1
|
Meier L, Bruginski E, Marafiga JR, Caus LB, Pasquetti MV, Calcagnotto ME, Campos FR. Hippocampal metabolic profile during epileptogenesis in the pilocarpine model of epilepsy. Biomed Chromatogr 2024; 38:e5820. [PMID: 38154955 DOI: 10.1002/bmc.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.
Collapse
Affiliation(s)
- Letícia Meier
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Estevan Bruginski
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francinete Ramos Campos
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Komoltsev I, Salyp O, Volkova A, Bashkatova D, Shirobokova N, Frankevich S, Shalneva D, Kostyunina O, Chizhova O, Kostrukov P, Novikova M, Gulyaeva N. Posttraumatic and Idiopathic Spike-Wave Discharges in Rats: Discrimination by Morphology and Thalamus Involvement. Neurol Int 2023; 15:609-621. [PMID: 37218977 DOI: 10.3390/neurolint15020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The possibility of epileptiform activity generation by the thalamocortical neuronal network after focal brain injuries, including traumatic brain injury (TBI), is actively debated. Presumably, posttraumatic spike-wave discharges (SWDs) involve a cortico-thalamocortical neuronal network. Differentiation of posttraumatic and idiopathic (i.e., spontaneously generated) SWDs is imperative for understanding posttraumatic epileptogenic mechanisms. Experiments were performed on male Sprague-Dawley rats with electrodes implanted into the somatosensory cortex and the thalamic ventral posterolateral nucleus. Local field potentials were recorded for 7 days before and 7 days after TBI (lateral fluid percussion injury, 2.5 atm). The morphology of 365 SWDs (89 idiopathic before craniotomy, and 262 posttraumatic that appeared only after TBI) and their appearance in the thalamus were analyzed. The occurrence of SWDs in the thalamus determined their spike-wave form and bilateral lateralization in the neocortex. Posttraumatic discharges were characterized by more "mature" characteristics as compared to spontaneously generated discharges: higher proportions of bilateral spreading, well-defined spike-wave form, and thalamus involvement. Based on SWD parameters, the etiology could be established with an accuracy of 75% (AUC 0.79). Our results support the hypothesis that the formation of posttraumatic SWDs involves a cortico-thalamocortical neuronal network. The results form a basis for further research of mechanisms associated with posttraumatic epileptiform activity and epileptogenesis.
Collapse
Affiliation(s)
- Ilia Komoltsev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Olga Salyp
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Aleksandra Volkova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Daria Bashkatova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Natalia Shirobokova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Stepan Frankevich
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Daria Shalneva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Olga Kostyunina
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Olesya Chizhova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Pavel Kostrukov
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Margarita Novikova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Natalia Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| |
Collapse
|
3
|
Niu D, Sun P, Zhang F, Song F. Metabonomic analysis of cerebrospinal fluid in epilepsy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:449. [PMID: 35571432 PMCID: PMC9096421 DOI: 10.21037/atm-22-1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
Background We sought to explore the relationship between epilepsy and cerebrospinal fluid metabolomics and identify biomarkers for the diagnosis, treatment, and prognosis of epilepsy. Methods In total, 23 epileptic patients treated at The First Affiliated Hospital of Dalian Medical University from April 2019 to September 2019 were selected for the disease group and 13 non-epileptic patients were selected for the control group. Cerebrospinal fluid samples were collected from both groups, and the metabolites were analyzed by gas chromatography–mass spectrometry. The metabolites differentially expressed in the cerebrospinal fluid samples were identified. A differential metabolite enrichment analysis was performed to determine the metabolic pathways. Results Using a variable importance in the projection value >1 and a P value <0.05 as the screening criteria, we found that 3 metabolites (i.e., alpha-ketoisocaproic acid 1, xylose 1, and glycine 2) were differentially expressed in the cerebrospinal fluid of the 23 epileptic patients compared to the 13 non-epileptic patients. Alpha-ketoisocaproic acid 1 and xylose 1 were highly expressed in the epileptic cerebrospinal fluid samples, while glycine 2 was lowly expressed in the epileptic cerebrospinal fluid samples. Additionally, the 3 metabolites were significantly enriched in the 5 metabolic pathways of primary bile acid biosynthesis, valine, leucine, and isoleucine degradation, glutathione metabolism, glyoxylate and dicarboxylate metabolism, and glycine, serine, and threonine metabolism. Conclusions The present study examined the metabolites of the cerebrospinal fluid of epileptic patients and non-epileptic patients. Our findings provide insights that may inform the discovery of therapeutic targets and diagnostic markers for epilepsy.
Collapse
Affiliation(s)
- Di Niu
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Pin Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fenghua Zhang
- College of Laboratory Medicine, Dalian Medical University, Dalian, China.,Department of Laboratory Medicine, Zhoupu Hospital Affiliated of Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fan Song
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Bruno DCF, Donatti A, Martin M, Almeida VS, Geraldis JC, Oliveira FS, Dogini DB, Lopes-Cendes I. Circulating nucleic acids in the plasma and serum as potential biomarkers in neurological disorders. ACTA ACUST UNITED AC 2020; 53:e9881. [PMID: 32813850 PMCID: PMC7446710 DOI: 10.1590/1414-431x20209881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Neurological diseases are responsible for approximately 6.8 million deaths every year. They affect up to 1 billion people worldwide and cause significant disability and reduced quality of life. In most neurological disorders, the diagnosis can be challenging; it frequently requires long-term investigation. Thus, the discovery of better diagnostic methods to help in the accurate and fast diagnosis of neurological disorders is crucial. Circulating nucleic acids (CNAs) are defined as any type of DNA or RNA that is present in body biofluids. They can be found within extracellular vesicles or as cell-free DNA and RNA. Currently, CNAs are being explored as potential biomarkers for diseases because they can be obtained using non-invasive methods and may reflect unique characteristics of the biological processes involved in several diseases. CNAs can be especially useful as biomarkers for conditions that involve organs or structures that are difficult to assess, such as the central nervous system. This review presents a critical assessment of the most current literature about the use of plasma and serum CNAs as biomarkers for several aspects of neurological disorders: defining a diagnosis, establishing a prognosis, and monitoring the disease progression and response to therapy. We explored the biological origin, types, and general mechanisms involved in the generation of CNAs in physiological and pathological processes, with specific attention to neurological disorders. In addition, we present some of the future applications of CNAs as non-invasive biomarkers for these diseases.
Collapse
Affiliation(s)
- D C F Bruno
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A Donatti
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M Martin
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - V S Almeida
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J C Geraldis
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - F S Oliveira
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - D B Dogini
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - I Lopes-Cendes
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
5
|
Manninen E, Chary K, Lapinlampi N, Andrade P, Paananen T, Sierra A, Tohka J, Gröhn O, Pitkänen A. Early Increase in Cortical T 2 Relaxation Is a Prognostic Biomarker for the Evolution of Severe Cortical Damage, but Not for Epileptogenesis, after Experimental Traumatic Brain Injury. J Neurotrauma 2020; 37:2580-2594. [PMID: 32349620 DOI: 10.1089/neu.2019.6796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prognostic biomarkers for post-injury outcome are necessary for the development of neuroprotective and antiepileptogenic treatments for traumatic brain injury (TBI). We hypothesized that T2 relaxation magnetic resonance imaging (MRI) predicts the progression of perilesional cortical pathology and epileptogenesis. The EPITARGET animal cohort used for MRI analysis included 120 adult male Sprague-Dawley rats with TBI induced by lateral fluid-percussion injury and 24 sham-operated controls. T2 MRI was performed at days 2, 7, and 21 post-TBI. The lesioned cortex was outlined, and the T2 value of each imaging voxel within the lesion area was scored using a five-grade pathology classification. Analysis of 1-month video-electroencephalography recordings initiated 5 months post-TBI indicated that 27% (31 of 114) of the animals with TBI developed epilepsy. Multiple linear regression analysis indicated that T2-based classification of lesion volume at day 2 and day 7 post-TBI explained the necrotic lesion volume with greatly increased T2 (>102 ms) at day 21 post-TBI (F(13,103) = 52.5; p < 0.001; R2 = 0.87; adjusted R2 = 0.85). The volume of moderately increased (78-102 ms) T2 at day 7 post-TBI predicted the evolution of large (>12 mm3) cortical lesions (area under the curve, 0.92; p < 0.001; cutoff, 1.9 mm3; false positive rate, 0.10; true positive rate, 0.62). Logistic regression analysis, however, showed that the different severities of T2 lesion volumes at days 2, 7, and 21 post-TBI did not explain the development of epilepsy (χ2(18,95) = 18.4; p = 0.427). In addition, the location of the T2 abnormality within the cortex did not correlate with epileptogenesis. A single measurement of T2 relaxation MRI in the acute post-TBI phase is useful for identifying post-TBI subjects at highest risk of developing large cortical lesions, and thus, in the greatest need of neuroprotective therapies after TBI, but not the development of post-traumatic epilepsy.
Collapse
Affiliation(s)
- Eppu Manninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Karthik Chary
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niina Lapinlampi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Paananen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jussi Tohka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Quantitative electrocorticographic biomarkers of clinical outcomes in mesial temporal lobe epileptic patients treated with the RNS® system. Clin Neurophysiol 2019; 130:1364-1374. [DOI: 10.1016/j.clinph.2019.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
|
7
|
Jayaraman SP, Anand RJ, DeAntonio JH, Mangino M, Aboutanos MB, Kasirajan V, Ivatury RR, Valadka AB, Glushakova O, Hayes RL, Bachmann LM, Brophy GM, Contaifer D, Warncke UO, Brophy DF, Wijesinghe DS. Metabolomics and Precision Medicine in Trauma: The State of the Field. Shock 2018; 50:5-13. [PMID: 29280924 PMCID: PMC5995639 DOI: 10.1097/shk.0000000000001093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trauma is a major problem in the United States. Mortality from trauma is the number one cause of death under the age of 45 in the United States and is the third leading cause of death for all age groups. There are approximately 200,000 deaths per year due to trauma in the United States at a cost of over $671 billion in combined healthcare costs and lost productivity. Unsurprisingly, trauma accounts for approximately 30% of all life-years lost in the United States. Due to immense development of trauma systems, a large majority of trauma patients survive the injury, but then go on to die from complications arising from the injury. These complications are marked by early and significant metabolic changes accompanied by inflammatory responses that lead to progressive organ failure and, ultimately, death. Early resuscitative and surgical interventions followed by close monitoring to identify and rescue treatment failures are key to successful outcomes. Currently, the adequacy of resuscitation is measured using vital signs, noninvasive methods such as bedside echocardiography or stroke volume variation, and other laboratory endpoints of resuscitation, such as lactate and base deficit. However, these methods may be too crude to understand cellular and subcellular changes that may be occurring in trauma patients. Better diagnostic and therapeutic markers are needed to assess the adequacy of interventions and monitor responses at a cellular and subcellular level and inform clinical decision-making before complications are clinically apparent. The developing field of metabolomics holds great promise in the identification and application of biochemical markers toward the clinical decision-making process.
Collapse
Affiliation(s)
- Sudha P Jayaraman
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rahul J Anand
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan H DeAntonio
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Martin Mangino
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Michel B Aboutanos
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Vigneshwar Kasirajan
- Department of Surgery, Division of Cardiothoracic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rao R Ivatury
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Alex B Valadka
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Olena Glushakova
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ronald L Hayes
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Center of Innovative Research, Banyan Biomarkers, Inc., Alachua, Florida
| | - Lorin M Bachmann
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Gretchen M Brophy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Urszula O Warncke
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Dayanjan S Wijesinghe
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- da Vinci Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Ma Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr Neuropharmacol 2018; 16:37-42. [PMID: 28676013 PMCID: PMC5771381 DOI: 10.2174/1570159x15666170703102410] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epilepsy is one of chronic severe neurological disorders possess to recurring seizures. And now anti-epileptic drugs are only effective in less than one third of epilepsy patients, and biomarkers predicting are not available when the specific antiepileptic drugs treated. Advanced studies have showed that miRNA may be a key in the pathogenesis of epilepsy beginning in the early 2000 years. Several target genes and pathways of miRNA which related to the therapeutic methods to epilepsy. METHOD We searched PubMed from Jan 1,2000 to Jan 1, 2017, using the terms "epilepsy AND microRNA AND biomarker" and "seizure AND microRNA AND biomarker". We selected articles that featured novel miRNAs in vivo epilepsy models and patients. We then selected the most relevant articles based on a subjective appraisal of their quality and mechanistic insight that could be relevant to epilepsy. RESULTS Decrease the expression of has-miR134 could be a potential non-invasive biomarker to use in diagnosis for the epilepsy patients for using hsa-miR-134 also be identified to distinguish patients with and without epilepsy. miR-181a show significant downregulation in the acute stage, but up regulation in the chronic stage and in the latent stage there is no changing and how about this phenomenon appearance in different stage still should be discussed in the future. Besides that, miR- 146a can down-regulated in the patients using genome-wide for serum in circulating miRNAs.miR- 124, miR-199a, and miR-128 etc. could be a candidate for the biomarker in future. miR-15a-5p and -194-5p down-regulated in epilepsy patients, in the future, it may be used as a novel biomarker for improve diagnosis. CONCLUSION These observations give a chance that new development for diagnosis and treatment of epilepsy patients. Advanced technique and miRNA combination may product more effective roles in epilepsy and other disease. These reports will be available to solve the application of miRNAs as biomarkers and novel therapy approaches for epilepsy. In summary, researcher who focus on miRNAs should be understanding of the causes, treatment, and diagnosis of epilepsy. exploration of any of these effects on the efficacy of these drugs is worthwhile.
Collapse
Affiliation(s)
- Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Schulze-Bonhage A. A 2017 review of pharmacotherapy for treating focal epilepsy: where are we now and how will treatment develop? Expert Opin Pharmacother 2017; 18:1845-1853. [DOI: 10.1080/14656566.2017.1391788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Bernaskova K, Tomkova S, Slamberova R. Are changes in excitability in the hippocampus of adult male rats induced by prenatal methamphetamine exposure or stress? Epilepsy Res 2017; 137:132-138. [PMID: 28886886 DOI: 10.1016/j.eplepsyres.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 01/17/2023]
Abstract
Prenatal stress and drug exposure induce permanent alterations of the brain. Even though different brain structures are involved, alterations almost always refer to the hippocampus. The aim of this study was to investigate the excitability of hippocampal slices in low-magnesium epilepsy model of prenatally methamphetamine (MA, 5mg/kg sc.) or saline (sc., stress model) exposed animals in adult male rats. The second aim was to investigate, if a low dose of MA (1ml/kgs.c.) administered in adulthood changes the hippocampal activity of these animals. Adult Wistar male rats were divided into groups according to their prenatal treatment (C - naïve control; Sa - saline; MA - MA administration). One half of the animals was treated with a challenge dose of MA (1mg/kg sc.) 45min before hippocampal slices were cut. The activity of 350μ thick transversal slices of CA1 hippocampi was recorded (latencies of the first epileptiform discharge and the regular epileptiform activity) and evaluated in ACSF with low-magnesium concentration. Effects of prenatal exposure: The highest excitability was found in the Sa (prenatally stressed) group in respect to C and MA groups. This group developed also the highest number of seizure-like events. In addition, the prenatally MA treated group had also higher excitability than C group. Effects of the MA challenge dose: The challenge dose decreased the excitability of prenatally SA- exposed group. To conclude, even a mild prenatal stress significantly increases hippocampal excitability in adulthood and a challenge dose of MA is able to dampen it.
Collapse
Affiliation(s)
- Klara Bernaskova
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic
| | - Simona Tomkova
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic
| | - Romana Slamberova
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic.
| |
Collapse
|
11
|
Marques-Carneiro JE, Persike DS, Litzahn JJ, Cassel JC, Nehlig A, Fernandes MJDS. Hippocampal Proteome of Rats Subjected to the Li-Pilocarpine Epilepsy Model and the Effect of Carisbamate Treatment. Pharmaceuticals (Basel) 2017; 10:ph10030067. [PMID: 28758946 PMCID: PMC5620611 DOI: 10.3390/ph10030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
In adult rats, the administration of lithium–pilocarpine (LiPilo) reproduces most clinical and neuropathological features of human temporal lobe epilepsy (TLE). Carisbamate (CRS) possesses the property of modifying epileptogenesis in this model. Indeed, about 50% of rats subjected to LiPilo status epilepticus (SE) develop non-convulsive seizures (NCS) instead of motor seizures when treated with CRS. However, the mechanisms underlying these effects remain unknown. The aim of this study was to perform a proteomic analysis in the hippocampus of rats receiving LiPilo and developing motor seizures or NCS following CRS treatment. Fifteen adult male Sprague–Dawley rats were used. SE was induced by LiPilo injection. CRS treatment was initiated at 1 h and 9 h after SE onset and maintained for 7 days, twice daily. Four groups were studied after video-EEG control of the occurrence of motor seizures: a control group receiving saline (CT n = 3) and three groups that underwent SE: rats treated with diazepam (DZP n = 4), rats treated with CRS displaying NCS (CRS-NCS n = 4) or motor seizures (CRS-TLE n = 4). Proteomic analysis was conducted by 2D-SDS-PAGE. Twenty-four proteins were found altered. In the CRS-NCS group, proteins related to glycolysis and ATP synthesis were down-regulated while proteins associated with pyruvate catabolism were up-regulated. Moreover, among the other proteins differentially expressed, we found proteins related to inflammatory processes, protein folding, tissue regeneration, response to oxidative stress, gene expression, biogenesis of synaptic vesicles, signal transduction, axonal transport, microtubule formation, cell survival, and neuronal plasticity. Our results suggest a global reduction of glycolysis and cellular energy production that might affect brain excitability. In addition, CRS seems to modulate proteins related to many other pathways that could significantly participate in the epileptogenesis-modifying effect observed.
Collapse
Affiliation(s)
- José Eduardo Marques-Carneiro
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
- Unistra, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, 67000 Strasbourg, France.
- CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000 Strasbourg, France.
| | - Daniele Suzete Persike
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| | - Julia Julie Litzahn
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| | - Jean-Christophe Cassel
- Unistra, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, 67000 Strasbourg, France.
- CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000 Strasbourg, France.
| | - Astrid Nehlig
- INSERM U 1129 "Infantile Epilepsies and Brain Plasticity", 75015 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, CEA, 91990 Gif sur Yvette, France.
| | - Maria José da Silva Fernandes
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| |
Collapse
|
12
|
Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 2017; 7:3328. [PMID: 28607431 PMCID: PMC5468228 DOI: 10.1038/s41598-017-02969-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
There is a need for diagnostic biomarkers of epilepsy and status epilepticus to support clinical examination, electroencephalography and neuroimaging. Extracellular microRNAs may be potentially ideal biomarkers since some are expressed uniquely within specific brain regions and cell types. Cerebrospinal fluid offers a source of microRNA biomarkers with the advantage of being in close contact with the target tissue and sites of pathology. Here we profiled microRNA levels in cerebrospinal fluid from patients with temporal lobe epilepsy or status epilepticus, and compared findings to matched controls. Differential expression of 20 microRNAs was detected between patient groups and controls. A validation phase included an expanded cohort and samples from patients with other neurological diseases. This identified lower levels of miR-19b in temporal lobe epilepsy compared to controls, status epilepticus and other neurological diseases. Levels of miR-451a were higher in status epilepticus compared to other groups whereas miR-21-5p differed in status epilepticus compared to temporal lobe epilepsy but not to other neurological diseases. Targets of these microRNAs include proteins regulating neuronal death, tissue remodelling, gliosis and inflammation. The present study indicates cerebrospinal fluid contains microRNAs that can support differential diagnosis of temporal lobe epilepsy and status epilepticus from other neurological and non-neurological diseases.
Collapse
|
13
|
Vezzani A, Pascente R, Ravizza T. Biomarkers of Epileptogenesis: The Focus on Glia and Cognitive Dysfunctions. Neurochem Res 2017; 42:2089-2098. [PMID: 28434163 DOI: 10.1007/s11064-017-2271-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022]
Abstract
The need to find measures that reliably predict the onset of epilepsy after injurious events or how the patient will respond to anti-seizure drugs led to intensive pre-clinical and clinical research to discover non-invasive biomarkers that could increase the sensitivity of existing clinical indicators. The use of experimental models of epileptogenesis and of drug-resistance is instrumental to select the most promising approaches to explore such biomarkers in the pre-clinical setting for further clinical validation. The approaches most frequently used to find clinically useful biomarkers of epileptogenesis include molecular brain imaging, EEG signal analysis and the measure of soluble molecules in biofluids which may reflect brain intrinsic events involved in epilepsy development. Among those, we focused our attention on proton magnetic resonance imaging (1H-MRS)-based analysis of astrocytic activation, and related blood biomarkers, since this cell population appears to be pivotally involved in various epileptogenesis processes triggered by differing insults. Moreover, we also investigated behavioral biomarkers by focusing on cognitive dysfunctions since this deficit represents a typical co-morbidity in epilepsy which may manifest even before the onset of spontaneous seizures. In this review article, we will report our recently published evidence supporting the utility of measuring astrocyte activation, the soluble molecules they release, and the associated cognitive deficits during epileptogenesis for early stratification of animals developing epilepsy. We will discuss the potential clinical translation of our findings for enriching the patient population in preventive clinical trials designed to study anti-epileptogenic treatments.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy.
| | - Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy
| |
Collapse
|
14
|
Wang X, Yin H, Rich AM, Sun Y, Tan Z, Luo X, Che N, Wei M, Yin J. MicroRNAs as biomarkers in molecular diagnosis of refractory epilepsy. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
15
|
Heischmann S, Quinn K, Cruickshank-Quinn C, Liang LP, Reisdorph R, Reisdorph N, Patel M. Exploratory Metabolomics Profiling in the Kainic Acid Rat Model Reveals Depletion of 25-Hydroxyvitamin D3 during Epileptogenesis. Sci Rep 2016; 6:31424. [PMID: 27526857 PMCID: PMC4985632 DOI: 10.1038/srep31424] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/20/2016] [Indexed: 12/02/2022] Open
Abstract
Currently, no reliable markers are available to evaluate the epileptogenic potential of a brain injury. The electroencephalogram is the standard method of diagnosis of epilepsy; however, it is not used to predict the risk of developing epilepsy. Biomarkers that indicate an individual's risk to develop epilepsy, especially those measurable in the periphery are urgently needed. Temporal lobe epilepsy (TLE), the most common form of acquired epilepsy, is characterized by spontaneous recurrent seizures following brain injury and a seizure-free "latent" period. Elucidation of mechanisms at play during epilepsy development (epileptogenesis) in animal models of TLE could enable the identification of predictive biomarkers. Our pilot study using liquid chromatography-mass spectrometry metabolomics analysis revealed changes (p-value ≤ 0.05, ≥1.5-fold change) in lipid, purine, and sterol metabolism in rat plasma and hippocampus during epileptogenesis and chronic epilepsy in the kainic acid model of TLE. Notably, disease development was associated with dysregulation of vitamin D3 metabolism at all stages and plasma 25-hydroxyvitamin D3 depletion in the acute and latent phase of injury-induced epileptogenesis. These data suggest that plasma VD3 metabolites reflect the severity of an epileptogenic insult and that a panel of plasma VD3 metabolites may be able to serve as a marker of epileptogenesis.
Collapse
Affiliation(s)
- Svenja Heischmann
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kevin Quinn
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Rick Reisdorph
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Nichole Reisdorph
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
17
|
Liao ZJ, Liang RS, Shi SS, Wang CH, Yang WZ. Effect of baicalin on hippocampal damage in kainic acid-induced epileptic mice. Exp Ther Med 2016; 12:1405-1411. [PMID: 27588062 PMCID: PMC4998122 DOI: 10.3892/etm.2016.3461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to determine the effect of baicalin on the expression of miR-497 and its target B-cell lymphoma-2 (Bcl-2) in the hippocampus of kainic acid (KA)-induced epileptic mice. To establish status epilepticus (SE), 0.1 µg/5 µl KA was injected into the lateral cerebral ventricle in mice, which then received an intraperitoneal injection of baicalin (100 mg/kg) after 1 and 8 h. Hematoxylin and eosin staining was used to observe the pathological changes in morphology and neuronal apoptosis was determined by terminal transferase-mediated dUTP nick end-labeling staining. Western blot analysis was used to detect the expression of Bcl-2 and cleaved caspase-3 proteins in the hippocampus, while reverse transcription-quantitative polymerase chain reaction was used to quantify hippocampal miR-497 expression. The results showed that baicalin significantly attenuated neuronal damage and apoptosis in the hippocampus 72 h after SE. In addition, baicalin decreased SE-induced expression of miR-497 and cleaved caspase-3 protein, while upregulating the expression of Bcl-2 protein. In conclusion, the present results suggest that baicalin possesses potent antiapoptotic properties and attenuates hippocampal injury in mice after SE, which may be associated with the downregulation of miR-497 and cleaved caspase-3 and the upregulation of Bcl-2.
Collapse
Affiliation(s)
- Zheng-Jian Liao
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ri-Sheng Liang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Song-Sheng Shi
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Chun-Hua Wang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Wei-Zhong Yang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
18
|
Wang R, Zeng GQ, Liu X, Tong RZ, Zhou D, Hong Z. Evaluation of serum matrix metalloproteinase-3 as a biomarker for diagnosis of epilepsy. J Neurol Sci 2016; 367:291-7. [PMID: 27423606 DOI: 10.1016/j.jns.2016.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/24/2016] [Accepted: 06/12/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Reliable molecular biomarkers for epilepsy have yet to be identified. The present study aims to evaluate the utility of serum metalloproteinase-3 as a diagnostic biomarker for epilepsy. METHODS Serum MMP-3 levels were assessed in 227 individuals with epilepsy and 97 healthy control subjects. Individuals in the control group had no complaints or signs of any neurological disorder for at least 12months before serum collection. The Luminex FLEXMAP 3D assay was used to determine serum MMP-3 levels. RESULTS Compared with controls, subjects with epilepsy had significantly lower serum MMP-3 concentrations (p<0.05). Serum MMP-3 concentrations were significantly higher in males than in females (p<0.001). Furthermore, Serum MMP-3 concentrations were strongly correlated with age in both epileptic and control groups. For these reasons, ROC curve analyses were performed in age-matched and gender matched groups. In the population aged 20-40years, when cut-off values of 23.87ng/ml and 12.31ng/ml were chosen for MMP-3 in males and females respectively, the sensitivity and specificity for patients with epilepsy versus controls were 72.22% and 76.67% for males, and 45% and 94.12% for females. And when cut-off MMP-3 concentrations of 20.70ng/ml and 10.92ng/ml were chosen for the ≥40years age group, the sensitivity and specificity to distinguish between epileptic and control subjects were 85.71% and 47.62% versus 85.62% and 100% for male and female groups, respectively. CONCLUSIONS MMP-3 is reduced in epilepsy patients compared to healthy controls. The potential of MMP-3 as an epilepsy biomarker is limited to certain age brackets and depends on the gender.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Guang Qun Zeng
- Department of laboratory, Pengzhou People's Hospital, Chengdu, Sichuan, People's Republic of China.
| | - Xu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Rui Zhan Tong
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
19
|
Wang R, Zeng GQ, Tong RZ, Zhou D, Hong Z. Serum matrix metalloproteinase-2: A potential biomarker for diagnosis of epilepsy. Epilepsy Res 2016; 122:114-9. [PMID: 27016865 DOI: 10.1016/j.eplepsyres.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES In this study, we evaluate the utility of serum metalloproteinase-2 (MMP-2) as a biomarker for the diagnosis of epilepsy. METHODS We assessed serum MMP-2 levels in 233 epileptic and 97 healthy control subjects. Control subjects had no complaints or signs of neurological disorders for at least 12 months prior to serum collection. Serum MMP-2 levels were determined using the Luminex technology. RESULTS Compared with controls, subjects with epilepsy had significantly lower serum MMP-2 concentrations (P<0.05). There was no significant difference between males and females in either group (P>0.05). Serum MMP-2 concentrations were highly correlated with age in both groups, and this correlation was strongest for males. When an MMP-2 cut-off value of 175.40ng/ml was used, the sensitivity for distinguishing subjects with epilepsy from controls was 71.13% and the specificity was 62.66%. CONCLUSIONS Our results reveal that serum MMP-2 may be a potential biomarker for the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Guang Qun Zeng
- Department of Laboratory, Pengzhou People's Hospital, Chengdu, Sichuan, People's Republic of China.
| | - Rui Zhan Tong
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
20
|
Dixit AB, Tripathi M, Chandra PS, Banerjee J. Molecular biomarkers in drug-resistant epilepsy: Facts & possibilities. Int J Surg 2015; 36:483-491. [PMID: 26306771 DOI: 10.1016/j.ijsu.2015.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023]
Abstract
Despite great advances in our understanding of the process of epileptogenesis we are yet to develop reliable biomarkers that have the potential to accurately localize the epileptogenic zone (EZ), and to resolve the issue of heterogeneity in epilepsy surgery outcome. Inability to precisely localize the epileptogenic foci is one of the reason why more than 30% of these DRE patients are not benefited. Molecular and cellular biomarkers in combination with imaging and electrical investigations will provide a more specific platform for defining epileptogenic zone. Potential molecular biomarkers of epileptogenesis including markers of inflammation, synaptic alterations and neurodegeneration may also have the potential for localizing EZ. At molecular level components derived from epileptogenic tissues, such as metabolites, proteins, mRNAs and miRNAs that are significantly altered can serve as biomarkers and can be clubbed with existing techniques to preoperatively localize the EZ. Neurosurgeons across the world face problems while defining the margins of the epileptogenic tissues to be resected during surgery. In this review we discuss molecular biomarkers reported so far in the context of epileptogenesis and some of the unexplored markers which may have the potential to localize EZ during surgery. We also discuss "Intelligent knife" technique that couples electrosurgery and mass spectrometry allowing near-real-time characterization of human tissue and may prove to be instrumental in defining the margins of the epileptogenic zone during surgery.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, National Brain Research Centre, Manesar, 122051, India
| | - Manjari Tripathi
- Dept. of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Sarat Chandra
- Dept. of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, National Brain Research Centre, Manesar, 122051, India.
| |
Collapse
|
21
|
Musto AE, Walker CP, Petasis NA, Bazan NG. Hippocampal neuro-networks and dendritic spine perturbations in epileptogenesis are attenuated by neuroprotectin d1. PLoS One 2015; 10:e0116543. [PMID: 25617763 PMCID: PMC4305283 DOI: 10.1371/journal.pone.0116543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Purpose Limbic epileptogenesis triggers molecular and cellular events that foster the establishment of aberrant neuronal networks that, in turn, contribute to temporal lobe epilepsy (TLE). Here we have examined hippocampal neuronal network activities in the pilocarpine post-status epilepticus model of limbic epileptogenesis and asked whether or not the docosahexaenoic acid (DHA)-derived lipid mediator, neuroprotectin D1 (NPD1), modulates epileptogenesis. Methods Status epilepticus (SE) was induced by intraperitoneal administration of pilocarpine in adult male C57BL/6 mice. To evaluate simultaneous hippocampal neuronal networks, local field potentials were recorded from multi-microelectrode arrays (silicon probe) chronically implanted in the dorsal hippocampus. NPD1 (570 μg/kg) or vehicle was administered intraperitoneally daily for five consecutive days 24 hours after termination of SE. Seizures and epileptiform activity were analyzed in freely-moving control and treated mice during epileptogenesis and epileptic periods. Then hippocampal dendritic spines were evaluated using Golgi-staining. Results We found brief spontaneous microepileptiform activity with high amplitudes in the CA1 pyramidal and stratum radiatum in epileptogenesis. These aberrant activities were attenuated following systemic NPD1 administration, with concomitant hippocampal dendritic spine protection. Moreover, NPD1 treatment led to a reduction in spontaneous recurrent seizures. Conclusions Our results indicate that NPD1 displays neuroprotective bioactivity on the hippocampal neuronal network ensemble that mediates aberrant circuit activity during epileptogenesis. Insight into the molecular signaling mediated by neuroprotective bioactivity of NPD1 on neuronal network dysfunction may contribute to the development of anti-epileptogenic therapeutic strategies.
Collapse
Affiliation(s)
- Alberto E. Musto
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail: (NGB); (AEM)
| | - Chelsey P. Walker
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Nicos A. Petasis
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California, United States of America
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail: (NGB); (AEM)
| |
Collapse
|
22
|
Szilágyi T, Száva I, Metz EJ, Mihály I, Orbán-Kis K. Untangling the pathomechanisms of temporal lobe epilepsy—The promise of epileptic biomarkers and novel therapeutic approaches. Brain Res Bull 2014; 109:1-12. [DOI: 10.1016/j.brainresbull.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/30/2022]
|
23
|
Simonato M, Brooks-Kayal AR, Engel J, Galanopoulou AS, Jensen FE, Moshé SL, O'Brien TJ, Pitkanen A, Wilcox KS, French JA. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol 2014; 13:949-60. [PMID: 25127174 PMCID: PMC5003536 DOI: 10.1016/s1474-4422(14)70076-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Translation of successful target and compound validation studies into clinically effective therapies is a major challenge, with potential for costly clinical trial failures. This situation holds true for the epilepsies-complex diseases with different causes and symptoms. Although the availability of predictive animal models has led to the development of effective antiseizure therapies that are routinely used in clinical practice, showing that translation can be successful, several important unmet therapeutic needs still exist. Available treatments do not fully control seizures in a third of patients with epilepsy, and produce substantial side-effects. No treatment can prevent the development of epilepsy in at-risk patients or cure patients with epilepsy. And no specific treatment for epilepsy-associated comorbidities exists. To meet these demands, a redesign of translational approaches is urgently needed.
Collapse
Affiliation(s)
- Michele Simonato
- Department of Medical Sciences (Section of Pharmacology), University of Ferrara, and National Institute of Neuroscience, Ferrara, Italy
| | - Amy R Brooks-Kayal
- Departments of Pediatrics, Neurology and Pharmaceutical Sciences, University of Colorado Schools of Medicine and Pharmacy, Children's Hospital Colorado, Aurora, CO, USA
| | - Jerome Engel
- Department of Neurology, Neurobiology, and Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Saul R Korey Department of Neurology, Department of Dominick P Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Saul R Korey Department of Neurology, Department of Dominick P Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Pediatrics, Laboratory of Developmental Epilepsy, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Terence J O'Brien
- Department of Medicine and Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Asla Pitkanen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Karen S Wilcox
- Anticonvulsant Drug Development Program, Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
24
|
Abstract
Epileptogenesis, a process leading to a reduced threshold for seizures after transient brain insults, as well as the mechanisms underlying the propensity to generate spontaneous epileptic seizures, are highly dynamic processes. Biomarkers--objective measures of biological processes--would be excellent tools for monitoring epileptogenesis and the dynamics of increased seizure propensity, as well as the potential to interfere, for example pharmacologically, with these key pathological aspects of epilepsy. Molecular biomarkers have revolutionized therapies, as well as response prediction and monitoring of therapies in other biomedical fields. However, high-impact molecular biomarkers are still not available in the context of epilepsy. Several factors, such as the large heterogeneity of epileptic syndromes and their underlying pathological patterns, as well as the limited availability of tissue samples, represent a particular challenge to the development of molecular biomarkers in epileptogenesis and epilepsy. However, substantial technical progress has been made recently with respect to biomarker characterization and monitoring by large throughput analysis on the genomic, mRNA, and proteomic levels, starting from minute amounts of brain tissue or body fluids, for example cerebrospinal fluid, blood, serum, or plasma. Given the substantial cellular- and network-level functional pathophysiology involved in epilepsy, it may be beneficial in the future to combine molecular analysis with other methods, such as imaging and electrophysiological biomarkers.
Collapse
Affiliation(s)
- Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02 093 Warsaw, Poland
| | - Albert J. Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
25
|
D'Ambrosio R, Eastman CL, Fattore C, Perucca E. Novel frontiers in epilepsy treatments: preventing epileptogenesis by targeting inflammation. Expert Rev Neurother 2014; 13:615-25. [PMID: 23738999 DOI: 10.1586/ern.13.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently available epilepsy drugs only affect the symptoms (seizures), and there is a need for innovative treatments that target the underlying disease. Increasing evidence points to inflammation as a potentially important mechanism in epileptogenesis. In the last decade, a new generation of etiologically realistic syndrome-specific experimental models have been developed, which are expected to capture the epileptogenic mechanisms operating in corresponding patient populations, and to exhibit similar treatment responsiveness. Recently, an intervention known to have broad-ranging anti-inflammatory effects (selective brain cooling) has been found to prevent the development of spontaneously occurring seizures in an etiologically realistic rat model of post-traumatic epilepsy. Several drugs used clinically for other indications also have the potential for inhibiting inflammation, and should be investigated for antiepileptogenic activity in these models. If results of such studies are positive, these compounds could rapidly enter Phase III trials in patients at high risk of developing epilepsy.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
26
|
Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci 2013; 6:37. [PMID: 24282394 PMCID: PMC3824358 DOI: 10.3389/fnmol.2013.00037] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/17/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) are an important class of non-coding RNA which function as post-transcriptional regulators of gene expression in cells, repressing and fine-tuning protein output. Prolonged seizures (status epilepticus, SE) can cause damage to brain regions such as the hippocampus and result in cognitive deficits and the pathogenesis of epilepsy. Emerging work in animal models has found that SE produces select changes to miRNAs within the brain. Similar changes in over 20 miRNAs have been found in the hippocampus in two or more studies, suggesting conserved miRNA responses after SE. The miRNA changes that accompany SE are predicted to impact levels of multiple proteins involved in neuronal morphology and function, gliosis, neuroinflammation, and cell death. miRNA expression also displays select changes in the blood after SE, supporting blood genomic profiling as potential molecular biomarkers of seizure-damage or epileptogenesis. Intracerebral delivery of chemically modified antisense oligonucleotides (antagomirs) has been shown to have potent, specific and long-lasting effects on brain levels of miRNAs. Targeting miR-34a, miR-132 and miR-184 has been reported to alter seizure-induced neuronal death, whereas targeting miR-134 was neuroprotective, reduced seizure severity during status epilepticus and reduced the later emergence of recurrent spontaneous seizures. These studies support roles for miRNAs in the pathophysiology of status epilepticus and miRNAs may represent novel therapeutic targets to reduce brain injury and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
27
|
Kobow K, El-Osta A, Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia 2013; 54 Suppl 2:41-7. [PMID: 23646970 DOI: 10.1111/epi.12183] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seizures cannot be medically controlled in approximately 40% of people with epilepsy. Although we are beginning to understand how to better treat certain seizure types, we still do not know the regulatory events that determine antiepileptic drug resistance. Proposed pathoetiologic mechanisms include altered expression of drug targets (i.e., receptor or ion channel modifications), endothelial drug transporter activation (i.e., increasing drug clearance), or intrinsic severity factors. The latter hypothesis results from an often confirmed clinical observation, that seizure severity is a reliable predictor for the development of pharmacoresistance (PR) in epilepsy. Herein, we propose, that genome modifications that do not involve changes to the DNA sequence per se (i.e., epigenetic changes) could confer PR in patients with epilepsy. Seizures cause excessive neuronal membrane depolarization, which can influence the cellular nucleus; we thus hypothesize that seizures can mediate epigenetic modifications that result in persistent genomic methylation, histone density, and posttranslational modifications, as well as noncoding RNA-based changes. Although experimental evidence is lacking in epilepsy, such mechanisms are well characterized in cancer, either as a result of anticancer drugs themselves or cancer-related intrinsic signals (i.e., noncoding RNAs). We suggest that similar mechanisms also play a role in PR epilepsies. Addressing such epigenetic mechanisms may be a successful strategy to increase the brain's sensitivity to antiepileptic drugs and may even act as disease-modifying treatment.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
28
|
Russo E, Citraro R, Donato G, Camastra C, Iuliano R, Cuzzocrea S, Constanti A, De Sarro G. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 2013; 69:25-36. [DOI: 10.1016/j.neuropharm.2012.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/29/2012] [Indexed: 12/27/2022]
|
29
|
Filibian M, Frasca A, Maggioni D, Micotti E, Vezzani A, Ravizza T. In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia 2012; 53:1907-16. [PMID: 23030308 DOI: 10.1111/j.1528-1167.2012.03685.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Long-lasting activation of glia occurs in brain during epileptogenesis, which develops after various central nervous system (CNS) injuries. Glia is the cell source of the biosynthesis and release of molecules that play a role in seizure recurrence and may contribute to epileptogenesis, thus representing a putative biomarker of epilepsy development and severity. In this study, we set up an in vivo longitudinal study using (1) H-magnetic resonance spectroscopy (MRS) to measure metabolite content in the rat hippocampus that could reflect the extent and the duration of glia activation. Our aim was to explore if glia activation during epileptogenesis, or in the chronic epileptic phase, can be used as a biomarker of tissue epileptogenicity (i.e., a measure of epilepsy severity). METHODS (1) H-MRS measurements were done in the adult rat hippocampus every 24 h for 7 days after status epilepticus (SE) and in chronic epileptic rats, using a 7 T Bruker Biospec MRI (magnetic resonance imaging)/MRS scanner. We studied changes in metabolite levels that reflect astrocytes (myo-inositol, mIns; glutathione, GSH), microglia/macrophage activation and the associated neuronal cell injury/dysfunction (lactate, Lac; N-acetyl-aspartate, NAA). (1) H-MRS results were validated by post hoc immunohistochemistry using cell-specific markers. Data analysis was done to determine whether correlations exist between the metabolite changes and spontaneous seizure frequency or the extent of neuronal cell loss. KEY FINDINGS The analysis of (1) H-MRS spectra showed a progressive increase in mIns and GSH levels after SE, which was maintained in epileptic rats. Lac signal transiently increased during epileptogenesis being undetectable in chronic epileptic tissue. NAA levels were chronically reduced from day 2 post-SE. Immunohistochemistry confirmed the activation of microglia and astrocytes and the progressive neuronal cell loss. GSH levels during epileptogenesis showed a negative correlation with the frequency of spontaneous seizures, whereas S100β levels in epileptic tissue were positively correlated with this outcome measure. A negative correlation was also found between GSH or mIns levels during epileptogenesis and the extent of neurodegeneration in hippocampus of epileptic rats. SIGNIFICANCE (1) H-MRS is a valuable in vivo technique for determining the extent and temporal profile of glia activation after an epileptogenic injury. S100β levels measured in the epileptic tissue may represent a biomarker of seizure frequency, whereas GSH levels during epileptogenesis could serve as a predictive marker of seizure frequency. Both mIns and GSH levels measured before the onset of spontaneous seizures predict the extent of neuronal cell loss in epileptic tissue. These findings highlight the potential of serial (1) H-MRS analysis for searching epilepsy biomarkers for prognostic, diagnostic, or therapeutic purposes.
Collapse
Affiliation(s)
- Marta Filibian
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, Milan, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|