1
|
Hoogeveen AM, Moughan PJ, Stroebinger N, Hodgkinson SM, McNabb WC, Montoya CA. Similar In Vitro Ileal Fermentation Outcomes Validate the Use of a Pig Ileal Inoculum in an In Vitro Fermentation Assay for the Adult Human. J Nutr 2024; 154:3815-3823. [PMID: 39349292 DOI: 10.1016/j.tjnut.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND An in vivo/in vitro ileal fermentation assay using growing pigs has shown important fermentability and organic acid production. This assay could be used to study human foods but needs validation. OBJECTIVES To validate using a pig inoculum for studying human ileal fermentation by comparing the in vitro fermentation of fibre substrates using ileal inocula prepared from growing pigs or human ileostomates. METHODS Ten pigs (19 ± 4.5 kg bodyweight, mean ± standard deviation) received a diet containing human foods. After 2 wk, ileal digesta were collected 5 h postmeal. Five recruited human ileostomates incorporated the same human foods into their diet for a week before consuming 2 meals similar to the pigs' diet. Ileal effluents were then collected from 2 to 6 h postmeal. The porcine ileal digesta and human ileal effluents were used for microbial analysis and in vitro fermentation of arabinogalactan, fructooligosaccharides, and pectin. RESULTS The in vitro organic matter fermentability of arabinogalactan, fructooligosaccharides, and pectin was similar (P > 0.05) between the pig and human ileal inocula (34 ± 2.13% on mean). Regardless of substrates, the propionic and lactic acid production was similar between humans and pigs (P > 0.05). Ninety percent of the ileal bacterial genera were found in similar (P > 0.05) numbers in pigs and human ileostomates, which accords with the similar (P > 0.05) Shannon diversity index and predicted metabolic activity. However, some of the most abundant genera were different between species, such as Granulicatella which had 83-fold greater (P ≤ 0.05) numbers in human ileostomates, and Lactobacillus had 272-fold greater (P ≤ 0.05) numbers in pigs. CONCLUSIONS The in vitro ileal fermentation patterns were similar across species despite some ileal microbial compositional differences, suggesting that the growing pig could be used as a model to provide an ileal inoculum for studying ileal fermentation in adult humans. This trial was registered at the Australian New Zealand Clinical Trials registry as ACTRN12622000813785.
Collapse
Affiliation(s)
- Anna Me Hoogeveen
- Riddet Institute, Te Ohu Rangahau Kai, Massey University, Palmerston North, New Zealand; School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Paul J Moughan
- Riddet Institute, Te Ohu Rangahau Kai, Massey University, Palmerston North, New Zealand
| | - Natascha Stroebinger
- Riddet Institute, Te Ohu Rangahau Kai, Massey University, Palmerston North, New Zealand
| | - Suzanne M Hodgkinson
- Riddet Institute, Te Ohu Rangahau Kai, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Te Ohu Rangahau Kai, Massey University, Palmerston North, New Zealand
| | - Carlos A Montoya
- Riddet Institute, Te Ohu Rangahau Kai, Massey University, Palmerston North, New Zealand; Smart Foods and Bioproducts, AgResearch Limited, Te Ohu Rangahau Kai, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
2
|
Han H, Choi YH, Kim SY, Park JH, Chung J, Na HS. Optimizing microbiome reference databases with PacBio full-length 16S rRNA sequencing for enhanced taxonomic classification and biomarker discovery. Front Microbiol 2024; 15:1485073. [PMID: 39654676 PMCID: PMC11625778 DOI: 10.3389/fmicb.2024.1485073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background The study of the human microbiome is crucial for understanding disease mechanisms, identifying biomarkers, and guiding preventive measures. Advances in sequencing platforms, particularly 16S rRNA sequencing, have revolutionized microbiome research. Despite the benefits, large microbiome reference databases (DBs) pose challenges, including computational demands and potential inaccuracies. This study aimed to determine if full-length 16S rRNA sequencing data produced by PacBio could be used to optimize reference DBs and be applied to Illumina V3-V4 targeted sequencing data for microbial study. Methods Oral and gut microbiome data (PRJNA1049979) were retrieved from NCBI. DADA2 was applied to full-length 16S rRNA PacBio data to obtain amplicon sequencing variants (ASVs). The RDP reference DB was used to assign the ASVs, which were then used as a reference DB to train the classifier. QIIME2 was used for V3-V4 targeted Illumina data analysis. BLAST was used to analyze alignment statistics. Linear discriminant analysis Effect Size (LEfSe) was employed for discriminant analysis. Results ASVs produced by PacBio showed coverage of the oral microbiome similar to the Human Oral Microbiome Database. A phylogenetic tree was trimmed at various thresholds to obtain an optimized reference DB. This established method was then applied to gut microbiome data, and the optimized gut microbiome reference DB provided improved taxa classification and biomarker discovery efficiency. Conclusion Full-length 16S rRNA sequencing data produced by PacBio can be used to construct a microbiome reference DB. Utilizing an optimized reference DB can increase the accuracy of microbiome classification and enhance biomarker discovery.
Collapse
Affiliation(s)
- Hyejung Han
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Yoon Hee Choi
- Department of Internal Medicine, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jung Hwa Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Suárez Terán J, Guarner Aguilar F. Small Intestinal Bacterial Overgrowth (SIBO), a clinically overdiagnosed entity? GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502190. [PMID: 38719183 DOI: 10.1016/j.gastrohep.2024.502190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/27/2024]
Abstract
Small intestinal bacterial overgrowth (SIBO) is a clinical entity recognized since ancient times; it represents the consequences of bacterial overgrowth in the small intestine associated with malabsorption. Recently, SIBO as a term has been popularized due to its high prevalence reported in various pathologies since the moment it is indirectly diagnosed with exhaled air tests. In the present article, the results of duodenal/jejunal aspirate culture testing as a reference diagnostic method, as well as the characteristics of the small intestinal microbiota described by culture-dependent and culture-independent techniques in SIBO, and their comparison with exhaled air testing are presented to argue about its overdiagnosis.
Collapse
|
4
|
An R, Wilms E, Gerritsen J, Kim HK, Pérez CS, Besseling-van der Vaart I, Jonkers DM, Rijkers GT, de Vos WM, Masclee AA, Zoetendal EG, Troost FJ, Smidt H. Spatio-temporal dynamics of the human small intestinal microbiome and its response to a synbiotic. Gut Microbes 2024; 16:2350173. [PMID: 38738780 PMCID: PMC11093041 DOI: 10.1080/19490976.2024.2350173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.
Collapse
Affiliation(s)
- Ran An
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Food science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
| | - Hye Kyong Kim
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Celia Seguí Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
- Infectious Diseases & Immunology, University of Utrecht, Utrecht, The Netherland
| | | | - Daisy M.A.E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ger T. Rijkers
- Science Department, University College Roosevelt, Middelburg, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Human Microbiomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ad A.M. Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy J. Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Food Innovation and Health, Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Venlo, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Wang Y, Shen R, Liu M, Zhou Q, Zhai YH, Fan LH, Lan YZ, Zhu XD. Metagenomic analysis of Tongxie Yaofang therapy for rat models of ulcerative colitis with liver depression and spleen deficiency syndrome. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2147221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Yan Wang
- Teaching Experiment Training Center, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Rui Shen
- Department of Integrated Traditional Chinese and Western Medicine, Zhangye People's Hospital Affiliated to Hexi University, Zhangye City, Gansu, People’s Republic of China
| | - Miao Liu
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Qi Zhou
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Yan-hui Zhai
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Li-hui Fan
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Yu-ze Lan
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Xiang-dong Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| |
Collapse
|
6
|
Kister B, Viehof A, Rolle-Kampczyk U, Schwentker A, Treichel NS, Jennings SA, Wirtz TH, Blank LM, Hornef MW, von Bergen M, Clavel T, Kuepfer L. A physiologically based model of bile acid metabolism in mice. iScience 2023; 26:107922. [PMID: 37817939 PMCID: PMC10561051 DOI: 10.1016/j.isci.2023.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Bile acid (BA) metabolism is a complex system that includes a wide variety of primary and secondary, as well as conjugated and unconjugated BAs that undergo continuous enterohepatic circulation (EHC). Alterations in both composition and dynamics of BAs have been associated with various diseases. However, a mechanistic understanding of the relationship between altered BA metabolism and related diseases is lacking. Computational modeling may support functional analyses of the physiological processes involved in the EHC of BAs along the gut-liver axis. In this study, we developed a physiologically based model of murine BA metabolism describing synthesis, hepatic and microbial transformations, systemic distribution, excretion, and EHC of BAs at the whole-body level. For model development, BA metabolism of specific pathogen-free (SPF) mice was characterized in vivo by measuring BA levels and composition in various organs, expression of transporters along the gut, and cecal microbiota composition. We found significantly different BA levels between male and female mice that could only be explained by adjusted expression of the hepatic enzymes and transporters in the model. Of note, this finding was in agreement with experimental observations. The model for SPF mice could also describe equivalent experimental data in germ-free mice by specifically switching off microbial activity in the intestine. The here presented model can therefore facilitate and guide functional analyses of BA metabolism in mice, e.g., the effect of pathophysiological alterations on BA metabolism and translation of results from mouse studies to a clinically relevant context through cross-species extrapolation.
Collapse
Affiliation(s)
- Bastian Kister
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Alina Viehof
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Annika Schwentker
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicole Simone Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Susan A.V. Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Theresa H. Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Mathias W. Hornef
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Deyaert S, Moens F, Pirovano W, van den Bogert B, Klaassens ES, Marzorati M, Van de Wiele T, Kleerebezem M, Van den Abbeele P. Development of a reproducible small intestinal microbiota model and its integration into the SHIME®-system, a dynamic in vitro gut model. Front Microbiol 2023; 13:1054061. [PMID: 37008301 PMCID: PMC10063983 DOI: 10.3389/fmicb.2022.1054061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/14/2022] [Indexed: 03/19/2023] Open
Abstract
The human gastrointestinal tract consists of different regions, each characterized by a distinct physiology, anatomy, and microbial community. While the colonic microbiota has received a lot of attention in recent research projects, little is known about the small intestinal microbiota and its interactions with ingested compounds, primarily due to the inaccessibility of this region in vivo. This study therefore aimed to develop and validate a dynamic, long-term simulation of the ileal microbiota using the SHIME®-technology. Essential parameters were identified and optimized from a screening experiment testing different inoculation strategies, nutritional media, and environmental parameters over an 18-day period. Subjecting a synthetic bacterial consortium to the selected conditions resulted in a stable microbiota that was representative in terms of abundance [8.81 ± 0.12 log (cells/ml)], composition and function. Indeed, the observed community mainly consisted of the genera Streptococcus, Veillonella, Enterococcus, Lactobacillus, and Clostridium (qPCR and 16S rRNA gene targeted Illumina sequencing), while nutrient administration boosted lactate production followed by cross-feeding interactions towards acetate and propionate. Furthermore, similarly as in vivo, bile salts were only partially deconjugated and only marginally converted into secondary bile salts. After confirming reproducibility of the small intestinal microbiota model, it was integrated into the established M-SHIME® where it further increased the compositional relevance of the colonic community. This long-term in vitro model provides a representative simulation of the ileal bacterial community, facilitating research of the ileum microbiota dynamics and activity when, for example, supplemented with microbial or diet components. Furthermore, integration of this present in vitro simulation increases the biological relevance of the current M-SHIME® technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Massimo Marzorati
- ProDigest BV, Gent, Belgium
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- *Correspondence: Massimo Marzorati,
| | - Tom Van de Wiele
- ProDigest BV, Gent, Belgium
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Michiel Kleerebezem
- Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
8
|
Zaccaria E, Klaassen T, Alleleyn AME, Boekhorst J, Smokvina T, Kleerebezem M, Troost FJ. Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products: a randomised controlled trial. MICROBIOME 2023; 11:43. [PMID: 36879297 PMCID: PMC9990280 DOI: 10.1186/s40168-023-01491-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The effects of fermented food consumption on the small intestine microbiome and its role on host homeostasis are largely uncharacterised as our knowledge on intestinal microbiota relies mainly on faecal samples analysis. We investigated changes in small intestinal microbial composition and functionality, short chain fatty acid (SCFA) profiles, and on gastro-intestinal (GI) permeability in ileostomy subjects upon the consumption of fermented milk products. RESULTS We report the results from a randomised, cross-over, explorative study where 16 ileostomy subjects underwent 3, 2-week intervention periods. In each period, they consumed either milk fermented by Lacticaseibacillus rhamnosus CNCM I-3690, or milk fermented by Streptococcus thermophilus CNCM I-1630 and Lactobacillus delbrueckii subsp. bulgaricus CNCM I-1519, or a chemically acidified milk (placebo) daily. We performed metataxonomic, metatranscriptomic analysis, and SCFA profiling of ileostomy effluents as well as a sugar permeability test to investigate the microbiome impact of these interventions and their potential effect on mucosal barrier function. Consumption of the intervention products impacted the overall small intestinal microbiome composition and functionality, mainly due to the introduction of the product-derived bacteria that reach in several samples 50% of the total microbial community. The interventions did not affect the SCFA levels in ileostoma effluent, or gastro-intestinal permeability and the effects on the endogenous microbial community were negligible. The impact on microbiome composition was highly personalised, and we identified the poorly characterised bacterial family, Peptostreptococcaceae, to be positively associated with a low abundance of the ingested bacteria. Activity profiling of the microbiota revealed that carbon- versus amino acid-derived energy metabolism of the endogenous microbiome could be responsible for the individual-specific intervention effects on the small intestine microbiome composition and function, reflected also on urine microbial metabolites generated through proteolytic fermentation. CONCLUSIONS The ingested bacteria are the main drivers of the intervention effect on the small intestinal microbiota composition. Their transient abundance level is highly personalised and influenced by the energy metabolism of the ecosystem that is reflected by its microbial composition ( http://www. CLINICALTRIALS gov , ID NCT NCT02920294). Video Abstract.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
| | - Tim Klaassen
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Annick M E Alleleyn
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Jos Boekhorst
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - Tamara Smokvina
- Danone Nutricia Research, Av. De la Vauve, 91767, Palaiseau, France
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands.
| | - Freddy J Troost
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| |
Collapse
|
9
|
Cao H, Zhu Y, Hu G, Zhang Q, Zheng L. Gut microbiome and metabolites, the future direction of diagnosis and treatment of atherosclerosis? Pharmacol Res 2023; 187:106586. [PMID: 36460280 DOI: 10.1016/j.phrs.2022.106586] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Over the past few decades, the treatment of atherosclerotic cardiovascular disease has mainly been through an LDL lowering strategy and treatments targeting other traditional risk factors for atherosclerosis, which has significantly reduced cardiovascular mortality. However, the overall benefit of targeting these risk factors has stagnated, and the discovery of new therapeutic targets for atherosclerosis remains a challenge. Accumulating evidence from clinical and animal experiments has revealed that the gut microbiome play a significant role in human health and disease, including cardiovascular diseases. The gut microbiome contribute to host health and disease through microbial composition and function. The gut microbiome function like an endocrine organ by generating bioactive metabolites that can impact atherosclerosis. In this review, we describe two gut microbial metabolites/pathways by which the gut affects atherosclerotic cardiovascular disease. On the one hand, we discuss the effects of trimethylamine oxide (TMAO), bile acids and aromatic amino acid metabolites on the development of atherosclerosis, and the protective effects of beneficial metabolites short chain amino acids and polyamines on atherosclerosis. On the other hand, we discuss novel therapeutic strategies for directly targeting gut microbial metabolites to improve cardiovascular outcomes. Reducing gut-derived TMAO levels and interfering with the bile acid receptor farnesoid X receptor (FXR) are new therapeutic strategies for atherosclerotic disease. Enzymes and receptors in gut microbiota metabolic pathways are potential new drug targets. We need solid insight into these underlying mechanisms to pave the way for therapeutic strategies targeting gut microbial metabolites/pathways for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Huanhuan Cao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Gaofei Hu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| |
Collapse
|
10
|
Burgos da Silva M, Ponce DM, Dai A, M. Devlin S, Gomes ALC, Moore G, Slingerland J, Shouval R, Armijo GK, DeWolf S, Fei T, Clurman A, Fontana E, Amoretti LA, Wright RJ, Andrlova H, Miltiadous O, Perales MA, Taur Y, Peled JU, van den Brink MRM. Preservation of the fecal microbiome is associated with reduced severity of graft-versus-host disease. Blood 2022; 140:2385-2397. [PMID: 35969834 PMCID: PMC9837450 DOI: 10.1182/blood.2021015352] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/12/2022] [Indexed: 01/21/2023] Open
Abstract
Following allogeneic hematopoietic cell transplantation (allo-HCT), the gastrointestinal (GI) tract is frequently affected by acute graft-versus-host disease (aGVHD), the pathophysiology of which is associated with a dysbiotic microbiome. Since microbial composition varies along the length of the GI tract, the authors hypothesized that microbiome features correlate with the pattern of organ involvement after allo-HCT. We evaluated 266 allo-HCT recipients from whom 1303 stool samples were profiled by 16S ribosomal gene sequencing. Patients were classified according to which organs were affected by aGVHD. In the 20 days prior to disease onset, GVHD patients had lower abundances of members of the class Clostridia, lower counts of butyrate producers, and lower ratios of strict-to-facultative (S/F) anaerobic bacteria compared with allograft recipients who were free of GVHD. GI GVHD patients showed significant reduction in microbial diversity preonset. Patients with lower GI aGVHD had lower S/F anaerobe ratios compared with those with isolated upper GI aGVHD. In the 20 days after disease onset, dysbiosis was observed only in GVHD patients with GI involvement, particularly those with lower-tract disease. Importantly, Clostridial and butyrate-producer abundance as well as S/F anaerobe ratio were predictors of longer overall survival; higher abundance of butyrate producers and higher S/F anaerobe ratio were associated with decreased risk of GVHD-related death. These findings suggest that the intestinal microbiome can serve as a biomarker for outcomes of allo-HCT patients with GVHD.
Collapse
Affiliation(s)
| | - Doris M. Ponce
- Adult Bone Marrow Transplantation Service, Division of Hematology/Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Sean M. Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering, New York, NY
| | | | - Gillian Moore
- Adult Bone Marrow Transplantation Service, Division of Hematology/Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - John Slingerland
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Roni Shouval
- Adult Bone Marrow Transplantation Service, Division of Hematology/Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | - Susan DeWolf
- Leukemia Service, Division of Hematology/Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering, New York, NY
| | - Annelie Clurman
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Emily Fontana
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Luigi A. Amoretti
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Roberta J. Wright
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Hana Andrlova
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Division of Hematology/Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Jonathan U. Peled
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplantation Service, Division of Hematology/Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplantation Service, Division of Hematology/Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
11
|
Akritidou T, Smet C, Akkermans S, Tonti M, Williams J, Van de Wiele T, Van Impe JFM. A protocol for the cultivation and monitoring of ileal gut microbiota surrogates. J Appl Microbiol 2022; 133:1919-1939. [PMID: 35751580 DOI: 10.1111/jam.15684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
AIMS This research aimed to develop and validate a cultivation and monitoring protocol that is suitable for a surrogate microbial community that accounts for the gut microbiota of the ileum of the small intestine. METHODS AND RESULTS Five bacterial species have been selected as representatives of the ileal gut microbiota and a general anaerobic medium (MS-BHI, as minimally supplemented BHI) has been constructed and validated against BCCM/LGM recommended and commercial media. Moreover, appropriate selective/differential media have been investigated for monitoring each ileal gut microbiota surrogate. Results showed that MS-BHI was highly efficient in displaying individual and collective behavior of the ileal gut microbiota species, when compared with other types of media. Likewise, the selective/differential media managed to identify and describe the behavior of their targeted species. CONCLUSIONS MS-BHI renders a highly efficient, inexpensive and easy-to-prepare cultivation and enumeration alternative for the surrogate ileal microbiota species. Additionally, the selective/differential media can identify and quantify the bacteria of the surrogate ileal microbial community. SIGNIFICANCE AND IMPACT OF STUDY The selected gut microbiota species can represent an in vitro ileal community, forming the basis for future studies on small intestinal microbiota. MS-BHI and the proposed monitoring protocol can be used as a standard for gut microbiota studies that utilize conventional microbiological techniques.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Maria Tonti
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jennifer Williams
- School of Biological Sciences, Faculty of Science, Dublin Institute of Technology, Dublin, Ireland
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
12
|
Abstract
AbstractDescriptions of the small intestinal microbiota are deficient and conflicting. We aimed to get a reliable description of the jejunal bacterial microbiota by investigating samples from two separate jejunal segments collected from the luminal mucosa during surgery. Sixty patients with morbid obesity selected for elective gastric bypass surgery were included in this survey. Samples collected by rubbing a swab against the mucosa of proximal and mid jejunal segments were characterized both quantitatively and qualitatively using a combination of microbial culture, a universal quantitative PCR and 16S deep sequencing. Within the inherent limitations of partial 16S sequencing, bacteria were assigned to the species level. By microbial culture, 53 patients (88.3%) had an estimated bacterial density of < 1600 cfu/ml in both segments whereof 31 (51.7%) were culture negative in both segments corresponding to a bacterial density below 160 cfu/ml. By quantitative PCR, 46 patients (76.7%) had less than 104 bacterial genomes/ml in both segments. The most abundant and frequently identified species by 16S deep sequencing were associated with the oral cavity, most often from the Streptococcus mitis group, the Streptococcus sanguinis group, Granulicatella adiacens/para-adiacens, the Schaalia odontolytica complex and Gemella haemolysans/taiwanensis. In general, few bacterial species were identified per sample and there was a low consistency both between the two investigated segments in each patient and between patients. The jejunal mucosa of fasting obese patients contains relatively few microorganisms and a core microbiota could not be established. The identified microbes are likely representatives of a transient microbiota and there is a high degree of overlap between the most frequently identified species in the jejunum and the recently described ileum core microbiota.
Collapse
|
13
|
Han X, Liu H, Hu L, Zhao N, Xu S, Lin Z, Chen Y. Bacterial Community Characteristics in the Gastrointestinal Tract of Yak ( Bos grunniens) Fully Grazed on Pasture of the Qinghai-Tibetan Plateau of China. Animals (Basel) 2021; 11:ani11082243. [PMID: 34438701 PMCID: PMC8388508 DOI: 10.3390/ani11082243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The Qinghai–Tibetan plateau is considered as the third Pole of the world and is characterized by low oxygen, high altitude, extreme cold weather and strong ultraviolet radiation. Yak, as the main domestic animals raised on the plateau, play various roles in local herdsmen’s lives by supplying necessities such as meat, milk and fuel. Yak are adapted to the harsh environment on the plateau; microbiota in gut equip the hosts with special abilities including adaptability, as illustrated by numerous research projects. Accordingly, the microbes in the gastrointestinal tract of yak must be characteristically profiled as a strategy to adapt to the environment. However, little is known about the microbial community in whole tract of yak; almost all of reported researches focused on rumen. Therefore, in the current study the bacterial community in the gastrointestinal tract of yak was explored using 16S rDNA amplicon sequencing technology, and the community profiling characteristic in each section was clearly elucidated. Abstract In the current research, samples of yak gastrointestinal tracts (GITs) were used to profile the bacterial compositional characteristics using high through-put sequencing technology of 16S RNA amplicon. A total of 6959 OTUs was obtained from 20,799,614 effective tags, among which 751 OTUs were shared by ten sections. A total of 16 known phyla were obtained in all samples—the most abundant phyla were Firmicutes (34.58%), Bacteroidetes (33.96%) and Verrucomicrobia (11.70%). At the genus level, a total of 66 genera were obtained—Rikenellaceae_RC9_gut_group (7.24%), Akkermansia (6.32%) and Ruminococcaceae_UCG-005 (6.14%) were the most abundant. Species of Observed (Sob), Shannon and Chao values of the Stomach were the greatest, followed by the large intestine, while small intestine had the lowest diversity (p < 0.05). Bacteroidete were more abundant in sections from rumen to duodenum; while Firmicutes were the most abundant in sections from jejunum. ABC transporters (7.82%), Aminoacyl-tRNA biosynthesis (4.85%) and Purine metabolism (3.77%) were the most abundant level-3 pathways in all samples. The results of associated correlation analysis indicated that rectum samples might be used as an estimator of rumen bacterial communities and fermentation. The results of this research enrich the current knowledge about the unique animals of the QTP and extend our insight into GITs microecology of various animals.
Collapse
Affiliation(s)
- Xueping Han
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
- Correspondence: (X.H.); (S.X.)
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.H.); (S.X.)
| | - Zhijia Lin
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| | - Yongwei Chen
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| |
Collapse
|
14
|
Li MY, Chen XQ, Wang JY, Wang HT, Xue XM, Ding J, Juhasz AL, Zhu YG, Li HB, Ma LQ. Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile. ENVIRONMENT INTERNATIONAL 2021; 151:106444. [PMID: 33621917 DOI: 10.1016/j.envint.2021.106444] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Oral bioavailability of arsenic (As) determines levels of As exposure via ingestion of As-contaminated soil, however, the role of gut microbiota in As bioavailability has not evaluated in vivo although some in vitro studies have investigated this. Here, we made a comparison in As relative bioavailability (RBA) estimates for a contaminated soil (3913 mg As kg-1) using a mouse model with and without penicillin perturbing gut microbiota and metabolites. Compared to soil exposure alone (2% w/w soil in diets), addition of penicillin (100 or 1000 mg kg-1) reduced probiotic Lactobacillus and sulfate-reducing bacteria Desulfovibrio, enriched penicillin-resistant Enterobacter and Bacteroides, and decreased amino acid concentrations in ileum. With perturbed gut microbiota and metabolic profile, penicillin and soil co-exposed mice accumulated 2.81-3.81-fold less As in kidneys, excreted 1.02-1.35-fold less As in urine, and showed lower As-RBA (25.7-29.0%) compared to mice receiving diets amended with soil alone (56 ± 9.63%). One mechanism accounted for this is the decreased concentrations of amino acids arising from the gut microbiota shift which resulted in elevated iron (Fe) and As co-precipitation, leading to reduced As solubilization in the intestine. Another mechanism was conversion of bioavailable inorganic As to less bioavailable monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) by the antibiotic perturbed microflora. Based on in vivo mouse model, we demonstrated the important role of gut microbiota and gut metabolites in participating soil As solubilization and speciation transformation then affecting As oral bioavailability. Results are useful to better understand the role of gut bacteria in affecting As metabolism and the health risks of As-contaminated soils.
Collapse
Affiliation(s)
- Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jue-Yang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hong-Tao Wang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, People's Republic of China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, People's Republic of China
| | - Jing Ding
- College of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
15
|
Abdallah A, Elemba E, Zhong Q, Sun Z. Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Curr Protein Pept Sci 2021; 21:785-798. [PMID: 32048965 DOI: 10.2174/1389203721666200212095503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Abstract
The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.
Collapse
Affiliation(s)
- Abedin Abdallah
- Key laboratory of Straw Biology and Utilization (The Ministry of Education), Key Lab of Animal Nutrition and Feed
Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Evera Elemba
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Qingzhen Zhong
- Key laboratory of Straw Biology and Utilization (The Ministry of Education), Key Lab of Animal Nutrition and Feed
Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zewei Sun
- Key laboratory of Straw Biology and Utilization (The Ministry of Education), Key Lab of Animal Nutrition and Feed
Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Mendoza-Mejía BD, Medina-Aparicio L, Serrano-Fujarte I, Vázquez A, Calva E, Hernández-Lucas I. Salmonella enterica serovar Typhi genomic regions involved in low pH resistance and in invasion and replication in human macrophages. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Salmonella enterica serovar Typhi, the etiological agent of typhoid fever, causes a systemic life-threatening disease. To carry out a successful infection process, this bacterium needs to survive alkaline and acid pH conditions presented in the mouth, stomach, small intestine, and gallbladder. Therefore, in this work, a genetic screening to identify S. Typhi genes involved in acid and circumneutral pH resistance was performed.
Methods
A collection of S. Typhi mutants deleted of fragments ranging from 6 to 80 kb were obtained by the Datsenko and Wanner method. Bacterial growth rate assays of each mutant were performed to identify S. Typhi genes involved in circumneutral and acid pH resistance. S. Typhi mutants deficient to growth at specific pH were evaluated in their capacity to invade and replicate in phagocytic cells.
Results
In this work, it is reported that S. Typhi ∆F4 (pH 4.5), S. Typhi ∆F44 (pH 4.5, 5.5, and 6.5), and S. Typhi ∆F73 (pH 4.5, 5.5, 6.5, and 7.5) were deficient to grow in the pH indicated. These three mutant strains were also affected in their ability to invade and replicate in human macrophages.
Conclusions
S. Typhi contains defined genomic regions that influence the survival at specific pH values, as well as the invasion and replication inside human cells. Thus, this genetic information probably allows the bacteria to survive in different human compartments for an efficient infection cycle.
Collapse
|
17
|
Xiao SS, Mi JD, Mei L, Liang J, Feng KX, Wu YB, Liao XD, Wang Y. Microbial Diversity and Community Variation in the Intestines of Layer Chickens. Animals (Basel) 2021; 11:ani11030840. [PMID: 33809729 PMCID: PMC8002243 DOI: 10.3390/ani11030840] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
The intestinal microbiota is increasingly recognized as an important component of host health, metabolism and immunity. Early gut colonizers are pivotal in the establishment of microbial community structures affecting the health and growth performance of chickens. White Lohmann layer is a common commercial breed. Therefore, this breed was selected to study the pattern of changes of microbiota with age. In this study, the duodenum, caecum and colorectum contents of white Lohmann layer chickens from same environment control farm were collected and analyzed using 16S rRNA sequencing to explore the spatial and temporal variations in intestinal microbiota. The results showed that the diversity of the microbial community structure in the duodenum, caecum and colorectum increased with age and tended to be stable when the layer chickens reached 50 days of age and the distinct succession patterns of the intestinal microbiota between the duodenum and large intestine (caecum and colorectum). On day 0, the diversity of microbes in the duodenum was higher than that in the caecum and colorectum, but the compositions of intestinal microbes were relatively similar, with facultative anaerobic Proteobacteria as the main microbes. However, the relative abundance of facultative anaerobic bacteria (Escherichia) gradually decreased and was replaced by anaerobic bacteria (Bacteroides and Ruminococcaceae). By day 50, the structure of intestinal microbes had gradually become stable, and Lactobacillus was the dominant bacteria in the duodenum (41.1%). The compositions of dominant microbes in the caecum and colorectum were more complex, but there were certain similarities. Bacteroides, Odoribacter and Clostridiales vadin BB60 group were dominant. The results of this study provide evidence that time and spatial factors are important factors affecting the intestinal microbiota composition. This study provides new knowledge of the intestinal microbiota colonization pattern of layer chickens in early life to improve the intestinal health of layer chickens.
Collapse
Affiliation(s)
- Sha-Sha Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Jian-Dui Mi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Liang Mei
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Juanboo Liang
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Kun-Xian Feng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Yin-Bao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Xin-Di Liao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Yan Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
- Correspondence: ; Tel.: +86-20-85280279; Fax: +86-20-85280740
| |
Collapse
|
18
|
Exploring the impact of intestinal ion transport on the gut microbiota. Comput Struct Biotechnol J 2020; 19:134-144. [PMID: 33425246 PMCID: PMC7773683 DOI: 10.1016/j.csbj.2020.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and the host are intimately connected. The host physiology dictates the intestinal environment through regulation of pH, ion concentration, mucus production, etc., all of which exerts a selective pressure on the gut microbiota. Since different regions of the gastrointestinal tract are characterized by their own physicochemical conditions, distinct microbial communities are present in these locations. While it is widely accepted that the intestinal microbiome influences the host (tight junctions, cytokine/immune responses, diarrhea, etc.), the reciprocal interaction of the host on the microbiome is under-explored. This review aims to address these gaps in knowledge by focusing on how the host intestinal ion transport influences the luminal environment and thereby modulates the gut microbiota composition.
Collapse
Key Words
- CFTR
- CFTR, cystic fibrosis transmembrane regulator
- ClC, chloride channel
- DRA
- DRA, down-regulated in adenoma
- ENaC, epithelial Na+ channel
- GI, gastrointestinal
- GLUT2
- GLUT2, glucose transporter 2
- Gastrointestinal
- Ion transport
- Microbiome
- Microbiota
- NHE2
- NHE2, sodium-hydrogen exchanger isoform 2
- NHE3
- NHE3, sodium-hydrogen exchanger isoform 3
- NKCC1, Na+-K+-2Cl− co-transporter
- OTUs, operational taxonomic units
- SGLT1, sodium glucose co-transporter 1
Collapse
|
19
|
Ji F, Zhang D, Shao Y, Yu X, Liu X, Shan D, Wang Z. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Rep 2020; 10:19978. [PMID: 33203893 PMCID: PMC7673032 DOI: 10.1038/s41598-020-76821-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
Pigeons, as the only altricial birds in poultry, are the primary Trichomonas gallinae (T. gallinae) host. To study the effects of T. gallinae infection on gut microbiota, we compared the microbiota diversity and composition in gastrointestinal (GI) tracts of pigeons at the age of 14 and 21 day with different degrees of T. gallinae infection. Thirty-six nestling pigeons were divided into three groups: the healthy group, low-grade and high-grade trichomonosis group. Then, the crop, small intestine and rectum contents were obtained for sequencing of the 16S rRNA gene V3–V4 hypervariable region. The results showed that the microbiota diversity was higher in crop than in small intestine and rectum, and the abundance of Lactobacillus genus was dominant in small intestine and rectum of healthy pigeons at 21 days. T. gallinae infection decreased the microbiota richness in crop at 14 days. The abundance of the Firmicutes phylum and Lactobacillus genus in small intestine of birds at 21 days were decreased by infection, however the abundances of Proteobacteria phylum and Enterococcus, Atopobium, Roseburia, Aeriscardovia and Peptostreptococcus genus increased. The above results indicated that crop had the highest microbiota diversity among GI tract of pigeons, and the gut microbiota diversity and composition of pigeon squabs were altered by T. gallinae infection.
Collapse
Affiliation(s)
- Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaohan Yu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dacong Shan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
20
|
Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009-2019). Obes Surg 2020; 31:317-326. [PMID: 33130944 DOI: 10.1007/s11695-020-05074-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The changes in the composition and function of gut microbiota affect the metabolic functions (which are mediated by microbial effects) in patients with obesity, resulting in significant physiological regulation in these patients. Most of the studies emphasize that the Western-style diet (high fat and low vegetable consumption) leads to significant changes in the intestinal microbiome in individuals with metabolic syndrome. A deeper understanding of the profiles of gut microbes will contribute to the development of new therapeutic strategies for the management of metabolic syndrome and other metabolic diseases and related disorders. The aim of this review is to evaluate recent experimental evidence outlining the alterations of gut microbiota composition and function in recovery from bariatric surgical operations with an emphasis on sleeve gastrectomy and gastric bypass.
Collapse
|
21
|
Dash HR, Das S. Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver. Appl Microbiol Biotechnol 2020; 104:9497-9512. [PMID: 33001249 DOI: 10.1007/s00253-020-10922-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Estimation of post-mortem time interval (PMI) is a key parameter in the forensic investigation which poses a huge challenge to the medico-legal experts. The succession of microbes within different parts of the human body after death has shown huge potential in the determination of PMI. Human body harbors trillions of microorganisms as commensals. With the death of an individual when biological functions are stopped, these microorganisms behave contrarily along with the invasion of degrading microbes from the environment. Human cadaver becomes a rich source of nutrients due to autolysis of cells, which attracts various invading microorganisms as well as macroorganisms. At different stages of degradation, the succession of microorganisms differs significantly which can be explored for accurate PMI estimation. With the advent of microbial genomics technique and reduction in the cost of DNA sequencing, thanatomicrobiome and epinecrotic community analysis have gained huge attention in PMI estimation. The article summarizes different sources of microorganisms in a human cadaver, their succession pattern, and analytical techniques for application in the field of microbial forensics. KEY POINTS: • Thanatomicrobiome and epinecrotic microbiome develop in postmortem human body. • Lack of metabolic, immune, neuroendocrine systems facilitate microbial succession. • Analysis of postmortem microbial communities predicts accurate PMI.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- Forensic Science Laboratory, Bhadbhada Road, Bhopal, Madhya Pradesh, 462003, India.
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
22
|
Di Ciaula A, Stella A, Bonfrate L, Wang DQH, Portincasa P. Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes (Basel) 2020; 11:1041. [PMID: 32899315 PMCID: PMC7563178 DOI: 10.3390/genes11091041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract hosts the natural reservoir of microbiota since birth. The microbiota includes various bacteria that establish a progressively mutual relationship with the host. Of note, the composition of gut microbiota is rather individual-specific and, normally, depends on both the host genotype and environmental factors. The study of the bacterial profile in the gut demonstrates that dominant and minor phyla are present in the gastrointestinal tract with bacterial density gradually increasing in oro-aboral direction. The cross-talk between bacteria and host within the gut strongly contributes to the host metabolism, to structural and protective functions. Dysbiosis can develop following aging, diseases, inflammatory status, and antibiotic therapy. Growing evidences show a possible link between the microbiota and Familial Mediterranean Fever (FMF), through a shift of the relative abundance in microbial species. To which extent such perturbations of the microbiota are relevant in driving the phenotypic manifestations of FMF with respect to genetic background, remains to be further investigated.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - Alessandro Stella
- Section of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy;
| | - Leonilde Bonfrate
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - David Q. H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| |
Collapse
|
23
|
The cultivable microbiota of the human distal ileum. Clin Microbiol Infect 2020; 27:912.e7-912.e13. [PMID: 32835795 DOI: 10.1016/j.cmi.2020.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The existing literature on the microbiota of the ileum is inconsistent. To further characterize the microbiota, we analysed samples obtained directly from resected ileums used for urinary diversion after radical cystectomy. METHODS We included 150 patients with bladder cancer operated on from March 2016 to March 2019. Samples obtained by rubbing a swab against the ileal mucosa 25 cm from the ileocecal valve were cultivated at the local laboratory. Microbial colonies were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). RESULTS The microbial density of the distal ileum was low. Among our samples, 79% (95% confidence interval (CI) 71%, 84%) harboured less than 1.6 × 104 cfu/mL, whereas 36% (95% CI 28%, 44%) harboured less than 1.6 × 103 cfu/mL. The flora was dominated by viridans streptococci, Candida, Actinomyces, Rothia and Lactobacillus species. Colon-related bacteria i.e. strict anaerobic bacteria, Enterobacteriales and enterococci, were recovered from 14% of the samples. Constipation was associated with increased recovery of colon-related bacteria. Antibiotic treatment prior to surgical procedures did not affect culture results. Increased age was significantly associated with more substantial fungal growth and use of proton pump inhibitors seemed to increase both bacterial and fungal growth. CONCLUSIONS The microbiota of the human distal ileum is sparse and differs significantly from the colonic microbiota both quantitatively and by composition. These findings contradict recent metagenomics studies based on samples collected by retrograde colonoscopy and emphasize the crucial importance of adequate sampling techniques.
Collapse
|
24
|
Stolaki M, Minekus M, Venema K, Lahti L, Smid EJ, Kleerebezem M, Zoetendal EG. Microbial communities in a dynamic in vitro model for the human ileum resemble the human ileal microbiota. FEMS Microbiol Ecol 2020; 95:5531306. [PMID: 31295351 DOI: 10.1093/femsec/fiz096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/10/2019] [Indexed: 01/25/2023] Open
Abstract
The important role for the human small intestinal microbiota in health and disease has been widely acknowledged. However, the difficulties encountered in accessing the small intestine in a non-invasive way in healthy subjects have limited the possibilities to study its microbiota. In this study, a dynamic in vitro model that simulates the human ileum was developed, including its microbiota. Ileostomy effluent and fecal inocula were employed to cultivate microbial communities within the in vitro model. Microbial stability was repetitively achieved after 10 days of model operation with bacterial concentrations reaching on average 107 to 108 16S rRNA copy numbers/ml. High diversities similar to those observed in in vivo ileum samples were achieved at steady state using both fecal and ileostomy effluent inocula. Functional stability based on Short Chain Fatty Acid concentrations was reached after 10 days of operation using fecal inocula, but was not reached with ileostomy effluent as inoculum. Principal Components and cluster analysis of the phylogenetic profiles revealed that in vitro samples at steady state clustered closest to two samples obtained from the terminal ileum of healthy individuals, independent of the inoculum used, demonstrating that the in vitro microbiota at steady state resembles that of the human ileum.
Collapse
Affiliation(s)
- Maria Stolaki
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, the Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.,The Netherlands Organization for Applied Scientific Research (TNO), PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Mans Minekus
- The Netherlands Organization for Applied Scientific Research (TNO), PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Koen Venema
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, the Netherlands.,Maastricht University - Campus Venlo, Centre for Healthy Eating & Food Innovation, St. Jansweg 20, 5928 RC Venlo, The Netherlands
| | - Leo Lahti
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.,Department of Mathematics and Statistics, FI-20014 University of Turku, Finland
| | - Eddy J Smid
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, the Netherlands.,Laboratory of Food Microbiology, Wageningen University & Research, P.O.Box 17, 6700 AA Wageningen, the Netherlands
| | - Michiel Kleerebezem
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, the Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.,Host-microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, the Netherlands
| | - Erwin G Zoetendal
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, the Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
25
|
Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, Cao H. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front Cell Infect Microbiol 2020; 10:151. [PMID: 32328469 PMCID: PMC7161087 DOI: 10.3389/fcimb.2020.00151] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
The development of next-generation sequencing technology has enabled researchers to explore and understand the gut microbiome from a broader and deeper perspective. However, the results of different studies on gut microbiota are highly variable even in the same disease, which makes it difficult to guide clinical diagnosis and treatment. The ideal sampling method should be non-invasive, involve little cross-contamination or bowel preparation, and collect gut microbiota at different sites. Currently, sequencing technologies are usually based on samples collected from feces, mucosal biopsy, intestinal fluid, etc. However, different parts of the gastrointestinal tract possess various physiological characteristics that are essential for particular species of living microbiota. Moreover, current sampling methods are somewhat defective. For example, fecal samples are just a proxy for intestinal microbiota, while biopsies are invasive for patients and not suitable for healthy controls. In this review, we summarize the current sampling methods and their advantages and shortcomings. New sampling technologies, such as the Brisbane Aseptic Biopsy Device and the intelligent capsule, are also mentioned to inspire the development of future precise description methods of the gut microbiome.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Gang Wang
- Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Digestive Disease, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Abstract
Advances in our understanding of how the gut microbiota contributes to human health and diseases have expanded our insight into how microbial composition and function affect the human host. Heart failure is associated with splanchnic circulation congestion, leading to bowel wall oedema and impaired intestinal barrier function. This situation is thought to heighten the overall inflammatory state via increased bacterial translocation and the presence of bacterial products in the systemic blood circulation. Several metabolites produced by gut microorganisms from dietary metabolism have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. These findings suggest that the gut microbiome functions like an endocrine organ by generating bioactive metabolites that can directly or indirectly affect host physiology. In this Review, we discuss several newly discovered gut microbial metabolic pathways, including the production of trimethylamine and trimethylamine N-oxide, short-chain fatty acids, and secondary bile acids, that seem to participate in the development and progression of cardiovascular diseases, including heart failure. We also discuss the gut microbiome as a novel therapeutic target for the treatment of cardiovascular disease, and potential strategies for targeting intestinal microbial processes.
Collapse
Affiliation(s)
- W H Wilson Tang
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.
| | - Daniel Y Li
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Stanley L Hazen
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Kumar S, Adhikari P, Oakley B, Kim WK. Changes in cecum microbial community in response to total sulfur amino acid (TSAA: DL-methionine) in antibiotic-free and supplemented poultry birds. Poult Sci 2020; 98:5809-5819. [PMID: 31347673 DOI: 10.3382/ps/pez380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/24/2019] [Indexed: 01/15/2023] Open
Abstract
The effect of essential total sulfur amino acids (TSAA) like methionine and cysteine on the cecal microbiome of broilers was investigated at 2 different time points (days 21 and 42) of broiler rearing. A total of 360-day-old Cobb male broiler chicks were randomly distributed to 6 dietary treatments in a 2 × 3 factorial arrangement, with 2 levels of antibiotic growth promoters (AGP: 0 and 0.05%) and 3 levels of TSAA (DL-methionine) either for starter (0.7, 0.8, and 0.9%) or finisher chicks (0.52, 0.62, and 0.72%), labeled as diets 1 to 6. Cecal digesta from each replicate (n = 10) were sampled on days 21 and 42. DNA was extracted for the amplification of the V4 region of bacterial 16S rRNA genes and subjected to Illumina sequencing. Bioinformatic analyses were performed using QIIME, Mothur, and ad hoc tools and functional profiles of the inferred metagenome were analyzed using PICRUST. Statistical difference was determined by 2-way ANOVA and PERMANOVA. Clustering of cecal communities using PCoA showed clear separation of microbial communities based on age (P < 0.05) of birds and between low and medium/ high levels of TSAA (DL-methionine). At day 21, bacterial richness and diversity were higher than at day 42 where Clostridium cluster XI and Lactobacillus were found most abundant. No variability in taxonomic richness at the genus level was observed with AGP and DL-methionine supplementation. Interbird variation for richness was greater at day 42 compared to day 21. The mean fold difference of richness was greater (1.5 mean fold) with diets 1 and 6, suggesting interactive effects of AGP and TSAA (DL-methionine) in the diet. KEGG function profiles calculated by PICRUST suggest that the cecal microbiome increased glycolysis and energy generation correlated with increased dietary TSAA (DL-methionine) supplementation levels during the late broiler growth period (day 42). This study increases our knowledge of microbial dynamics and functions that are relevant to host nutrition and performance that may help us tailoring alternative strategies for raising poultry birds under antibiotic-free conditions.
Collapse
Affiliation(s)
- S Kumar
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - P Adhikari
- Department of Poultry Science, University of Georgia, Athens, GA 30602.,Department of Poultry Science, Mississippi State University, Starkville, MS 39762
| | - B Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| |
Collapse
|
28
|
Korsten SGPJ, Smits EAW, Garssen J, Vromans H. Modeling of the luminal butyrate concentration to design an oral formulation capable of achieving a pharmaceutical response. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Kim B, Choi HN, Yim JE. Effect of Diet on the Gut Microbiota Associated with Obesity. J Obes Metab Syndr 2019; 28:216-224. [PMID: 31909364 PMCID: PMC6939700 DOI: 10.7570/jomes.2019.28.4.216] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is abnormal or excessive fat accumulation that is associated with progression of metabolic diseases including type 2 diabetes mellitus, cardiovascular disease, nonalcoholic fatty liver disease, and cancer. Gut microbiota (GM) have received much attention as essential factors in development and progression of obesity. The diversity, composition, and metabolic activity of GM are closely associated with nutrient intake and dietary pattern. Scientific evidence supports the idea that dietary pattern directly changes the GM profile; therefore, diet is a crucial component related to interactions between GM and obesity progression. A literature review showed that dietary factors such as probiotics, prebiotics, fat, fatty acids, and fiber dramatically alter the GM profile related to obesity. Furthermore, different dietary patterns result in different GM composition and activity that can contribute to amelioration of obesity.
Collapse
Affiliation(s)
- Bohkyung Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Ha-Neul Choi
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Jung-Eun Yim
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| |
Collapse
|
30
|
Gil-Sánchez I, Cueva C, Tamargo A, Quintela JC, de la Fuente E, Walker AW, Moreno-Arribas MV, Bartolomé B. Application of the dynamic gastrointestinal simulator (simgi®) to assess the impact of probiotic supplementation in the metabolism of grape polyphenols. Food Res Int 2019; 129:108790. [PMID: 32036893 DOI: 10.1016/j.foodres.2019.108790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/20/2023]
Abstract
In this paper, the Dynamic Gastrointestinal Simulator (simgi®) is used as a model to the study the metabolic activity of probiotics at the intestinal level, and in particular, to assess the impact of probiotic supplementation in the microbial metabolism of grape polyphenols. Two independent simulations using fecal samples from two healthy volunteers were carried out. Changes in microbiota composition and in metabolic activity were assessed by qPCR and 16S rRNA gene sequencing and by analyses of phenolic metabolites and ammonium ions (NH4+). The strain Lactobacillus plantarum CLC 17 was successfully implanted in the colon compartments of the simgi® after daily feeding of 2 × 1010 CFU/day for 7 days. Overall, no changes in bacterial diversity were observed after probiotic implantation. In comparison to the digestion of the grape polyphenols on their own, the inclusion of L. plantarum CLC 17 in the simgi® colon compartments led to a greater formation of phenolic metabolites such as benzoic acids, probably by the breakdown of high-molecular-weight procyanidin polymers. These results provide evidence that the probiotic strain Lactobacillus plantarum CLC 17 may improve the metabolism of dietary polyphenols when used as a food ingredient.
Collapse
Affiliation(s)
- Irene Gil-Sánchez
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Carolina Cueva
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Jose C Quintela
- Natac S A, Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | | | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
31
|
Vasapolli R, Schütte K, Schulz C, Vital M, Schomburg D, Pieper DH, Vilchez-Vargas R, Malfertheiner P. Analysis of Transcriptionally Active Bacteria Throughout the Gastrointestinal Tract of Healthy Individuals. Gastroenterology 2019; 157:1081-1092.e3. [PMID: 31175864 DOI: 10.1053/j.gastro.2019.05.068] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The microbiome varies along the human gastrointestinal (GI) tract with exposure to luminal and mucosal factors. We analyzed active bacterial communities at 8 locations along the GI tract using high-throughput sequencing techniques. METHODS We collected saliva, mucosal, and fecal samples from healthy adults (10 men and 11 women; mean age, 59 ± 12.3 years) who underwent upper and lower GI tract endoscopy in Germany from December 2015 through September 2016. Biopsies were taken from stomach, antrum, corpus, duodenum, terminal ileum, ascending colon, and descending colon. RNA was extracted from all samples and reverse transcribed into complementary DNA; V1-V2 regions of 16S ribosomal RNA genes were amplified and sequenced on an Illumina MiSeq platform. Abundances of the taxa in all taxonomic ranks in each sample type were used to construct sample-similarity matrices with the Bray-Curtis algorithm. Significant differences between a priori-defined groups were evaluated using analysis of similarity. RESULTS After taxonomic annotation, 4045 phylotypes, belonging to 169 genera and 14 different phyla, were identified. Each subject had a different bacterial community. We identified distinct microbial consortia in saliva, upper GI tract, lower GI tract, and fecal samples. The predominant genera in the upper GI tract (Gemella, Veillonella, Neisseria, Fusobacterium, Streptococcus, Prevotella, Pseudomonas, and Actinomyces) were almost absent from the lower GI tract, where the microbial communities mainly comprised Faecalibacterium, Ruminococcus, and Bacteroides. The bacterial communities in the upper GI tract were characterized by greater richness and heterogeneity (measured by the Shannon index) than those in the lower GI tract. We detected Helicobacter pylori in only the upper GI tract. CONCLUSIONS In an analysis of saliva, mucosal, and fecal samples from 21 healthy adults, we found each individual, and each GI region, to have a different bacterial community. The fecal microbiome is not representative of the mucosal microbiome. We propose a systematic method to analyze the bacterial communities of the GI tract.
Collapse
Affiliation(s)
- Riccardo Vasapolli
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany; Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany
| | - Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany; Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken, Marienhospital, Osnabrück, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany; Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Dirk Schomburg
- Department for Biometrics and Medical Informatics, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany; Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany.
| |
Collapse
|
32
|
Kastl AJ, Terry NA, Wu GD, Albenberg LG. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cell Mol Gastroenterol Hepatol 2019; 9:33-45. [PMID: 31344510 PMCID: PMC6881639 DOI: 10.1016/j.jcmgh.2019.07.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Despite growing literature characterizing the fecal microbiome and its association with health and disease, few studies have analyzed the microbiome of the small intestine. Here, we examine what is known about the human small intestinal microbiota in terms of community structure and functional properties. We examine temporal dynamics of select bacterial populations in the small intestine, and the effects of dietary carbohydrates and fats on shaping these populations. We then evaluate dysbiosis in the small intestine in several human disease models, including small intestinal bacterial overgrowth, short-bowel syndrome, pouchitis, environmental enteric dysfunction, and irritable bowel syndrome. What is clear is that the bacterial biology, and mechanisms of bacteria-induced pathophysiology, are enormously broad and elegant in the small intestine. Studying the small intestinal microbiota is challenged by rapidly fluctuating environmental conditions in these intestinal segments, as well as the complexity of sample collection and bioinformatic analysis. Because the functionality of the digestive tract is determined primarily by the small intestine, efforts must be made to better characterize this unique and important microbial ecosystem.
Collapse
Affiliation(s)
- Arthur J. Kastl
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Arthur J. Kastl Jr, MD, Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, 7NW, Philadelphia, Pennsylvania 19104. fax: (215) 590-3606.
| | - Natalie A. Terry
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gary D Wu
- Division of Gastroenterology, Hepatology, and Nutrition, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lindsey G. Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Lin Y, Zhang X, Cheng L, Yang H. The regulation effect of EGCG3''Me phospholipid complex on gut flora of a high-fat diet-induced obesity mouse model. J Food Biochem 2019; 43:e12880. [PMID: 31353696 DOI: 10.1111/jfbc.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 01/11/2023]
Abstract
Despite the remarkable bioactivity, the potential of EGCG3''Me to be fully utilized has not yet been completely elucidated due to its low absorption. It has been reported that phospholipids can act as agents to improve the absorption of antioxidants. Therefore, EGCG3''Me phospholipid complex (EPC) was utilized in this study to investigate its activity on gut flora of an obesity mouse model. After the administration of the complex for 8 weeks, the relative abundance of Bacteroidetes was significantly increased (p < 0.05); meanwhile, the relative abundance of Firmicutes was decreased, suggesting the potential anti-obesity effect of the complex. Furthermore, the expression of Muc2 and Reg3g were directly upregulated by EPC intervention. PRACTICAL APPLICATIONS: Although EGCG3''Me has shown excellent biological benefits, the presence of multiple hydroxyl groups and high polar properties hindered its application. This study indicated the potential of phospholipids in promoting the bioavailability of EGCG3''Me and might contribute to the production of functional food with better tea catechins absorption.
Collapse
Affiliation(s)
- Yuhai Lin
- China Idea & Innovation Center, Hormel Group, Shanghai, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hua Yang
- Faculty of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, P.R. China
| |
Collapse
|
34
|
Borah D, Gogoi O, Adhikari C, Kakoti B. Isolation and characterization of the new indigenous Staphylococcus sp. DBOCP06 as a probiotic bacterium from traditionally fermented fish and meat products of Assam state. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2016.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Debajit Borah
- Centre for Studies in Biotechnology, Dibrugarh University, 786004, India
| | - Olee Gogoi
- Centre for Studies in Biotechnology, Dibrugarh University, 786004, India
| | - Chanakya Adhikari
- Centre for Studies in Biotechnology, Dibrugarh University, 786004, India
| | - B.B. Kakoti
- Centre for Studies in Biotechnology, Dibrugarh University, 786004, India
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004, India
| |
Collapse
|
35
|
Liu Y, Zheng Z, Yu L, Wu S, Sun L, Wu S, Xu Q, Cai S, Qin N, Bao W. Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Sci Rep 2019; 9:3453. [PMID: 30837612 PMCID: PMC6400902 DOI: 10.1038/s41598-019-40235-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Intestinal microbiota plays a crucial role in immune development and disease progression in mammals from birth onwards. The gastrointestinal tract of newborn mammals is rapidly colonized by microbes with tremendous biomass and diversity. Understanding how this complex of segmental communities evolves in different gastrointestinal sites over time has great biological significance and medical implications. However, most previous reports examining intestinal microbiota have focused on fecal samples, a strategy that overlooks the spatial microbial dynamics in different intestinal segments. Using intestinal digesta from six intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of newborn piglets, we herein conducted a large-scale 16S rRNA gene sequencing-based study to characterize the segmental dynamics of porcine gut microbiota at eight postnatal intervals (days 1, 7, 14, 21, 28, 35, 120 and 180). A total of 4,465 OTUs were obtained and showed that the six intestinal segments could be divided into three parts; in the duodenum-jejunum section, the most abundant genera included Lactobacillus and Bacteroides; in the ileum, Fusobacterium and Escherichia; and in the cecum-rectum section, Prevotella. Although the microbial communities of the piglets were similar among the six intestinal segments on postnatal day 1, they evolved and quickly differentiated at later intervals. An examination of time-dependent alterations in the dominant microbes revealed that the microbiome in the large intestine was very different from and much more stable than that in the small intestine. The gut microbiota in newborn piglets exhibited apparent temporal and spatial variations in different intestinal segments. The database of gut microbes in piglets could be a referable resource for future studies on mammalian gut microbiome development in early host growth phases.
Collapse
Affiliation(s)
- Ying Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,School of Life Science, Huaiyin Normal University, Huaian, 223001, China
| | - Zhijun Zheng
- Realbio Genomics Institute, Shanghai, 200123, China.,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China
| | - Lihuai Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Sen Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Li Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Qian Xu
- Realbio Genomics Institute, Shanghai, 200123, China.,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China
| | - Shunfeng Cai
- Realbio Genomics Institute, Shanghai, 200123, China.,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China
| | - Nan Qin
- Realbio Genomics Institute, Shanghai, 200123, China. .,Shenzhen Jinrui Biotechnology, Co. Ltd., Shenzhen, 518000, China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
36
|
Ma N, Ma X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects. Compr Rev Food Sci Food Saf 2018; 18:221-242. [DOI: 10.1111/1541-4337.12401] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
- College of Animal Science and Technology; Shihezi Univ.; Xinjiang 832003 China
- Dept. of Internal Medicine; Dept. of Biochemistry; Univ. of Texas Southwestern Medical Center; Dallas TX 75390 USA
| |
Collapse
|
37
|
Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci Rep 2018; 8:14147. [PMID: 30237565 PMCID: PMC6148029 DOI: 10.1038/s41598-018-32375-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
This study investigated the effect of supplementing the diet of calves with two direct fed microbials (DFMs) (Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB) and Lactobacillus acidophilus BT1386 (LA)), and an antibiotic growth promoter (ATB). Thirty-two dairy calves were fed a control diet (CTL) supplemented with SCB or LA or ATB for 96 days. On day 33 (pre-weaning, n = 16) and day 96 (post-weaning, n = 16), digesta from the rumen, ileum, and colon, and mucosa from the ileum and colon were collected. The bacterial diversity and composition of the gastrointestinal tract (GIT) of pre- and post-weaned calves were characterized by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The DFMs had significant impact on bacteria community structure with most changes associated with treatment occurring in the pre-weaning period and mostly in the ileum but less impact on bacteria diversity. Both SCB and LA significantly reduced the potential pathogenic bacteria genera, Streptococcus and Tyzzerella_4 (FDR ≤ 8.49E-06) and increased the beneficial bacteria, Fibrobacter (FDR ≤ 5.55E-04) compared to control. Other potential beneficial bacteria, including Rumminococcaceae UCG 005, Roseburia and Olsenella, were only increased (FDR ≤ 1.30E-02) by SCB treatment compared to control. Furthermore, the pathogenic bacterium, Peptoclostridium, was reduced (FDR = 1.58E-02) by SCB only while LA reduced (FDR = 1.74E-05) Ruminococcus_2. Functional prediction analysis suggested that both DFMs impacted (p < 0.05) pathways such as cell cycle, bile secretion, proteasome, cAMP signaling pathway, thyroid hormone synthesis pathway and dopaminergic synapse pathway. Compared to the DFMs, ATB had similar impact on bacterial diversity in all GIT sites but greater impact on the bacterial composition of the ileum. Overall, this study provides an insight on the bacteria genera impacted by DFMs and the potential mechanisms by which DFMs affect the GIT microbiota and may therefore facilitate development of DFMs as alternatives to ATB use in dairy calf management.
Collapse
|
38
|
Mello CS, Rodrigues MSDC, Filho HBDA, Melli LCFL, Tahan S, Pignatari ACC, de Morais MB. Fecal microbiota analysis of children with small intestinal bacterial overgrowth among residents of an urban slum in Brazil. J Pediatr (Rio J) 2018; 94:483-490. [PMID: 29049893 DOI: 10.1016/j.jped.2017.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 09/08/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To analyze the fecal microbiota composition of children living in an urban slum in Brazil, with or without small intestinal bacterial overgrowth, and to investigate the occurrence of stunting and anemia. METHODS A total of 100 children were studied, aged 5-11 years, from the municipality of Osasco, São Paulo. Small intestinal bacterial overgrowth was screened through hydrogen and methane breath test with lactulose. Weight and height were measured, and the height-for-age and body mass-for-age anthropometric indexes were calculated. The occurrence of anemia was investigated by capillary hemoglobin. Analysis of bacterial phylum, genus, and species was performed by real-time polymerase chain reaction in fecal samples. RESULTS Small intestinal bacterial overgrowth was identified in 61.0% of the children. A lower mean of height-for-age Z-score ([-0.48±0.90] vs. [-0.11±0.97]; p=0.027), as well as capillary hemoglobin ([12.61±1.03g/dL] vs. [13.44±1.19g/dL]; p<0.001) was demonstrated in children with SIBO when compared with children without small intestinal bacterial overgrowth. Children with small intestinal bacterial overgrowth presented a higher frequency of Salmonella spp., when compared to those without small intestinal bacterial overgrowth (37.7% vs. 10.3%; p=0.002). Higher counts of total Eubacteria (p=0.014) and Firmicutes (p=0.038) were observed in children without small intestinal bacterial overgrowth; however, a higher count of Salmonella (p=0.002) was found in children with small intestinal bacterial overgrowth. CONCLUSION Children who lived in a slum and were diagnosed with small intestinal bacterial overgrowth showed lower H/A Z-scores and hemoglobin levels. Furthermore, differences were observed in the fecal microbiota of children with small intestinal bacterial overgrowth, when compared to those without it; specifically, a higher frequency and count of Salmonella, and lower counts of Firmicutes and total Eubacteria.
Collapse
Affiliation(s)
- Carolina Santos Mello
- Universidade Federal de São Paulo (UNIFESP), Departamento de Pediatria, Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Mirian Silva do Carmo Rodrigues
- Universidade Federal de São Paulo (UNIFESP), Departamento de Pediatria, Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Humberto Bezerra de Araújo Filho
- Universidade Federal de São Paulo (UNIFESP), Departamento de Pediatria, Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Lígia Cristina Fonseca Lahoz Melli
- Universidade Federal de São Paulo (UNIFESP), Departamento de Pediatria, Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Soraia Tahan
- Universidade Federal de São Paulo (UNIFESP), Departamento de Pediatria, Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Antônio Carlos Campos Pignatari
- Universidade Federal de São Paulo (UNIFESP), Departamento de Pediatria, Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Mauro Batista de Morais
- Universidade Federal de São Paulo (UNIFESP), Departamento de Pediatria, Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Fecal microbiota analysis of children with small intestinal bacterial overgrowth among residents of an urban slum in Brazil. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2018. [DOI: 10.1016/j.jpedp.2017.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Liu YW, Liong MT, Tsai YC. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J Microbiol 2018; 56:601-613. [DOI: 10.1007/s12275-018-8079-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
|
41
|
Czaja AJ. Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Dig Dis Sci 2018; 63:1706-1725. [PMID: 29671161 DOI: 10.1007/s10620-018-5072-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis is a consequence of perturbations in homeostatic mechanisms that maintain self-tolerance but are incompletely understood. The goals of this review are to describe key pathogenic pathways that have been under-evaluated or unassessed in autoimmune hepatitis, describe insights that may shape future therapies, and encourage investigational efforts. The T cell immunoglobulin mucin proteins constitute a family that modulates immune tolerance by limiting the survival of immune effector cells, clearing apoptotic bodies, and expanding the population of granulocytic myeloid-derived suppressor cells. Galectins influence immune cell migration, activation, proliferation, and survival, and T cell exhaustion can be induced and exploited as a possible management strategy. The programmed cell death-1 protein and its ligands comprise an antigen-independent inhibitory axis that can limit the performance of activated T cells by altering their metabolism, and epigenetic changes can silence pro-inflammatory genes or de-repress anti-inflammatory genes that affect disease severity. Changes in the intestinal microbiota and permeability of the intestinal mucosal barrier can be causative or consequential events that affect the occurrence and phenotype of immune-mediated disease, and they may help explain the female propensity for autoimmune hepatitis. Perturbations within these homeostatic mechanisms have been implicated in experimental models and limited clinical experiences, and they have been favorably manipulated by monoclonal antibodies, recombinant molecules, pharmacological agents or dietary supplements. In conclusion, pathogenic mechanisms that have been implicated in other systemic immune-mediated and liver diseases but under-evaluated or unassessed in autoimmune hepatitis warrant consideration and rigorous evaluation.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
42
|
Willebrand R, Kleinewietfeld M. The role of salt for immune cell function and disease. Immunology 2018; 154:346-353. [PMID: 29465812 DOI: 10.1111/imm.12915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/22/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022] Open
Abstract
The immune system evolved to protect organisms from invading pathogens. A network of pro- and anti-inflammatory cell types equipped with special effector molecules guarantees efficient elimination of intruders like viruses and bacteria. However, imbalances can lead to an excessive response of effector cells incurring autoimmune or allergic diseases. An interplay of genetic and environmental factors contributes to autoimmune diseases and recent studies provided evidence for an impact of dietary habits on the immune status and related disorders. Western societies underwent a change in lifestyle associated with changes in food consumption. Salt (sodium chloride) is one component prevalent in processed food frequently consumed in western countries. Here we summarize recent advances in understanding the mechanisms behind the effects of sodium chloride on immune cells like regulatory T cells (Tregs) and T helper (TH ) 17 cells and its implication as a risk factor for several diseases.
Collapse
Affiliation(s)
- Ralf Willebrand
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
43
|
Microbial interactions with the intestinal epithelium and beyond: Focusing on immune cell maturation and homeostasis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:47-54. [PMID: 30294506 DOI: 10.1007/s40139-018-0165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbial metabolites influence the function of epithelial, endothelial and immune cells in the intestinal mucosa. Microbial metabolites like SCFAs and B complex vitamins direct macrophage polarization whereas microbial derived biogenic amines modulate intestinal epithelium and immune response. Aberrant bacterial lipopolysaccharide-mediated signaling may be involved in the pathogenesis of chronic intestinal inflammation and colorectal carcinogenesis. Our perception of human microbes has changed from that of opportunistic pathogens to active participants maintaining intestinal and whole body homeostasis. This review attempts to explain the dynamic and enriched interactions between the intestinal epithelial mucosa and commensal bacteria in homeostasis maintenance.
Collapse
|
44
|
Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci 2018; 75:149-160. [PMID: 29124307 PMCID: PMC5752736 DOI: 10.1007/s00018-017-2693-8] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023]
Abstract
Since the early days of the intestinal microbiota research, mouse models have been used frequently to study the interaction of microbes with their host. However, to translate the knowledge gained from mouse studies to a human situation, the major spatio-temporal similarities and differences between intestinal microbiota in mice and humans need to be considered. This is done here with specific attention for the comparative physiology of the intestinal tract, the effect of dietary patterns and differences in genetics. Detailed phylogenetic and metagenomic analysis showed that while many common genera are found in the human and murine intestine, these differ strongly in abundance and in total only 4% of the bacterial genes are found to share considerable identity. Moreover, a large variety of murine strains is available yet most of the microbiota research is performed in wild-type, inbred strains and their transgenic derivatives. It has become increasingly clear that the providers, rearing facilities and the genetic background of these mice have a significant impact on the microbial composition and this is illustrated with recent experimental data. This may affect the reproducibility of mouse microbiota studies and their conclusions. Hence, future studies should take these into account to truly show the effect of diet, genotype or environmental factors on the microbial composition.
Collapse
Affiliation(s)
- Floor Hugenholtz
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE, Wageningen, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE, Wageningen, The Netherlands.
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, P.O. Box 21, 00014, Helsinki, Finland.
| |
Collapse
|
45
|
Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial Ecology along the Gastrointestinal Tract. Microbes Environ 2017; 32:300-313. [PMID: 29129876 PMCID: PMC5745014 DOI: 10.1264/jsme2.me17017] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the human gastrointestinal (GI) tract traverses a number of environmental, chemical, and physical conditions because it runs from the oral cavity to the anus. These differences in conditions along with food or other ingested substrates affect the composition and density of the microbiota as well as their functional roles by selecting those that are the most suitable for that environment. Previous studies have mostly focused on Bacteria, with the number of studies conducted on Archaea, Eukarya, and Viruses being limited despite their important roles in this ecosystem. Furthermore, due to the challenges associated with collecting samples directly from the inside of humans, many studies are still exploratory, with a primary focus on the composition of microbiomes. Thus, mechanistic studies to investigate functions are conducted using animal models. However, differences in physiology and microbiomes need to be clarified in order to aid in the translation of animal model findings into the context of humans. This review will highlight Bacteria, Archaea, Fungi, and Viruses, discuss differences along the GI tract of healthy humans, and perform comparisons with three common animal models: rats, mice, and pigs.
Collapse
Affiliation(s)
- Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Hang Lu
- Department of Animal Science, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Tianming Yao
- Department of Food Science, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue UniversityWest Lafayette, Indiana 47907USA
| |
Collapse
|
46
|
Sharanova NE, Ninnemann J, Bondareva MA, Semin YK, Nomokonova AV, Kruglov AA. Analysis of the Specificity of IgA Antibodies Produced in the Mouse Small Intestine. Mol Biol 2017. [DOI: 10.1134/s0026893317060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P. A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One 2017; 12:e0186415. [PMID: 29023515 PMCID: PMC5638566 DOI: 10.1371/journal.pone.0186415] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/29/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of multidrug-resistant enterococci (MDRE) and particularly vancomycin-resistant enterococci (VRE) is considered a serious health problem worldwide, causing the need for new antimicrobials. The aim of this study was to discover and characterize bacteriocin against clinical isolates of MDRE and VRE. Over 10,000 bacterial isolates from water, environment and clinical samples were screened. E. faecalis strain 478 isolated from human feces produced the highest antibacterial activity against several MDRE and VRE strains. The optimum condition for bacteriocin production was cultivation in MRS broth at 37°C, pH 5-6 for 16 hours. The bacteriocin-like substance produced from E. faecalis strain EF478 was stable at 60°C for at least 1 hour and retained its antimicrobial activity after storage at -20°C for 1 year, at 4°C for 6 months, and at 25°C for 2 months. A nano-HPLC electrospray ionization multi-stage tandem mass spectrometry (nLC-ESI-MS/MS) analysis showed that the amino acid sequences of the bacteriocin-like substance was similar to serine protease of E. faecalis, gi|488296663 (NCBI database), which has never been reported as a bacteriocin. This study reported a novel bacteriocin with high antibacterial activity against VRE and MDRE.
Collapse
Affiliation(s)
| | - Kanokrat Siripanichgon
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
Abstract
OBJECTIVE During the last decade, experimental and observational studies have shown that patients with inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) may have an altered intestinal microbial composition compared with healthy individuals. However, no uniform microbial signature has as yet been detected for either IBD or IBS. This review summarizes the current knowledge of microbial dysbiosis and its potential relationship to the pathophysiology in IBD and IBS. METHODS A selective review was conducted to summarize the current knowledge of gut microbiota in the pathophysiology of IBD and IBS. RESULTS Experimental and observational studies provide good evidence for intestinal microbial dysbiosis in subgroups of IBD and IBS. Still, no uniform disease pattern has been detected. This is most likely due to the heterogeneous nature of IBD and IBS, in combination with the effects of intrinsic and extrinsic factors. Such intrinsic factors include genetics, the gastrointestinal environment, and the host immune system, whereas extrinsic factors include early life diet, breastfeeding, and method of infant delivery. CONCLUSIONS Recent and ongoing work to define microbial dysbiosis in IBD and IBS shows promise, but future well-designed studies with well-characterized study individuals are needed. It is likely that the microbial dysbiosis in IBD and IBS is dependent on the natural disease course of IBD and symptom pattern in IBS. Therefore, assessment of the entire microbiota along the gastrointestinal tract, in relationship to confounding factors, symptom fluctuations, and other pathophysiological factors, is needed for further understanding of the etiology of these common diseases.
Collapse
|
49
|
Gerritsen J, Hornung B, Renckens B, van Hijum SA, Martins dos Santos VA, Rijkers GT, Schaap PJ, de Vos WM, Smidt H. Genomic and functional analysis of Romboutsia ilealis CRIB T reveals adaptation to the small intestine. PeerJ 2017; 5:e3698. [PMID: 28924494 PMCID: PMC5598433 DOI: 10.7717/peerj.3698] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/26/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The microbiota in the small intestine relies on their capacity to rapidly import and ferment available carbohydrates to survive in a complex and highly competitive ecosystem. Understanding how these communities function requires elucidating the role of its key players, the interactions among them and with their environment/host. METHODS The genome of the gut bacterium Romboutsia ilealis CRIBT was sequenced with multiple technologies (Illumina paired-end, mate-pair and PacBio). The transcriptome was sequenced (Illumina HiSeq) after growth on three different carbohydrate sources, and short chain fatty acids were measured via HPLC. RESULTS We present the complete genome of Romboutsia ilealis CRIBT, a natural inhabitant and key player of the small intestine of rats. R. ilealis CRIBT possesses a circular chromosome of 2,581,778 bp and a plasmid of 6,145 bp, carrying 2,351 and eight predicted protein coding sequences, respectively. Analysis of the genome revealed limited capacity to synthesize amino acids and vitamins, whereas multiple and partially redundant pathways for the utilization of different relatively simple carbohydrates are present. Transcriptome analysis allowed identification of the key components in the degradation of glucose, L-fucose and fructo-oligosaccharides. DISCUSSION This revealed that R. ilealis CRIBT is adapted to a nutrient-rich environment where carbohydrates, amino acids and vitamins are abundantly available.
Collapse
Affiliation(s)
- Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
| | - Bastian Hornung
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Bernadette Renckens
- Nijmegen Centre for Molecular Life Sciences, CMBI, Radboud UMC, Nijmegen, The Netherlands
| | - Sacha A.F.T. van Hijum
- Nijmegen Centre for Molecular Life Sciences, CMBI, Radboud UMC, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Vitor A.P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Ger T. Rijkers
- Laboratory for Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
- Department of Science, University College Roosevelt, Middelburg, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Departments of Microbiology and Immunology and Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
50
|
Bergmann GT. Microbial community composition along the digestive tract in forage- and grain-fed bison. BMC Vet Res 2017; 13:253. [PMID: 28818110 PMCID: PMC5561592 DOI: 10.1186/s12917-017-1161-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/07/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Diversity and composition of microbial communities was compared across the 13 major sections of the digestive tract (esophagus, reticulum, rumen, omasum, abomasum, duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and rectum) in two captive populations of American bison (Bison bison), one of which was finished on forage, the other on grain. RESULTS Microbial diversity fell to its lowest levels in the small intestine, with Bacteroidetes reaching their lowest relative abundance in that region, while Firmicutes and Euryarchaeota attained their highest relative abundances there. Gammaproteobacteria were most abundant in the esophagus, small intestine, and colon. The forage-finished bison population exhibited higher overall levels of diversity, as well as a higher relative abundance of Bacteroidetes in most gut sections. The grain-finished bison population exhibited elevated levels of Firmicutes and Gammaproteobacteria. Within each population, different sections of the digestive tract exhibited divergent microbial community composition, although it was essentially the same among sections within a given region of the digestive tract. Shannon diversity was lowest in the midgut. For each section of the digestive tract, the two bison populations differed significantly in microbial community composition. CONCLUSIONS Similarities among sections indicate that the esophagus, reticulum, rumen, omasum, and abomasum may all be considered to house the foregut microbiota; the duodenum, jejunum, and ileum may all be considered to house the small intestine or midgut microbiota; and the cecum, ascending colon, transverse colon, descending colon, and rectum may all be considered to house the hindgut microbiota. Acid from the stomach, bile from the gall bladder, digestive enzymes from the pancreas, and the relatively low retention time of the small intestine may have caused the midgut's low microbial diversity. Differences in microbial community composition between populations may have been most strongly influenced by differences in diet (forage or grain). The clinical condition of the animals used in the present study was not evaluated, so further research is needed to establish whether the microbial profiles of some bison in this study are indeed indicative of dysbiosis, a predisposing factor to ruminal acidosis and its sequelae.
Collapse
Affiliation(s)
- Gaddy T Bergmann
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Ramaley N122, Campus Box 334, Boulder, Colorado, 80309-0334, USA. .,Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Box 216 UCB, Boulder, Colorado, 80309-0216, USA.
| |
Collapse
|