1
|
Miranda VHS, Gomes TR, Eller DE, Ferraz LDCN, Chaves AT, Bicalho KA, Silva CEC, Birbrair A, Pascoal Xavier MA, de Goes AM, Corrêa-Oliveira R, Alves ÉAR, Bozzi A. Liver damage in schistosomiasis is reduced by adipose tissue-derived stem cell therapy after praziquantel treatment. PLoS Negl Trop Dis 2020; 14:e0008635. [PMID: 32853206 PMCID: PMC7480869 DOI: 10.1371/journal.pntd.0008635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/09/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background In view of the potential immunosuppressive and regenerative properties of mesenchymal stem cells (MSC), we investigated whether transplantation of adipose tissue-derived stem cells (ASC) could be used to control the granulomatous reaction in the liver of mice infected with Schistosoma mansoni after Praziquantel (PZQ) treatment. Methodology/Prinicpal findings C57BL/6 mice infected with S. mansoni were treated with PZQ and transplanted intravenously with ASC from uninfected mice. Liver morpho-physiological and immunological analyses were performed. The combined PZQ/ASC therapy significantly reduced the volume of hepatic granulomas, as well as liver damage as measured by ALT levels. We also observed that ASC accelerated the progression of the granulomatous inflammation to the advanced/curative phase. The faster healing interfered with the expression of CD28 and CTLA-4 molecules in CD4+ T lymphocytes, and the levels of IL-10 and IL-17 cytokines, mainly in the livers of PZQ/ASC-treated mice. Conclusions Our results show that ASC therapy after PZQ treatment results in smaller granulomas with little tissue damage, suggesting the potential of ASC for the development of novel therapeutic approaches to minimize hepatic lesions as well as a granulomatous reaction following S. mansoni infection. Further studies using the chronic model of schistosomiasis are required to corroborate the therapeutic use of ASC for schistosomiasis. Schistosomiasis is the second most prevalent parasitic disease in the world and is caused by the Schistosoma trematode. This disease is characterized by a granulomatous reaction around parasite eggs trapped in the tissues. The liver is one of the most affected organs and can develop severe fibrosis. Praziquantel (PZQ) is the treatment for schistosomiasis and kills the adult the worm; however, inflammation still persists around the eggs in the tissues. Mesenchymal stem cells (MSC) have been extensively studied as an alternative therapy to repair tissues and to stop inflammation due to their potential to differentiate in several cells types (bone, cartilage, fat, tendon, muscle, and marrow stroma), and to interfere with immune responses. This scenario has motivated the authors to investigate the use of MSC extract from adipose tissue (ASC) associated with PZQ to treat schistosomiasis. Briefly, mice were treated with PZQ followed by ASC injection showing significant reduction of the granulomas and normal levels of the enzyme alanine aminotransferase, an indicator of liver damage. These results suggest that ASC has the potential to be used as a novel therapeutic approach to control inflammation following infection by S. mansoni or liver disorders. Although the findings are promising, further studies using the chronic model of schistosomiasis are required to confirm using ASC for schistosomiasis therapy.
Collapse
Affiliation(s)
| | - Talita Rocha Gomes
- Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | - Alexander Birbrair
- Departamento de Patologia, ICB, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Antônio Pascoal Xavier
- Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Adriana Bozzi
- Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- * E-mail:
| |
Collapse
|
2
|
Iacobas DA, Iacobas S, Tanowitz HB, Campos de Carvalho A, Spray DC. Functional genomic fabrics are remodeled in a mouse model of Chagasic cardiomyopathy and restored following cell therapy. Microbes Infect 2018; 20:185-195. [PMID: 29158000 DOI: 10.1016/j.micinf.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
We previously found that, in a mouse model of Chagas cardiomyopathy, 18% of the 9390 quantified unigenes were significantly regulated by Trypanosoma cruzi infection. However, treatment with bone marrow-derived mononuclear cells (MNCs) resulted in 84% transcriptomic recovery. We have applied new algorithms to reanalyze these datasets with respect to specific pathways [Chagas disease (CHAGAS), cardiac muscle contraction (CMC) and chemokine signaling (CCS)]. In addition to the levels of expression of individual genes we also calculated gene expression variability and coordination of expression of each gene with all others. These additional measures revealed changes in the control of transcript abundances and gene networking in CHAGAS and restoration following MNC treatment, not accessible using the conventional approach limited to the average expression levels. Moreover, our weighted pathway regulation analysis incorporated the contributions of all affected genes, eliminating the arbitrary cut-off criteria of fold-change and/or p-value for significantly regulated genes. The new analyses revealed that T. cruzi infection had large transcriptomic consequences for the CMC pathway and triggered a huge cytokine signaling. Remarkably, MNC therapy not only restored normal expression levels of numerous genes, but it also recovered most of the CHAGAS, CMC and CCS fabrics that were altered by the infection.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Department of Pathology, New York Medical College School of Medicine, 15 Dana Rd, Valhalla, NY, USA; Center for Computational Systems Biology at Prairie View A&M University, TX 77446, USA.
| | - Sanda Iacobas
- Department of Pathology, New York Medical College School of Medicine, 15 Dana Rd, Valhalla, NY, USA
| | - Herbert B Tanowitz
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY, USA; Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY, USA
| | - Antonio Campos de Carvalho
- Center for Computational Systems Biology at Prairie View A&M University, TX 77446, USA; Laboratório de Cardiologia Celular e Molecular, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - David C Spray
- Center for Computational Systems Biology at Prairie View A&M University, TX 77446, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY, USA
| |
Collapse
|
3
|
Souza BSDF, Azevedo CM, d Lima RS, Kaneto CM, Vasconcelos JF, Guimarães ET, dos Santos RR, Soares MBP. Bone marrow cells migrate to the heart and skeletal muscle and participate in tissue repair after Trypanosoma cruzi infection in mice. Int J Exp Pathol 2014; 95:321-9. [PMID: 24976301 DOI: 10.1111/iep.12089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
Infection by Trypanosoma cruzi, the aetiological agent of Chagas disease, causes an intense inflammatory reaction in several tissues, including the myocardium. We have previously shown that transplantation of bone marrow cells (BMC) ameliorates the myocarditis in a mouse model of chronic Chagas disease. We investigated the participation of BMC in lesion repair in the heart and skeletal muscle, caused by T. cruzi infection in mice. Infection with a myotropic T. cruzi strain induced an increase in the percentage of stem cells and monocytes in the peripheral blood, as well as in gene expression of chemokines SDF-1, MCP1, 2, and 3 in the heart and skeletal muscle. To investigate the fate of BMC within the damaged tissue, chimeric mice were generated by syngeneic transplantation of green fluorescent protein (GFP(+) ) BMC into lethally irradiated mice and infected with Trypanosoma cruzi. Migration of GFP(+) BMC to the heart and skeletal muscle was observed during and after the acute phase of infection. GFP(+) cardiomyocytes and endothelial cells were present in heart sections of chimeric chagasic mice. GFP(+) myofibres were observed in the skeletal muscle of chimeric mice at different time points following infection. In conclusion, BMC migrate and contribute to the formation of new resident cells in the heart and skeletal muscle, which can be detected both during the acute and the chronic phase of infection. These findings reinforce the role of BMC in tissue regeneration.
Collapse
Affiliation(s)
- Bruno S d F Souza
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang Y, Mi JY, Rui YJ, Xu YL, Wang W. Stem cell therapy for the treatment of parasitic infections: is it far away? Parasitol Res 2014; 113:607-612. [PMID: 24276645 DOI: 10.1007/s00436-013-3689-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Stem cell therapy is an interventional treatment that introduces new cells into damaged tissues, which help in treating many diseases and injuries. It has been proved that stem cell therapy is effective for the treatment of cancers, diabetes mellitus, Parkinson's disease, Huntington's disease, cardiovascular diseases, neurological disorders, and many other diseases. Recently, stem cell therapy has been introduced to treat parasitic infections. The culture supernatant of mesenchymal stem cells (MSCs) is found to inhibit activation and proliferation of macrophages induced by the soluble egg antigen of Schistosoma japonicum, and MSC treatment relieves S. japonicum-induced liver injury and fibrosis in mouse models. In addition, transplantation of MSCs into naïve mice is able to confer host resistance against malaria, and MSCs are reported to play an important role in host protective immune responses against malaria by modulating regulatory T cells. In mouse models of Chagas disease, bone marrow mononuclear cell has been shown effective in reducing inflammation and fibrosis in mice infected with Trypanosoma cruzi, and transplantation of the bone marrow mononuclear cells prevents and reverses the right ventricular dilatation induced by T. cruzi infection in mice. Preliminary clinical trials demonstrate that transplantation of bone marrow derived-cells may become an important therapeutic modality in the management of end-stage heart diseases associated with Chagas disease. Based on these exciting results, it is considered by stating that it is firmly believed that, within the next few years, we will be able to find the best animal models and the appropriate stem cell type, stem cell number, injection route, and disease state that will result in possible benefits for the patients with parasitic infections, and stem cell therapy, although at an initial stage currently, will become a real therapeutic option for parasitic diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Laboratory, The Ninth People's Hospital of Wuxi City, No.999 Liangxi Road, Wuxi, Jiangsu Province, 214062, China
| | | | | | | | | |
Collapse
|
5
|
Ruiz MA. Cell therapy in Brazil: time for reflection. Rev Bras Hematol Hemoter 2013; 35:296-8. [PMID: 24255604 PMCID: PMC3832301 DOI: 10.5581/1516-8484.20130117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 09/01/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Milton Artur Ruiz
- Editor-in-chief. Revista Brasileira de Hematologia e Hemoterapia -RBHH
| |
Collapse
|
6
|
Steinhoff G, Strauer BE. Heart. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Junqueira LF. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease. Rev Soc Bras Med Trop 2012; 45:243-52. [PMID: 22535000 DOI: 10.1590/s0037-86822012000200020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.
Collapse
Affiliation(s)
- Luiz Fernando Junqueira
- Laboratório Cardiovascular, Área de Clínica Médica (Cardiologia), Universidade de Brasilia, Brasilia, DF.
| |
Collapse
|
8
|
Herreros J, Chachques JC, Trainini J, Pontón A, Sarralde A, Genovese J. Regeneración celular cardíaca. CIRUGIA CARDIOVASCULAR 2011. [DOI: 10.1016/s1134-0096(11)70056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Barbosa da Fonseca LM, Xavier SS, Rosado de Castro PH, Lima RSL, Gutfilen B, Goldenberg RCS, Maiolino A, Chagas CLR, Pedrosa RC, Campos de Carvalho AC. Biodistribution of bone marrow mononuclear cells in chronic chagasic cardiomyopathy after intracoronary injection. Int J Cardiol 2011; 149:310-314. [PMID: 20199816 DOI: 10.1016/j.ijcard.2010.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 10/06/2009] [Accepted: 02/06/2010] [Indexed: 02/05/2023]
Abstract
BACKGROUND Animal and human clinical studies have indicated that bone marrow (BM) mononuclear cell (MNC) therapy for Chagasic Cardiomyopathy (ChC) is feasible, safe and potentially efficacious. Nevertheless, little is known about the retention of these cells after intracoronary (IC) infusion. METHODS Our study investigated the homing of technetium-99m ((99m)Tc) labeled BM MNCs and compared it to thallium-201 ((201)Tl) myocardial perfusion images using the standard 17-segment model. Six patients with congestive heart failure of chagasic etiology were included. RESULTS Scintigraphic images revealed an uptake of 5.4%±1.7, 4.3%±1.5 and 2.3%±0.6 of the total infused radioactivity in the heart after 1, 3 and 24h, respectively. The remaining activity was distributed mainly to the liver and spleen. Of 102 segments analyzed, homing took place in 36%. Segments with perfusion had greater homing (58.6%) than those with decreased or no perfusion (6.8%), p<0.0001. There was no correlation between the number of injected cells and the number of segments with homing for each patient (r=-0.172, p=0.774). CONCLUSIONS These results indicate that (99m)Tc-BM MNCs delivered by IC injection homed to the chagasic myocardium. However, cell biodistribution was heterogeneous and limited, being strongly associated with the myocardial perfusion pattern at rest. These initial data suggest that the IC route may present limitations in chagasic patients and that alternative routes of cell administration may be necessary.
Collapse
|
10
|
|
11
|
Boscardin SB, Torrecilhas ACT, Manarin R, Revelli S, Rey EG, Tonelli RR, Silber AM. Chagas' disease: an update on immune mechanisms and therapeutic strategies. J Cell Mol Med 2010; 14:1373-84. [PMID: 20070438 PMCID: PMC3829005 DOI: 10.1111/j.1582-4934.2010.01007.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The final decade of the 20th century was marked by an alarming resurgence in infectious diseases caused by tropical parasites belonging to the kinetoplastid protozoan order. Among the pathogenic trypanosomatids, some species are of particular interest due to their medical importance. These species include the agent responsible for Chagas’ disease, Trypanosoma cruzi. Approximately 8 to 10 million people are infected in the Americas, and approximately 40 million are at risk. In the present review, we discuss in detail the immune mechanisms elicited during infection by T. cruzi and the effects of chemotherapy in controlling parasite proliferation and on the host immune system.
Collapse
Affiliation(s)
- Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Cell-based myocardial regenerative therapy is undergoing experimental and clinical trials in order to limit the consequences of decreased contractile function and compliance of damaged ventricles owing to ischemic and nonischemic myocardial diseases. A variety of myogenic and angiogenic cell types have been proposed, such as skeletal myoblasts, mononuclear and mesenchymal bone marrow cells, circulating blood-derived progenitors, adipose-derived stromal cells, induced pluripotent stem cells, umbilical cord cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells and embryonic cells. Current indications for stem cell therapy concern patients who have had a left- or right-ventricular infarction or idiopathic dilated cardiomyopathies. Other indications and potential applications include patients with diabetic cardiomyopathy, Chagas heart disease (American trypanosomiasis), ischemic mitral regurgitation, left ventricular noncompacted myocardium and pediatric cardiomyopathy. Suitable sources of cells for cardiac implant will depend on the types of diseases to be treated. For acute myocardial infarction, a cell that reduces myocardial necrosis and augments vascular blood flow will be desirable. For heart failure, cells that replace or promote myogenesis, reverse apoptopic mechanisms and reactivate dormant cell processes will be useful. It is important to note that stem cells are not an alternative to heart transplantation; selected patients should be in an early stage of heart failure as the goal of this regenerative approach is to avoid or delay organ transplantation. Since the cell niche provides crucial support needed for stem cell maintenance, the most interesting and realistic perspectives include the association of intramyocardial cell transplantation with tissue-engineered scaffolds and multisite cardiac pacing in order to transform a passive regenerative approach into a 'dynamic cellular support', a promising method for the creation of 'bioartificial myocardium'.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou Hospital, 20 rue Leblanc, 75015 Paris, France.
| |
Collapse
|
13
|
Macambira SG, Vasconcelos JF, Costa CRS, Klein W, Lima RS, Guimarães P, Vidal DTA, Mendez LC, Ribeiro-Dos-Santos R, Soares MBP. Granulocyte colony-stimulating factor treatment in chronic Chagas disease: preservation and improvement of cardiac structure and function. FASEB J 2009; 23:3843-50. [PMID: 19608624 DOI: 10.1096/fj.09-137869] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigates the effects of granulocyte colony-stimulating factor (G-CSF) therapy in experimental chronic chagasic cardiomyopathy. Chagas disease is one of the leading causes of heart failure in Latin America and remains without an effective treatment other than cardiac transplantation. C57BL/6 mice were infected with 10(3) trypomastigotes of Trypanosoma cruzi, and chronic chagasic mice were treated with G-CSF or saline (control). Evaluations following treatment were functional, immunological, and histopathological. Comparing hearts of G-CSF-treated mice showed reduced inflammation and fibrosis compared to saline-treated chagasic mice. G-CSF treatment did not alter the parasite load but caused an increase in the number of apoptotic inflammatory cells in the heart. Cardiac conductance disturbances in all infected animals improved or remained stable due to the G-CSF treatment, whereas all of the saline-treated mice deteriorated. The distance run on a treadmill and the exercise time were significantly greater in G-CSF-treated mice when compared to chagasic controls, as well as oxygen consumption (VO(2)), carbon dioxide production (VCO(2)), and respiratory exchange ration (RER) during exercise. Administration of G-CSF in experimental cardiac ischemia had beneficial effects on cardiac structure, which were well correlated with improvements in cardiac function and whole animal performance.
Collapse
Affiliation(s)
- Simone G Macambira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Soares MBP, Santos RRD. Current status and perspectives of cell therapy in Chagas disease. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:325-32. [DOI: 10.1590/s0074-02762009000900043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/28/2009] [Indexed: 02/08/2023] Open
|
15
|
Medei EH, Nascimento JHM, Pedrosa RC, Carvalho ACCD. Role of autoantibodies in the physiopathology of Chagas' disease. Arq Bras Cardiol 2008; 91:257-62, 281-6. [PMID: 19009179 PMCID: PMC3158007 DOI: 10.1590/s0066-782x2008001600012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/31/2008] [Indexed: 02/08/2023] Open
Abstract
Chagas' disease is a serious health problem in Latin America. Between 25 to 30% of the infected patients develop the chronic form of the disease, with progressive myocardial damage and often, sudden death. Adrenergic or cholinergic antibodies with G-protein coupled membrane receptor activity may be present in the sera of these patients. The present study discusses the etiology and the contribution of antibodies to the physiopathology of Chagas' disease.
Collapse
|
16
|
Soares MBP, Dos Santos RR. [Bone marrow stem cell therapies for Chagas' disease cardiopathy and chronic hepatopathies: from the animal model to the patient]. CIENCIA & SAUDE COLETIVA 2008; 13:17-9; discussion 21-2. [PMID: 18813514 DOI: 10.1590/s1413-81232008000100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|