Child Health 2013; 33:113-5. [PMID: 23925287 DOI: 10.1179/2046905512y.0000000028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is an inborn error of metabolism resulting from antiquitin deficiency. There is marked elevation of α-amino adipic semi-aldehyde (αAASA), piperidine-6-carboxylate (P6C) and pipecolic acid. The diagnosis can be confirmed by identifying the mutation in the ALDH7A1 gene in chromosome 5q3l. An 8-year-old Indian girl presented with severe developmental delay and seizures and was found to have pyridoxine-dependent epilepsy owing to an antiquitin mutation. Genetic evaluation of the parents allowed antenatal diagnosis to be made during the next pregnancy.
Collapse
|
21
|
Pearl PL, Hyland K, Chiles J, McGavin CL, Yu Y, Taylor D. Partial Pyridoxine Responsiveness in PNPO Deficiency. JIMD Rep 2012; 9:139-142. [PMID: 23430561 DOI: 10.1007/8904_2012_194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Autosomal-recessive pyridox(am)ine phosphate oxidase (PNPO) deficiency causes pyridoxal-5-phosphate (PLP)-dependent epilepsy. We describe partial PNPO deficiency with a transient response to pyridoxine (B6). METHODS CSF neurotransmitter metabolites, PLP, and amino acids were analyzed while the patient was receiving pyridoxine. PNPO gene sequencing was performed by standard techniques. RESULTS A full-term 3,220 g male with refractory neonatal seizures became seizure free for 6 weeks on pyridoxine (B6). Breakthrough seizures followed. These stopped upon the first dose of PLP although episodes occurred as a dose became due. An unidentified peak was detected on the chromatographic system used to measure CSF PLP. PNPO gene sequencing identified a homozygous mutation in a highly conserved area in exon 3: c.352G>A p.G118R, predicting substitution of arginine for glycine. At age 28 months the child has hypotonia and developmental delay, both mild in severity. CONCLUSIONS Transient pyridoxine responsiveness may be seen in partial PNPO deficiency. A CSF metabolite peak, likely pyridoxine phosphate, is identifiable in patients with PNPO deficiency who are taking supplemental pyridoxine. Partial B6 responsiveness is an indication for possible PNPO deficiency and trial of PLP.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA. .,Department of Neurology, Children's National Medical Center, 111 Michigan Ave, NW, Washington, DC, 20010, USA.
| | | | - J Chiles
- Medical Neurogenetics, Atlanta, GA, USA
| | - Colleen L McGavin
- Department of Neurology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA
| | - Yuezhou Yu
- Department of Neurology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA
| | | |
Collapse
|
22
|
Dolina S, Margalit D, Malitsky S, Pressman E, Rabinkov A. Epilepsy as a pyridoxine-dependent condition: Quantified urinary biomarkers for status evaluation and monitoring antiepileptic treatment. Med Hypotheses 2012; 79:157-64. [DOI: 10.1016/j.mehy.2012.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
23
|
Balasubramaniam S, Bowling F, Carpenter K, Earl J, Chaitow J, Pitt J, Mornet E, Sillence D, Ellaway C. Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5'-phosphate availability. J Inherit Metab Dis 2010; 33 Suppl 3:S25-33. [PMID: 20049532 DOI: 10.1007/s10545-009-9012-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
Abstract
We describe two neonates presenting with perinatal hypophosphatasia and severe epileptic encephalopathy resulting in death. Both had increased levels of urinary vanillactate, indicating functional deficiency of aromatic amino acid decarboxylase, a pyridoxal-5-phosphate (PLP)-dependent enzyme required for dopamine and serotonin biosynthesis. Clinical findings and results of subsequent metabolic investigations were consistent with secondary pyridoxine-deficient encephalopathy. These patients highlight the importance of tissue non-specific alkaline phosphatase in the neuronal PLP-dependent metabolism of neurotransmitters. In addition, the disturbance of PLP metabolism appears to underlie the predominant neurological presentation in our patients. We recommend the measurement of serum alkaline phosphatase (ALP) during the assessment of perinatal seizures.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The pediatric neurotransmitter disorders represent an enlarging group of neurological syndromes characterized by abnormalities of neurotransmitter synthesis and breakdown. The disorders of dopamine and serotonin synthesis are aromatic amino acid decarboxylase deficiency, tyrosine hydroxylase deficiency, and disorders of tetrahydrobiopterin synthesis. Amino acid decarboxylase, tyrosine hydroxylase, sepiapterin reductase, and guanosine triphosphate cyclohydrolase (Segawa disease) deficiencies do not feature elevated serum phenylalanine and require cerebrospinal fluid analysis for diagnosis. Segawa disease is characterized by dramatic and lifelong responsiveness to levodopa. Glycine encephalopathy is typically manifested by refractory neonatal seizures secondary to a defect of the glycine degradative pathway. gamma-amino butyric acid (GABA) metabolism is associated with several disorders, including glutamic acid decarboxylase deficiency with nonsyndromic cleft lip/ palate, GABA-transaminase deficiency, and succinic semialdehyde dehydrogenase deficiency. The latter is characterized by elevated gamma-hydroxybutyric acid and includes a wide range of neuropsychiatric symptoms as well as epilepsy. Pyridoxine-dependent seizures have now been associated with deficiency of alpha-aminoadipic semialdehyde dehydrogenase, as well as a new variant requiring therapy with pyridoxal-5-phosphate, the biologically active form of pyridoxine.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Children's National Medical Center, The George Washington University School of Medicine, Washington, DC 20010, USA.
| | | | | | | |
Collapse
|