1
|
Moka MK, Sriram DK, George M. Recent Advances in Individualized Clinical Strategies for Polycystic Ovary Syndrome: Evidence From Clinical Trials and Emerging Pharmacotherapies. Clin Ther 2025; 47:158-167. [PMID: 39709252 DOI: 10.1016/j.clinthera.2024.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE Clinical trials are advancing the treatment of polycystic ovary syndrome (PCOS), an endocrine disorder affecting 8-13% of women. Lifestyle interventions, including nutritional plans, physical activity, and stress management, can improve reproductive hormones and metabolic health. Novel pharmacotherapies targeting hormonal, metabolic, and reproductive abnormalities are being explored for individualized treatment. Combination therapies and lifestyle interventions like acupuncture, high-intensity interval training, and vitamin D3 supplementation are also being explored. METHODS We conducted a narrative review by searching English-language studies across electronic databases such as PubMed, Science direct, and Google Scholar for articles related to the topics of PCOS and novel drug therapies such as metformin, LIK-066, elagolix, saxenda, exenatide, clomiphene, letrozole, and other diagnostic interventions. Our review excluded preclinical studies and articles not in english. FINDINGS In addition to pharmacological treatments, lifestyle interventions such as Tung's acupuncture, high-intensity interval training (HIIT), and vitamin D3 supplementation have proven effective in managing symptoms of PCOS and enhancing overall health outcomes. These interventions offer a complementary approach to traditional medical therapies, emphasizing the importance of integrating lifestyle modifications into the treatment plan for women with PCOS. IMPLICATIONS This comprehensive approach underscores the importance of tailored treatments in optimizing clinical outcomes and quality of life for women with PCOS. The aim of this review is to highlight recent advancements in the treatment of PCOS through clinical trials and emerging pharmacotherapies, emphasizing the need for individualized and multifaceted treatment approaches.
Collapse
Affiliation(s)
- Murali Krishna Moka
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, Tamil Nadu, India
| | - Damal Kandadai Sriram
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Bao Q, Zhang B, Zhou L, Yang Q, Mu X, Liu X, Zhang S, Yuan M, Zhang Y, Che J, Wei W, Liu T, Li G, He J. CNP Ameliorates Macrophage Inflammatory Response and Atherosclerosis. Circ Res 2024; 134:e72-e91. [PMID: 38456298 DOI: 10.1161/circresaha.123.324086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND CNP (C-type natriuretic peptide), an endogenous short peptide in the natriuretic peptide family, has emerged as an important regulator to govern vascular homeostasis. However, its role in the development of atherosclerosis remains unclear. This study aimed to investigate the impact of CNP on the progression of atherosclerotic plaques and elucidate its underlying mechanisms. METHODS Plasma CNP levels were measured in patients with acute coronary syndrome. The potential atheroprotective role of CNP was evaluated in apolipoprotein E-deficient (ApoE-/-) mice through CNP supplementation via osmotic pumps, genetic overexpression, or LCZ696 administration. Various functional experiments involving CNP treatment were performed on primary macrophages derived from wild-type and CD36 (cluster of differentiation 36) knockout mice. Proteomics and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS We observed a negative correlation between plasma CNP concentration and the burden of coronary atherosclerosis in patients. In early atherosclerotic plaques, CNP predominantly accumulated in macrophages but significantly decreased in advanced plaques. Supplementing CNP via osmotic pumps or genetic overexpression ameliorated atherosclerotic plaque formation and enhanced plaque stability in ApoE-/- mice. CNP promoted an anti-inflammatory macrophage phenotype and efferocytosis and reduced foam cell formation and necroptosis. Mechanistically, we found that CNP could accelerate HIF-1α (hypoxia-inducible factor 1-alpha) degradation in macrophages by enhancing the interaction between PHD (prolyl hydroxylase domain-containing protein) 2 and HIF-1α. Furthermore, we observed that CD36 bound to CNP and mediated its endocytosis in macrophages. Moreover, we demonstrated that the administration of LCZ696, an orally bioavailable drug recently approved for treating chronic heart failure with reduced ejection fraction, could amplify the bioactivity of CNP and ameliorate atherosclerotic plaque formation. CONCLUSIONS Our study reveals that CNP enhanced plaque stability and alleviated macrophage inflammatory responses by promoting HIF-1α degradation, suggesting a novel atheroprotective role of CNP. Enhancing CNP bioactivity may offer a novel pharmacological strategy for treating related diseases.
Collapse
Affiliation(s)
- Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Bangying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Lu Zhou
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Qian Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xiaofeng Mu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Shiying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jingjin Che
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe (W.W.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China (J.H.)
| |
Collapse
|
3
|
Chen J, Zhang Q, Chen W, Farooq U, Lu T, Wang B, Ni J, Zhang H, Qi Z. Mobility of antipyretic drugs with different molecular structures in saturated soil porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2092-2101. [PMID: 37905737 DOI: 10.1039/d3em00358b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the post-COVID-19 era, extensive quantities of antipyretic drugs are being haphazardly released from households into the environment, which may pose potential risks to ecological systems and human health. Identification of the mobility behaviors of these compounds in the subsurface environment is crucial to understand the environmental fate of these common contaminants. The mobility properties of three broad-spectrum antipyretic drugs, including ibuprofen (IBF), indometacin (IMC), and acetaminophen (APAP), in porous soil media, were investigated in this study. The results showed that the mobility of the three drugs (the background electrolyte was Na+) through the soil column followed the order of APAP > IBF > IMC. The difference in the physicochemical characteristics of various antipyretic drugs (e.g., the molecular structure and hydrophobicity) could explain this trend. Unlike Na+, Ca2+ ions tended to serve as bridging agents by linking the soil grains and antipyretic molecules, leading to the relatively weak mobility behaviors of antipyretic drugs. Furthermore, for a given antipyretic drug, the antipyretic mobility was promoted when the background solution pH values were raised from 5.0 to 9.0. The phenomenon stemmed from the improved electrostatic repulsion between the dissociated species of antipyretic molecules and soil grains, as well as the weakened hydrophobic interactions between antipyretic drugs and soil organic matter. Furthermore, a two-site non-equilibrium transport model was used to estimate the mobility of antipyretic drugs. The results obtained from this work provide vital information illustrating the transport and retention of various antipyretic drugs in aquifers.
Collapse
Affiliation(s)
- Jiuyan Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
A novel variant of NPPC causes abnormal post-translational cleavage: A candidate gene for premature ovarian insufficiency. Maturitas 2022; 157:40-48. [DOI: 10.1016/j.maturitas.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/03/2021] [Accepted: 09/19/2021] [Indexed: 10/19/2022]
|
5
|
Tomasiuk R. N-Terminal Pro-C-Type Natriuretic Peptide: The Novel Marker in Selected Disease Units. Protein Pept Lett 2021; 29:125-132. [PMID: 34823452 DOI: 10.2174/0929866528666211125104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amino-terminal pro C type natriuretic peptide (NT proCNP) is the N terminal fragment of the CNP precursor. NT proCNP occurs in an equimolar concentration with CNP in human plasma and is considered to be a marker of the extent of CNP biosynthesis. A recent study has shown associations between plasma NT proCNP and blood pressure; it is also an independent predictor of death and cardiac readmission in people with unstable angina. Beyond that, recent studies have focused on the applicability of assessing NT proCNP peptide levels in the diagnosis of diseases with different etiologies but the same denominator, i.e., inflammation. METHODS This study reviewed recent results on the usability of NT proCNP peptide levels in the diagnosis of diseases accompanied by statistical analysis of previously reported results. RESULTS The data obtained confirmed the applicability of the assessment of NT proCNP levels in biological fluids in diseases, such as Parkinson's disease, sepsis, meningitis, and asthenozoospermia. CONCLUSION The reported results demonstrated that NT-proCNP is helpful in a variety of diseases. Furthermore, changes in serum or CSF levels of NT-proCNP reflect only inflammatory states related to general inflammation. Local inflammation does not trigger an increase in NT proCNP level.
Collapse
Affiliation(s)
- Ryszard Tomasiuk
- Kazimierz Pulaski University of Technology and Humanities Radom, Faculty of Medical Sciences and Health Sciences, Radom. Poland
| |
Collapse
|
6
|
Rehfeld JF, Goetze JP. Processing-independent analysis (PIA): a method for quantitation of the total peptide-gene expression. Peptides 2021; 135:170427. [PMID: 33069691 DOI: 10.1016/j.peptides.2020.170427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022]
Abstract
The translational product of protein-coding genes undergoes extensive posttranslational modifications. The modifications ensure an increased molecular and functional diversity at protein- and peptide-level. Prohormones are small pro-proteins that are expressed in many cell types, for instance endocrine cells, immune cells, myocytes and neurons. Here they mature to bioactive peptides (cytokines, hormones, growth factors, and neurotransmitters) that are released from the cells in an often regulated manner. The posttranslational processing of prohormones is cell-specific, however, and may vary during evolution and disease. Therefore, it is often inadequate to measure just a single peptide fragment as marker of endocrine, immune, and neuronal functions. In order to meet this challenge, we developed years back a simple "processing-independent analysis" (PIA) for accurate quantification of the total pro-protein product - irrespective of the degree and nature of the posttranslational processing. This review provides an overview of the PIA principle and describes examples of PIA results in different peptide systems.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Prickett TC, A Espiner E. Circulating products of C-type natriuretic peptide and links with organ function in health and disease. Peptides 2020; 132:170363. [PMID: 32634451 DOI: 10.1016/j.peptides.2020.170363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Paracrine actions of CNP and rapid degradation at source severely limit study of CNP's many roles in vivo. However provided sensitive and validated assays are used, there is increasing evidence that low concentrations of bioactive CNP in plasma, and the readily detectable concentrations of the bio-inactive processed product of proCNP (aminoterminal proCNP), can be used to advance understanding of the hormone's role in pathophysiology. Provided renal function is normal, concordant changes in both CNP and NTproCNP reflect change in tissue production of proCNP whereas change in CNP alone results from altered rates of bioactive CNP degradation and are reflected in the ratio of NTproCNP to CNP. As already shown in juveniles, where plasma concentration of CNP products are higher and are associated with concurrent endochondral bone growth, measurements of plasma CNP products in mature adults have potential to clarify organ response to stress and injury. Excepting the role of CNP in fetal-maternal welfare, this review examines evidence linking plasma CNP products with function of a wide range of tissues in adults, including the impact of extraneous factors such as nutrients, hormone therapy and exercise.
Collapse
Affiliation(s)
- Timothy Cr Prickett
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand
| |
Collapse
|
8
|
Tufan AC. Analogs of C-type natriuretic peptide as a potential new non-surgical treatment strategy in knee osteoarthritis. J Orthop 2019; 16:522-525. [PMID: 31680745 DOI: 10.1016/j.jor.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/25/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a common, chronic, progressive, and multifactorial musculoskeletal system disease affecting millions of people around the world. Despite the use of several treatment modalities, the search for a disease modifying drug continuous. Recent evidence suggest involvement of C-type natriuretic peptide (CNP) signaling in induction of chondroprotective pathways. A CNP analog (BMN 111) with an extended plasma half-life due to its neutral-endopeptidase resistance has shown to be pharmacologically active in achondroplasia enabling to hypothesize that BMN 111 may also be used as a treatment strategy in OA, in which CNP signaling has been suggested to be protective and/or reparative.
Collapse
Affiliation(s)
- Ahmet Cevik Tufan
- Department of Histology and Embryology, School of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
9
|
Espiner E, Prickett T, Olney R. Plasma C-Type Natriuretic Peptide: Emerging Applications in Disorders of Skeletal Growth. Horm Res Paediatr 2019; 90:345-357. [PMID: 30844819 DOI: 10.1159/000496544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 11/19/2022] Open
Abstract
Although studies in experimental animals show that blood levels of C-type natriuretic peptide (CNP) and its bioinactive aminoterminal propeptide (NTproCNP) are potential biomarkers of long bone growth, a lack of suitable assays and appropriate reference ranges has limited the application of CNP measurements in clinical practice. Plasma concentrations of the processed product of proCNP, NTproCNP - and to a lesser extent CNP itself - correlate with concurrent height velocity throughout all phases of normal skeletal growth, as well as during interventions known to affect skeletal growth in children. Since a change in levels precedes a measurable change in height velocity during interventions, measuring NTproCNP may have predictive value in clinical practice. Findings from a variety of genetic disorders affecting CNP signaling suggest that plasma concentrations of both peptides may be helpful in diagnosis, provided factors such as concurrent height velocity, feedback regulation of CNP, and differential changes in peptide clearance are considered when interpreting values. An improved understanding of factors affecting plasma levels, and the availability of commercial kits enabling accurate measurement using small volumes of plasma, can be expected to facilitate potential applications in growth disorders including genetic causes -affecting the CNP signaling pathway.
Collapse
Affiliation(s)
- Eric Espiner
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tim Prickett
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand,
| | - Robert Olney
- Division of Endocrinology, Nemours Children's Specialty Care, Jacksonville, Florida, USA
| |
Collapse
|
10
|
Liu C, Sun W, Zhuo G, Zhang Z. Impacts of macrophage colony-stimulating factor (M-CSF) on the expression of natriuretic peptide precursor type C (NPPC) and regulation of meiotic resumption. Gynecol Endocrinol 2019; 35:320-323. [PMID: 30767584 DOI: 10.1080/09513590.2018.1532989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In mammalian follicles, oocytes are arrested at the diplotene stage of prophase I until meiotic resumption following the LH surge. C-type natriuretic peptide (CNP), encoded by natriuretic peptide precursor type C (NPPC), was found to be reduced by the LH surge in the follicle, and then lead to meiotic resumption by decreasing the level of cAMP in the oocyte. As a wide-spread cytokine, macrophage colony-stimulating factor (M-CSF) takes part in the oocyte development to maturation and ovulation. Our study describes the expression curve of M-CSF and its receptor and investigates the impact on the levels of CNP/NPPC to explore the possible mechanism for meiotic resumption in both vivo and vitro. The result shows after the LH/HCG surge, the expressions of M-CSF and its receptors decline significantly inside ovarian follicles, thus leading to transduction of a range of signals. Consequently, the expression of CNP reaches the peak at 2 h and immediately declines to a relatively low level.
Collapse
Affiliation(s)
- Chang Liu
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
| | - Wenchao Sun
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
- b Department of Gynecological Endocrinology, Obstetrics and Gynecology Hospital in Hangzhou , Hangzhou , China
| | - Guangchao Zhuo
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
| | - Zhifen Zhang
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
| |
Collapse
|
11
|
Topçu S, Özhan B, Alkan A, Akyol M, Şimşek Orhon F, Başkan S, Ulukol B, Berberoğlu M, Şıklar Z, Şatıroğlu Tufan NL, Tufan AÇ. Plasma Amino-Terminal Propeptide of C-Type Natriuretic Peptide Concentration in Normal-Weight and Obese Children. J Clin Res Pediatr Endocrinol 2017; 9:308-314. [PMID: 28739556 PMCID: PMC5785636 DOI: 10.4274/jcrpe.4543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE In studies on the relationship between amino-terminal propeptide of C-type natriuretic peptide (NT-proCNP) concentration and height velocity in children, CNP has been implicated as an emerging new growth marker during childhood. It has been reported that besides its well-studied role in growth, plasma CNP levels are reduced in overweight and/or obese adolescents, suggesting CNP as a potential biomarker in childhood obesity. The primary goal of this study was to test this hypothesis in a Turkish population. METHODS Consent was taken from 317 children [ages 0-18 (158 girls, 159 boys)] and their parents. All subjects were physically examined; anthropometric measurements were obtained. Body mass index was calculated. During routine blood work, 1 mL extra blood was taken. Plasma NT-proCNP concentration was measured by enzyme-linked immunosorbent assay. RESULTS Results confirmed the previously described relationship between plasma NT-proCNP concentration and growth velocity. Plasma NT-proCNP concentration showed a negative correlation with age, weight, and height in children. Gender was not a factor that alters the age-dependent plasma NT-proCNP concentration until puberty. CONCLUSION Unlike previous reports, plasma NT-proCNP concentration of overweight/obese children was not significantly lower than that of children with normal weight in age groups analyzed in a Turkish population. Thus, it is too early to conclude that CNP is a potential biomarker in childhood obesity. Further studies are necessary to address this question.
Collapse
Affiliation(s)
- Seda Topçu
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Bayram Özhan
- Pamukkale University Faculty of Medicine, Department of Pediatric Endocrinology, Denizli, Turkey
| | - Afra Alkan
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Biostatistics, Ankara, Turkey
| | - Mesut Akyol
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Biostatistics, Ankara, Turkey
| | - Filiz Şimşek Orhon
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Sevgi Başkan
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Betül Ulukol
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Merih Berberoğlu
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Zeynep Şıklar
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - N. Lale Şatıroğlu Tufan
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
,* Address for Correspondence: Ankara University Faculty of Medicine, Department of Forensic Medicine, Forensic Genetics Laboratory & Department of Pediatric Genetics, Molecular Genetics Laboratory, Ankara, Turkey E-mail:
| | - A. Çevik Tufan
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
12
|
Mylin AK, Goetze JP, Heickendorff L, Ahlberg L, Dahl IM, Abildgaard N, Gimsing P. N-terminal pro-C-type natriuretic peptide in serum associated with bone destruction in patients with multiple myeloma. Biomark Med 2015; 9:679-89. [DOI: 10.2217/bmm.15.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: To examine whether N-terminal proCNP concentrations in serum is associated with bone destruction in patients with multiple myeloma. Materials & methods: N-terminal proCNP and biochemical bone markers were measured in 153 patients. Radiographic bone disease and skeletal-related events were evaluated at specific time-points. Results: N-terminal proCNP concentrations increased with age. High N-terminal proCNP concentrations were associated with high-risk disease and renal impairment. Renal function explained 22% of the variation. N-terminal proCNP concentrations correlated with serum bone ALP and serum PINP, but lacked association with bone resorption markers, radiographic bone disease and skeletal-related events. Conclusion: Serum N-terminal proCNP are associated with bone formation activity in patients with multiple myeloma, but should be interpreted with caution in patients with renal impairment.
Collapse
Affiliation(s)
- Anne K Mylin
- Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Heickendorff
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Lucia Ahlberg
- Division of Hematology, Linköping University Hospital, Linköping, Sweden
| | - Inger Marie Dahl
- Section of Hematology, TromsøUniversity Hospital, Tromsø, Norway
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Peter Gimsing
- Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
13
|
Hansen LH, Smith J, Goetze JP. Cardiac C-type natriuretic peptide gene expression and plasma concentrations in neonatal piglets. ACTA ACUST UNITED AC 2014; 188:66-9. [PMID: 24373811 DOI: 10.1016/j.regpep.2013.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family. Cardiac ANP and BNP expressions are firmly established, whereas CNP expression in the mammalian heart remains controversial. In the present report, we used a porcine model of the neonatal period with high expressions of cardiac ANP and BNP in order to elucidate the cardiac CNP expression profile. METHODS Plasma and cardiac tissue were obtained from newborn piglets during the first 72 h of life. The chamber-specific CNP mRNA contents were quantified by real-time PCR analysis. The proCNP concentrations in plasma and cardiac tissue extracts were quantified by a porcine-specific radioimmunoassay. RESULTS Cardiac CNP mRNA contents (n=24) were low compared to sites of known expression, where porcine seminal vesicle CNP mRNA contents were 200-fold higher. In addition, plasma proCNP concentrations in the newborn piglets (n=44) were exceedingly low compared to proANP concentrations (5.3 pmol/L (3.2-8.6) vs. 3438 pmol/L (2790-5418), p<0.0001). The proCNP concentrations in atrial tissue extracts were barely detectable (≤0.06 pmol/g) (n=2) compared to ventricular proANP (130 pmol/g (101-159)) and atrial proANP (12,303 pmol/g (10,623-15,412)). CONCLUSION Our data show that the heart is not a major source of circulating proCNP in neonatal piglets.
Collapse
Affiliation(s)
- Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Julie Smith
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark; Department of Technology, Faculty of Health and Technology, Metropolitan University College, Sigurdsgade 26, DK-2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark.
| |
Collapse
|