1
|
Kunke M, Kaehler M, Boni S, Schröder K, Weier A, Chunder R, Kuerten S, Böttner M, Cascorbi I, Neunlist M, Wedel T, Lucius R, Cossais F. SOX10-Mediated Regulation of Enteric Glial Phenotype in vitro and its Relevance for Neuroinflammatory Disorders. J Mol Neurosci 2025; 75:26. [PMID: 39982575 PMCID: PMC11845537 DOI: 10.1007/s12031-025-02321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
The transcription factor SOX10 is a key regulator of myelinated glial cell phenotype and function, with a known role in multiple sclerosis (MS). SOX10 is also expressed in enteric glial cells (EGC) within the gut, yet its regulatory functions in EGC remain poorly understood. This study aimed to identify SOX10 target genes that influence EGC phenotype and may have implications for MS. An EGC cell line was established for doxycycline-inducible SOX10 overexpression. Impact of SOX10 overexpression on EGC phenotype was assessed by genome-wide expression analysis and results were validated via RT-qPCR and western blot. Data were compared with SOX10 ChIP-seq and transcriptomic datasets from MS patients to identify pan-glial SOX10 target genes potentially linked to neuroinflammatory disorders. SOX10 overexpression was associated with ectopic upregulation of genes related to myelin regulation and glial differentiation, as evidenced by increased PLP1 expression at mRNA and protein levels. Comparison to ChIP-seq and MS datasets highlight SOX10 target genes, including PLP1, RNF130, NES and APOD potentially involved in central and peripheral manifestations of MS pathology. Our findings support a cell-specific regulation of EGC phenotype through SOX10 expression level and identify SOX10-regulated genes relevant to EGC function. This research advances the understanding of EGC diversity and provide information about glial cells targeting in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Madlen Kunke
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | - Alicia Weier
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn and University Hospital Bonn, Bonn, Germany
| | | | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michel Neunlist
- Nantes University, Inserm, TENS, the Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | |
Collapse
|
2
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
3
|
Fortune AJ, Fletcher JL, Blackburn NB, Young KM. Using MS induced pluripotent stem cells to investigate MS aetiology. Mult Scler Relat Disord 2022; 63:103839. [DOI: 10.1016/j.msard.2022.103839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
|
4
|
Mausner-Fainberg K, Benhamou M, Golan M, Kimelman NB, Danon U, Marom E, Karni A. Specific Blockade of Bone Morphogenetic Protein-2/4 Induces Oligodendrogenesis and Remyelination in Demyelinating Disorders. Neurotherapeutics 2021; 18:1798-1814. [PMID: 34159538 PMCID: PMC8608985 DOI: 10.1007/s13311-021-01068-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are present in demyelinated lesions of multiple sclerosis (MS) patients. However, their differentiation into functional oligodendrocytes is insufficient, and most lesions evolve into nonfunctional astroglial scars. Blockade of bone morphogenetic protein (BMP) signaling induces differentiation of OPCs into myelin-producing oligodendrocytes. We studied the effect of specific blockade of BMP-2/4 signaling, by intravenous (IV) treatment with anti-BMP-2/4 neutralizing mAb in both the inflammatory model of relapsing experimental autoimmune encephalomyelitis (R-EAE) and the cuprizone-toxic model of demyelination in mice. Administration of anti-BMP-2/4 to R-EAE-induced mice, on day 9 post-immunization (p.i.), ameliorated R-EAE signs, diminished the expression of phospho-SMAD1/5/8, primarily within the astrocytic lineage, increased the numbers of de novo immature and mature oligodendrocytes, and reduced the numbers of newly generated astrocytes within the spinal cord as early as day 18 p.i. This effect was accompanied with elevated remyelination, manifested by increased density of remyelinating axons (0.8 < g-ratios < 1), and reduced fully demyelinated and demyelinating axons, in the anti-BMP-2/4-treated R-EAE mice, studied by electron microscopy. No significant immunosuppressive effect was observed in the CNS and in the periphery, during the peak of the first attack, or at the end of the experiment. Moreover, IV treatment with anti-BMP-2/4 mAb in the cuprizone-challenged mice augmented the numbers of mature oligodendrocytes and remyelination in the corpus callosum during the recovery phase of the disease. Based on our findings, the specific blockade of BMP-2/4 has a therapeutic potential in demyelinating disorders such as MS, by inducing early oligodendrogenesis-mediated remyelination in the affected tissue.
Collapse
Affiliation(s)
- Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | - Moshe Benhamou
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Golan
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | | | - Uri Danon
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Ehud Marom
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Arnon Karni
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel.
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Golan M, Krivitsky A, Mausner-Fainberg K, Benhamou M, Vigiser I, Regev K, Kolb H, Karni A. Increased Expression of Ephrins on Immune Cells of Patients with Relapsing Remitting Multiple Sclerosis Affects Oligodendrocyte Differentiation. Int J Mol Sci 2021; 22:ijms22042182. [PMID: 33671716 PMCID: PMC7927032 DOI: 10.3390/ijms22042182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
The effect of the inflammatory response on regenerative processes in the brain is complex. This complexity is even greater when the cause of the tissue damage is an autoimmune response. Multiple sclerosis (MS) is an immune-mediated disease in which demyelination foci are formed in the central nervous system. The degree of repair through oligodendrocyte regeneration and remyelination is insufficient. Ephrins are membrane-bound ligands activating tyrosine kinase signaling proteins that are known to have an inhibitory effect on oligodendrocyte regeneration. In this study, we examined the expression of ephrins on immune cells of 43 patients with relapsing-remitting (RR) MS compared to 27 matched healthy controls (HC). We found an increased expression of ephrin-A2, -A3 and -B3, especially on T cell subpopulations. We also showed overexpression of ephrins on immune cells of patients with RR-MS that increases the forward signaling pathway and that expression of ephrins on immune cells has an inhibitory effect on the differentiation of oligodendrocyte precursor cells (OPCs) in vitro. Our study findings support the concept that the immune activity of T cells in patients with RR-MS has an inhibitory effect on the differentiation capacity of OPCs through the expression and forward signaling of ephrins.
Collapse
Affiliation(s)
- Maya Golan
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Avivit Krivitsky
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karin Mausner-Fainberg
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Moshe Benhamou
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ifat Vigiser
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Keren Regev
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Hadar Kolb
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Arnon Karni
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
6
|
Coronas V, Terrié E, Déliot N, Arnault P, Constantin B. Calcium Channels in Adult Brain Neural Stem Cells and in Glioblastoma Stem Cells. Front Cell Neurosci 2020; 14:600018. [PMID: 33281564 PMCID: PMC7691577 DOI: 10.3389/fncel.2020.600018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.
Collapse
Affiliation(s)
- Valérie Coronas
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Elodie Terrié
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Nadine Déliot
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Patricia Arnault
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Bruno Constantin
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| |
Collapse
|
7
|
Martínez-Larrosa J, Matute-Blanch C, Montalban X, Comabella M. Modelling multiple sclerosis using induced pluripotent stem cells. J Neuroimmunol 2020; 349:577425. [PMID: 33130461 DOI: 10.1016/j.jneuroim.2020.577425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
Multiple Sclerosis (MS) is one of the leading causes of non-traumatic neurological disability among young adults. Due to its complex pathology and the lack of reliable disease models, there are no effective therapies for MS to prevent neurodegeneration or promote neuroprotection, and hence stop disease progression. The emergence of induced pluripotent stem cells (iPSC) has allowed the generation of patient-specific neural cell types for disease modelling, drug screening, and cell therapy. In this review, the challenges related with the use of iPSC-derived cells in MS are discussed, with a special focus on the functional studies performed, limitations and future perspectives.
Collapse
Affiliation(s)
- Júlia Martínez-Larrosa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Matute-Blanch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
iPS-Derived Early Oligodendrocyte Progenitor Cells from SPMS Patients Reveal Deficient In Vitro Cell Migration Stimulation. Cells 2020; 9:cells9081803. [PMID: 32751289 PMCID: PMC7463559 DOI: 10.3390/cells9081803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
The most challenging aspect of secondary progressive multiple sclerosis (SPMS) is the lack of efficient regenerative response for remyelination, which is carried out by the endogenous population of adult oligoprogenitor cells (OPCs) after proper activation. OPCs must proliferate and migrate to the lesion and then differentiate into mature oligodendrocytes. To investigate the OPC cellular component in SPMS, we developed induced pluripotent stem cells (iPSCs) from SPMS-affected donors and age-matched controls (CT). We confirmed their efficient and similar OPC differentiation capacity, although we reported SPMS-OPCs were transcriptionally distinguishable from their CT counterparts. Analysis of OPC-generated conditioned media (CM) also evinced differences in protein secretion. We further confirmed SPMS-OPC CM presented a deficient capacity to stimulate OPC in vitro migration that can be compensated by exogenous addition of specific components. Our results provide an SPMS-OPC cellular model and encouraging venues to study potential cell communication deficiencies in the progressive form of multiple sclerosis (MS) for future treatment strategies.
Collapse
|
9
|
Covacu R, Brundin L. Endogenous spinal cord stem cells in multiple sclerosis and its animal model. J Neuroimmunol 2019; 331:4-10. [PMID: 27884460 DOI: 10.1016/j.jneuroim.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
The adult mammalian spinal cord (SC) harbors neural stem cells (NSCs). The SC-NSCs are mostly quiescent during physiological conditions but are quickly activated in traumatic injury models. The SC-NSCs generate mostly glia, but are able to differentiate into neurons when affected by favourable conditions. An example is the inflammatory milieu in the SC of rat EAE, where the SC-NSCs migrate into demyelinated lesions and give rise to both glia and neurons. In MS, cells with progenitor phenotypes accumulate in inflammatory lesions both in brain and SC, but the extent to which these cells contribute to repair remains to be revealed.
Collapse
Affiliation(s)
- Ruxandra Covacu
- Department of Clinical Neuroscience, Division of Neurology R3:04, Center of Molecular Medicine, L8:04, Karolinska Institutet, Stockholm, Sweden.
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology R3:04, Center of Molecular Medicine, L8:04, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:9030-9039. [PMID: 30910981 PMCID: PMC6500153 DOI: 10.1073/pnas.1818348116] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We identify cellular senescence occurring in neural progenitor cells (NPCs) from primary progressive multiple sclerosis (PPMS). In this study, senescent progenitor cells were identified within demyelinated white matter lesions in progressive MS (PMS) autopsy tissue, and induced pluripotent stem-derived NPCs from patients with PPMS were found to express cellular senescence markers compared with age-matched control NPCs. Reversal of this cellular senescence phenotype, by treatment with rapamycin, restored PPMS NPC-mediated support for oligodendrocyte (OL) maturation. Proteomic and histological analyses identify senescent progenitor cells in PMS as a source of high-mobility group box-1, which limits maturation and promotes transcriptomic changes in OLs. These findings provide evidence that cellular senescence is an active process in PMS that may contribute to limited remyelination in disease. Cellular senescence is a form of adaptive cellular physiology associated with aging. Cellular senescence causes a proinflammatory cellular phenotype that impairs tissue regeneration, has been linked to stress, and is implicated in several human neurodegenerative diseases. We had previously determined that neural progenitor cells (NPCs) derived from induced pluripotent stem cell (iPSC) lines from patients with primary progressive multiple sclerosis (PPMS) failed to promote oligodendrocyte progenitor cell (OPC) maturation, whereas NPCs from age-matched control cell lines did so efficiently. Herein, we report that expression of hallmarks of cellular senescence were identified in SOX2+ progenitor cells within white matter lesions of human progressive MS (PMS) autopsy brain tissues and iPS-derived NPCs from patients with PPMS. Expression of cellular senescence genes in PPMS NPCs was found to be reversible by treatment with rapamycin, which then enhanced PPMS NPC support for oligodendrocyte (OL) differentiation. A proteomic analysis of the PPMS NPC secretome identified high-mobility group box-1 (HMGB1), which was found to be a senescence-associated inhibitor of OL differentiation. Transcriptome analysis of OPCs revealed that senescent NPCs induced expression of epigenetic regulators mediated by extracellular HMGB1. Lastly, we determined that progenitor cells are a source of elevated HMGB1 in human white matter lesions. Based on these data, we conclude that cellular senescence contributes to altered progenitor cell functions in demyelinated lesions in MS. Moreover, these data implicate cellular aging and senescence as a process that contributes to remyelination failure in PMS, which may impact how this disease is modeled and inform development of future myelin regeneration strategies.
Collapse
|
11
|
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:106-120. [PMID: 29190314 PMCID: PMC5846707 DOI: 10.1093/abbs/gmx124] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The TGF-β superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Iacobaeus E, Sugars RV, Törnqvist Andrén A, Alm JJ, Qian H, Frantzen J, Newcombe J, Alkass K, Druid H, Bottai M, Röyttä M, Le Blanc K. Dynamic Changes in Brain Mesenchymal Perivascular Cells Associate with Multiple Sclerosis Disease Duration, Active Inflammation, and Demyelination. Stem Cells Transl Med 2017; 6:1840-1851. [PMID: 28941240 PMCID: PMC6430046 DOI: 10.1002/sctm.17-0028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular changes, including blood brain barrier destabilization, are common pathological features in multiple sclerosis (MS) lesions. Blood vessels within adult organs are reported to harbor mesenchymal stromal cells (MSCs) with phenotypical and functional characteristics similar to pericytes. We performed an immunohistochemical study of MSCs/pericytes in brain tissue from MS and healthy persons. Post‐mortem brain tissue from patients with early progressive MS (EPMS), late stage progressive MS (LPMS), and healthy persons were analyzed for the MSC and pericyte markers CD146, platelet‐derived growth factor receptor beta (PDGFRβ), CD73, CD271, alpha‐smooth muscle actin, and Ki67. The MS samples included active, chronic active, chronic inactive lesions, and normal‐appearing white matter. MSC and pericyte marker localization were detected in association with blood vessels, including subendothelial CD146+PDGFRβ+Ki67+ cells and CD73+CD271+PDGFRβ+Ki67– cells within the adventitia and perivascular areas. Both immunostained cell subpopulations were termed mesenchymal perivascular cells (MPCs). Quantitative analyses of immunostainings showed active lesions containing increased regions of CD146+PDGFRβ+Ki67+ and CD73+CD271+PDGFRβ+Ki67– MPC subpopulations compared to inactive lesions. Chronic lesions presented with decreased levels of CD146+PDGFRβ+Ki67+ MPC cells compared to control tissue. Furthermore, LPMS lesions displayed increased numbers of blood vessels harboring greatly enlarged CD73+CD271+ adventitial and perivascular areas compared to control and EPMS tissue. In conclusion, we demonstrate the presence of MPC subgroups in control human brain vasculature, and their phenotypic changes in MS brain, which correlated with inflammation, demyelination and MS disease duration. Our findings demonstrate that brain‐derived MPCs respond to pathologic mechanisms involved in MS disease progression and suggest that vessel‐targeted therapeutics may benefit patients with progressive MS. Stem Cells Translational Medicine2017;6:1840–1851
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Department of Clinical Neuroscience, Finland
| | - Rachael V Sugars
- Division of Oral Facial Diagnostics and Surgery, Department of Dental Medicine, Finland
| | | | - Jessica J Alm
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Department of Pathology, University of Turku and Turku University Hospital, Finland
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine, Stockholm, Sweden
| | - Janek Frantzen
- Division of Clinical Neuroscience, Department of Neurosurgery, University of Turku and Turku University Hospital, Finland
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, England, United Kingdom
| | - Kanar Alkass
- KI Donatum, Department of Forensic Medicine, Stockholm, Sweden
| | - Henrik Druid
- KI Donatum, Department of Forensic Medicine, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matias Röyttä
- Department of Pathology, University of Turku and Turku University Hospital, Finland
| | - Katarina Le Blanc
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Hematology Centre, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Wilkins A, Scolding N. Can the optic nerve be repaired? Lancet Neurol 2017; 16:172-173. [PMID: 28229881 DOI: 10.1016/s1474-4422(16)30402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Alastair Wilkins
- Bristol Institute of Clinical Neurosciences, University of Bristol and North Bristol NHS Trust, Level 2, L&R Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Neil Scolding
- Bristol Institute of Clinical Neurosciences, University of Bristol and North Bristol NHS Trust, Level 2, L&R Building, Southmead Hospital, Bristol BS10 5NB, UK.
| |
Collapse
|
14
|
Stem Cells for Multiple Sclerosis. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Cawsey T, Duflou J, Weickert CS, Gorrie CA. Nestin-Positive Ependymal Cells Are Increased in the Human Spinal Cord after Traumatic Central Nervous System Injury. J Neurotrauma 2015; 32:1393-402. [PMID: 25599268 DOI: 10.1089/neu.2014.3575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endogenous neural progenitor cell niches have been identified in adult mammalian brain and spinal cord. Few studies have examined human spinal cord tissue for a neural progenitor cell response in disease or after injury. Here, we have compared cervical spinal cord sections from 14 individuals who died as a result of nontraumatic causes (controls) with 27 who died from injury with evidence of trauma to the central nervous system. Nestin immunoreactivity was used as a marker of neural progenitor cell response. There were significant increases in the percentage of ependymal cells that were nestin positive between controls and trauma cases. When sections from lumbar and thoracic spinal cord were available, nestin positivity was seen at all three spinal levels, suggesting that nestin reactivity is not simply a localized reaction to injury. There was a positive correlation between the percentage of ependymal cells that were nestin positive and post-injury survival time but not for age, postmortem delay, or glial fibrillary acidic protein (GFAP) immunoreactivity. No double-labelled nestin and GFAP cells were identified in the ependymal, subependymal, or parenchymal regions of the spinal cord. We need to further characterize this subset of ependymal cells to determine their role after injury, whether they are a population of neural progenitor cells with the potential for proliferation, migration, and differentiation for spinal cord repair, or whether they have other roles more in line with hypothalamic tanycytes, which they closely resemble.
Collapse
Affiliation(s)
- Thomas Cawsey
- 1 School of Medical and Molecular Biosciences, University of Technology , Sydney, Australia
| | - Johan Duflou
- 2 Department of Forensic Medicine, NSW Health Pathology , Sydney, Australia
| | - Cynthia Shannon Weickert
- 3 Neuroscience Research Australia , Sydney, Australia .,4 Schizophrenia Research Institute , Sydney, Australia .,5 School of Psychiatry, University of New South Wales , Sydney, Australia
| | - Catherine Anne Gorrie
- 1 School of Medical and Molecular Biosciences, University of Technology , Sydney, Australia
| |
Collapse
|
16
|
Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis. Mult Scler Int 2014; 2014:926134. [PMID: 25610650 PMCID: PMC4295609 DOI: 10.1155/2014/926134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/15/2023] Open
Abstract
Background. The neural stem cells (NSCs) migrate to the damaged sites in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the differentiation into neurons or oligodendrocytes is blocked. Epidermal growth factor (EGF) stimulates NSC proliferation and mobilization to demyelinated lesions but also induces astrogenesis and glial scar. Objective. To examine the clinical and histopathological effects of EGF neutralization on EAE. Methods. EAE-induced SJL mice were intravenously treated with either anti-EGF neutralizing antibody (Ab) or isotype control or PBS. On day 9 after immunization, 3 mice of each group were daily treated for 9 days with BrdU and then sacrificed for immunohistochemical analysis. Results. Treatment with anti-EGF Ab significantly ameliorated EAE symptoms during the second relapse. Anti-EGF Ab induced a shift from BrdU+GFAP+ NSCs to BrdU+DCX+ neuroblasts in the subventricular zone (SVZ), increased BrdU+NeuN+ neurons in the granular cell layer of the dentate gyrus, and increased BrdU+O4+ oligodendrocytes in the SVZ. There was no change in the inflammatory infiltrates in response to anti-EGF Ab. Conclusions. Therapy with anti-EGF Ab ameliorates EAE via induction of neurogenesis and oligodendrogenesis. No immunosuppressive effect was found. Further investigation is needed to support these notions of beneficial effect of anti-EGF Ab in MS.
Collapse
|
17
|
Kelland EE, Gilmore W, Hayardeny L, Weiner LP, Lund BT. In vitro assessment of the direct effect of laquinimod on basic functions of human neural stem cells and oligodendrocyte progenitor cells. J Neurol Sci 2014; 346:66-74. [PMID: 25125045 DOI: 10.1016/j.jns.2014.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022]
Abstract
Laquinimod is an orally active immunomodulatory small molecule that has shown clear clinical benefit in trials for relapsing-remitting multiple sclerosis and in experimental rodent models that emulate multiple sclerosis (MS). Studies in healthy mice, and in mice with experimental autoimmune encephalomyelitis, have demonstrated that laquinimod is capable of entering the central nervous system. It is therefore important to determine if laquinimod is capable of a direct influence on basic functions of neural stem cells (NSC) or oligodendrocyte progenitor cells (OPC)--cells critical for myelin repair in MS. In order to address this question, a series of experiments was conducted to determine the effect of exogenous laquinimod on viability, proliferation, migration and differentiation of human NSC and OPC in vitro. These data show, for the first time in cells of human origin, that direct, short-term interaction between laquinimod and NSC or OPC, in an isolated in vitro setting, is not detrimental to the basic cellular function of these cells.
Collapse
Affiliation(s)
- Eve E Kelland
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Wendy Gilmore
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative R&D, Teva Pharmaceutical Industries, Netanya, Israel
| | - Leslie P Weiner
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brett T Lund
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Rice CM, Kemp K, Wilkins A, Scolding NJ. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet 2013; 382:1204-13. [PMID: 24095194 DOI: 10.1016/s0140-6736(13)61810-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is a major cause of neurological disability, and particularly occurs in young adults. It is characterised by conspicuous patches of damage throughout the brain and spinal cord, with loss of myelin and myelinating cells (oligodendrocytes), and damage to neurons and axons. Multiple sclerosis is incurable, but stem-cell therapy might offer valuable therapeutic potential. Efforts to develop stem-cell therapies for multiple sclerosis have been conventionally built on the principle of direct implantation of cells to replace oligodendrocytes, and therefore to regenerate myelin. Recent progress in understanding of disease processes in multiple sclerosis include observations that spontaneous myelin repair is far more widespread and successful than was previously believed, that loss of axons and neurons is more closely associated with progressive disability than is myelin loss, and that damage occurs diffusely throughout the CNS in grey and white matter, not just in discrete, isolated patches or lesions. These findings have introduced new and serious challenges that stem-cell therapy needs to overcome; the practical challenges to achieve cell replacement alone are difficult enough, but, to be useful, cell therapy for multiple sclerosis must achieve substantially more than the replacement of lost oligodendrocytes. However, parallel advances in understanding of the reparative properties of stem cells--including their distinct immunomodulatory and neuroprotective properties, interactions with resident or tissue-based stem cells, cell fusion, and neurotrophin elaboration--offer renewed hope for development of cell-based therapies. Additionally, these advances suggest avenues for translation of this approach not only for multiple sclerosis, but also for other common neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire M Rice
- University of Bristol Institute of Clinical Neurosciences, Burden MS Stem Cell Laboratories and BrAMS Unit, Frenchay Hospital, Bristol, UK
| | | | | | | |
Collapse
|
19
|
Rice CM, Cottrell D, Wilkins A, Scolding NJ. Primary progressive multiple sclerosis: progress and challenges. J Neurol Neurosurg Psychiatry 2013; 84:1100-6. [PMID: 23418213 DOI: 10.1136/jnnp-2012-304140] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary progressive multiple sclerosis (MS) has long been recognised as presenting great difficulties to our management of what is increasingly a treatable neurological disease. Here we review some basic and clinical aspects of primary progressive MS, and describe how the disorder in fact offers powerful insights and opportunities for better understanding multiple sclerosis, and from a practical perspective an invaluable clinical substrate for studying and treating progressive disability in MS. Difficult hurdles remain, however, and these too are reviewed.
Collapse
Affiliation(s)
- Claire M Rice
- University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, UK
| | | | | | | |
Collapse
|
20
|
Mausner-Fainberg K, Urshansky N, Regev K, Auriel E, Karni A. Elevated and dysregulated bone morphogenic proteins in immune cells of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2013; 264:91-9. [PMID: 24080309 DOI: 10.1016/j.jneuroim.2013.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/31/2013] [Accepted: 09/09/2013] [Indexed: 11/25/2022]
Abstract
The abundance of neural stem cells (NSCs) in multiple sclerosis (MS) lesions with extensive astrogliosis suggests that fate factors of NSCs, such as the bone morphogenic protein (BMP) signaling maybe defective in MS. We found an elevated mRNA expression and protein secretion of BMP-2,4,5 but not of BMP-7. This was primarily in T cells. Cell stimulation with anti-CD3/CD28 antibodies or with IFN-γ induced expression of BMP-2,4,5 mRNA in untreated RR-MS patients, indicating that proinflammatory processes in MS may play a role in the BMP-2,4,5 productions in T cells. These results contribute to the understanding of the negligible extent of neurogenesis and oligodendrogenesis with extensive astrogliogenesis and the failure of adequate tissue repair in MS lesions.
Collapse
Affiliation(s)
- Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
21
|
Patel JR, Klein RS. Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 2011; 585:3730-7. [PMID: 21539842 PMCID: PMC3158966 DOI: 10.1016/j.febslet.2011.04.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
Myelin, a dielectric sheath that wraps large axons in the central and peripheral nervous systems, is essential for proper conductance of axon potentials. In multiple sclerosis (MS), autoimmune-mediated damage to myelin within the central nervous system (CNS) leads to progressive disability primarily due to limited endogenous repair of demyelination with associated axonal pathology. While treatments are available to limit demyelination, no treatments are available to promote myelin repair. Studies examining the molecular mechanisms that promote remyelination are therefore essential for identifying therapeutic targets to promote myelin repair and thereby limit disability in MS. Here, we present our current understanding of the critical extracellular and intracellular pathways that regulate the remyelinating capabilities of oligodendrocyte precursor cells (OPCs) within the adult CNS.
Collapse
Affiliation(s)
- Jigisha R. Patel
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Robyn S. Klein
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110
| |
Collapse
|
22
|
Urshansky N, Mausner-Fainberg K, Auriel E, Regev K, Karni A. Low and dysregulated production of follistatin in immune cells of relapsing-remitting multiple sclerosis patients. J Neuroimmunol 2011; 238:96-103. [PMID: 21880375 DOI: 10.1016/j.jneuroim.2011.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022]
Abstract
One of the mechanisms known to play a key role in neuronal and oligodendroglial fate specification of neural stem cells (NSCs) is restriction of bone morphogenic proteins (BMP) signaling by BMP antagonists. Here, we demonstrate that follistatin mRNA and protein secreted levels in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RR-MS) patients are significantly reduced compared to healthy controls (HC). We also observed a different profile of regulation mechanisms. Follistatin was similarly expressed and secreted by T lymphocytes and monocytes among the PBMCs of HC, and follistatin upregulation of HC was subjected to stimulation with both LPS and TNF-α. Among PBMCs of RR-MS patients, however, follistatin was found to be downregulated in their monocytes and unresponsive to stimulation with either LPS or TNF-α. Our results may shed some light on the mechanisms involved in remyelination failure in MS, which may be related to the inability of RR-MS patients' immune cells to provide a sufficient pro-neurogenic and oligodendrogenic niche, by expressing and secreting follistatin, in addition to the previously described noggin reduced expression. Our results indicate that the low expression of follistatin in immune cells of patients with RR-MS is a result of the altered immunoregulation of monocytes in these patients.
Collapse
Affiliation(s)
- Nataly Urshansky
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
23
|
Kelland EE, Gilmore W, Weiner LP, Lund BT. The dual role of CXCL8 in human CNS stem cell function: Multipotent neural stem cell death and oligodendrocyte progenitor cell chemotaxis. Glia 2011; 59:1864-78. [DOI: 10.1002/glia.21230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 07/20/2011] [Indexed: 12/16/2022]
|
24
|
Abstract
Multiple sclerosis (MS) is a common neurological disease and a major cause of disability, particularly affecting young adults. It is characterized by patches of damage occurring throughout the brain and spinal cord, with loss of myelin sheaths - the insulating material around nerve fibres that allows normal conduction of nerve impulses - accompanied by loss of cells that make myelin (oligodendrocytes). In addition, we now know that there is damage to nerve cells (neurones) and their fibres (axons) too, and that this occurs both within these discrete patches and in tissue between them. The cause of MS remains unknown, but an autoimmune reaction against oligodendrocytes and myelin is generally assumed to play a major role, and early acute MS lesions almost invariably show prominent inflammation. Efforts to develop cell therapy in MS have long been directed towards directly implanting cells capable of replacing lost oligodendrocytes and regenerating myelin sheaths. Accordingly, the advent of techniques to generate large numbers of oligodendrocytes from embryonic stem cells appeared a significant step towards new stem cell treatments for MS; while the emerging consensus that adult stem cells from, for example, the bone marrow had far less potential to turn into oligodendrocytes was thought to cast doubt on their potential value in this disease. A number of scientific and medical concerns, not least the risk of tumour formation associated with embryonic stem cells, have however, prevented any possible clinical testing of these cells in patients. More recently, increasing understanding of the complexity of tissue damage in MS has emphasized that successful cell therapy may need to achieve far more than simply offering a source of replacement myelin-forming cells. The many and varied reparative properties of bone marrow-derived (mesenchymal) stem cells may well offer new and attractive possibilities for developing cell-based treatments for this difficult and disabling condition.
Collapse
Affiliation(s)
- N Scolding
- Department of Neurology, Frenchay Hospital, University of Bristol, UK.
| |
Collapse
|
25
|
Defaux A, Zurich MG, Honegger P, Monnet-Tschudi F. Minocycline promotes remyelination in aggregating rat brain cell cultures after interferon-γ plus lipopolysaccharide-induced demyelination. Neuroscience 2011; 187:84-92. [PMID: 21549181 DOI: 10.1016/j.neuroscience.2011.04.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/08/2011] [Accepted: 04/22/2011] [Indexed: 12/21/2022]
Abstract
Minocycline has been shown to inhibit microglia reactivity, and to decrease the severity and progression of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. It remained to be examined whether minocycline was also able to promote remyelination. In the present study, myelinating aggregating brain cell cultures were used as a model to study the effects of minocycline on microglial reactivity, demyelination, and remyelination. Cultures were treated simultaneously with two inflammatory agents, interferon-γ (IFN-γ) and lipopolysaccharide (LPS), which caused an inflammatory response accompanied by demyelination. The inflammatory response was characterized by microglial reactivity, upregulation of inflammatory cytokines and iNOS, and increased phophorylation of P38 and P44/42 mitogen activated protein (MAP) kinases. Minocycline inhibited microglial reactivity, and attenuated the increased phophorylation of P38 and P44/42 MAP kinases. Demyelination, determined by a decrease in myelin basic protein (MBP) content and immunoreactivity 48 h after the treatment with the inflammatory agents, was not prevented by minocycline. However, 1 week after demyelination was assessed, the MBP content was restored in presence of minocycline, indicating that remyelination was promoted. Concomitantly, in cultures treated with minocycline, the markers of oligodendrocyte precursors cells (OPCs) and immature oligodendrocytes NG2 and O4, respectively, were decreased compared to cultures treated with the inflammatory agents only. These results suggest that minocycline attenuates microglial reactivity and favors remyelination by enhancing the differentiation of OPCs and immature oligodendrocytes.
Collapse
Affiliation(s)
- A Defaux
- Department of Physiology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
26
|
Biological Horizons for Targeting Brain Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 671:93-104. [DOI: 10.1007/978-1-4419-5819-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|