1
|
Main KL, Vakhtin AA, Zhuo J, Marion D, Adamson MM, Ashford JW, Gullapalli R, Furst AJ. An iterative ROC procedure identifies white matter tracts diagnostic for traumatic brain injury: an exploratory analysis in U.S. Veterans. Brain Inj 2025:1-19. [PMID: 40257224 DOI: 10.1080/02699052.2025.2492746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE Understanding the pathophysiology of traumatic brain injury (TBI) is crucial for effectively managing care. Diffusion tensor imaging (DTI) is an MRI technology that evaluates TBI pathology in brain white matter. However, DTI analysis generates numerous measures. Choosing between them remains an obstacle to clinical translation. In this study, we leveraged an iterative receiver operating characteristic (ROC) analysis to examine white matter tracts in a group of 380 Veterans, consisting of TBI (n = 243) and non-TBI patients (n = 137). METHOD For each participant, we obtained a whole brain tractography and extracted DTI measures from 50 tracts. The ROC analyzed these variables and produced decision trees of tracts diagnostic for TBI. We expanded our findings by applying jackknife resampling. This procedure removed potential outliers and yielded tracts not observed in the initial ROCs. Finally, we used logistic regression to confirm the tracts predicted TBI status. RESULTS Our results indicate ROC can identify tracts diagnostic for TBI. We also found that groups of tracts are more predictive than any single one. CONCLUSIONS These analyses show that ROC is a useful tool for exploring large, multivariate datasets and may inform the design of clinical algorithms.
Collapse
Affiliation(s)
- Keith L Main
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, Maryland, USA
| | - Andrei A Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Traumatic Brain Injury Division, Albuquerque, New Mexico, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Donald Marion
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, Maryland, USA
| | - Maheen M Adamson
- Women's Operational Military Exposure Network, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Rehabilitation Services, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - J Wesson Ashford
- War Related Illness and Injury Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Rao Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ansgar J Furst
- War Related Illness and Injury Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Polytrauma System of Care, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Castillo-Bustamante M, Ramos BF, Whitney S, Zuma E Maia F, Cal R, Madrigal J. Exploring the Link Between Traumatic Brain Injury and Benign Paroxysmal Positional Vertigo. Cureus 2025; 17:e81847. [PMID: 40206494 PMCID: PMC11981238 DOI: 10.7759/cureus.81847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
Benign paroxysmal positional vertigo (BPPV) is the most common peripheral vestibular disorder, characterized by brief episodes of vertigo triggered by changes in head position. While idiopathic cases are frequent, post-traumatic BPPV has been increasingly recognized, particularly in individuals who have experienced traumatic brain injury (TBI). TBI, ranging from mild concussions to severe head trauma, is a significant cause of neurological morbidity and is often associated with vestibular dysfunction. The pathophysiology of post-traumatic BPPV is thought to involve direct mechanical disruption of the otolithic organs, alterations in endolymph dynamics, or vascular compromise affecting inner ear structures. Compared to idiopathic BPPV, post-traumatic cases tend to have a more prolonged and refractory course, often requiring multiple repositioning maneuvers for symptom resolution. Additionally, concurrent vestibular pathologies, such as vestibular migraine, post-concussive dizziness, or central vestibular dysfunction, may complicate diagnosis and treatment. Early identification and appropriate management of post-traumatic BPPV are crucial in reducing disability and improving the quality of life in affected patients. This review explores the epidemiology, pathophysiology, clinical characteristics, and treatment considerations of post-traumatic BPPV, emphasizing the importance of a multidisciplinary approach. Understanding the relationship between TBI and BPPV can enhance clinical decision-making and optimize rehabilitation strategies for individuals with vestibular dysfunction following head trauma.
Collapse
Affiliation(s)
- Melissa Castillo-Bustamante
- Otolaryngology, Clinica Universitaria Bolivariana, Medellín, COL
- College of Medicine, Health Sciences School, Universidad Pontificia Bolivariana, Medellín, COL
| | - Bernardo F Ramos
- Otolaryngology, Federal University of Espirito Santo, Vitoria, BRA
| | - Susan Whitney
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, USA
| | | | - Renato Cal
- Otolaryngology, University Center of the State of Pará (CESUPA), Belem, BRA
| | - Jorge Madrigal
- Otoneurology, Centro de Vértigo y Mareo, Mexico City, MEX
| |
Collapse
|
3
|
Yates LC, Yates E, Li X, Lu Y, Yakoub K, Davies D, Belli A, Sawlani V. Developing a multivariate model for the prediction of concussion recovery in sportspeople: a machine learning approach. BMJ Open Sport Exerc Med 2025; 11:e002090. [PMID: 40134506 PMCID: PMC11934374 DOI: 10.1136/bmjsem-2024-002090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/06/2025] [Indexed: 03/27/2025] Open
Abstract
Background Sportspeople suffering from mild traumatic brain injury (mTBI) who return prematurely to sport are at an increased risk of delayed recovery, repeat concussion events and, in the longer-term, the development of chronic traumatic encephalopathy. Therefore, determining the appropriate recovery time, without unnecessarily delaying return to sport, is paramount at a professional/semi-professional level, yet notoriously difficult to predict. Objectives To use machine learning to develop a multivariate model for the prediction of concussion recovery in sportspeople. Methods Demographics, injury history, Sport Concussion Assessment Tool fifth edition questionnaire and MRI head reports were collected for sportspeople who suffered mTBI and were referred to a tertiary university hospital in the West Midlands over 3 years. Random forest (RF) machine learning algorithms were trained and tuned on a 90% outcome-balanced corpus subset, with subsequent validation testing on the previously unseen 10% subset for binary prediction of greater than five missed sporting games. Confusion matrices and receiver operator curves were used to determine model discrimination. Results 375 sportspeople were included. A final composite model accuracy of 94.6% based on the unseen testing subset was obtained, yielding a sensitivity of 100% and specificity of 93.8% with a positive predictive value of 71.4% and a negative predictive value of 100%. The area under the curve was 96.3%. Discussion In this large single-centre cohort study, a composite RF machine learning algorithm demonstrated high performance in predicting sporting games missed post-mTBI injury. Validation of this novel model on larger external datasets is therefore warranted. Trial registration number ISRCTN16974791.
Collapse
Affiliation(s)
- Louise C Yates
- Department of Radiology, Worcester Acute Hospitals NHS Trust, Worcester, UK
| | - Elliot Yates
- Department of Anaesthesia, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Yiping Lu
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Kamal Yakoub
- Institute of Inflammation and Ageing, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - David Davies
- Department of Neurosurgery, University Hospitals Birmingham, Birmingham, UK
| | - Antonio Belli
- Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Vijay Sawlani
- Imaging, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
4
|
Czobit C, Samavi R. Generative Adversarial Networks for Neuroimage Translation. J Comput Biol 2024. [PMID: 39729343 DOI: 10.1089/cmb.2024.0635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Image-to-image translation has gained popularity in the medical field to transform images from one domain to another. Medical image synthesis via domain transformation is advantageous in its ability to augment an image dataset where images for a given class are limited. From the learning perspective, this process contributes to the data-oriented robustness of the model by inherently broadening the model's exposure to more diverse visual data and enabling it to learn more generalized features. In the case of generating additional neuroimages, it is advantageous to obtain unidentifiable medical data and augment smaller annotated datasets. This study proposes the development of a cycle-consistent generative adversarial network (CycleGAN) model for translating neuroimages from one field strength to another (e.g., 3 Tesla [T] to 1.5 T). This model was compared with a model based on a deep convolutional GAN model architecture. CycleGAN was able to generate the synthetic and reconstructed images with reasonable accuracy. The mapping function from the source (3 T) to the target domain (1.5 T) performed optimally with an average peak signal-to-noise ratio value of 25.69 ± 2.49 dB and a mean absolute error value of 2106.27 ± 1218.37. The codes for this study have been made publicly available in the following GitHub repository.a.
Collapse
Affiliation(s)
- Cassandra Czobit
- Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada
| | - Reza Samavi
- Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| |
Collapse
|
5
|
Boys RM, Kot BCW, Lye G, Beausoleil NJ, Hunter S, Stockin KA. Evaluation of ballistics euthanasia applied to stranded cetaceans using ethological and post-mortem computed tomography assessment. Vet Res Commun 2024; 48:3989-4006. [PMID: 39287893 PMCID: PMC11538159 DOI: 10.1007/s11259-024-10537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Debilitated stranded cetaceans with low survival likelihood, may require euthanasia to avoid further suffering. Euthanasia can involve chemical or physical methods, including ballistics. Ballistics should cause instantaneous, permanent insensibility through brainstem disruption. Despite wide application, there is limited understanding of ballistics-related welfare outcomes. We opportunistically examined behaviour of three maternally-dependent cetaceans following shooting and the related cranial disruption post-mortem using computed tomography (PMCT). Our aim was to understand whether a 'humane death', i.e., euthanasia, was achieved. Each animal was shot using different projectile types: soft non-bonded, solid, and soft bonded. In two animals, insensibility was not immediately assessed following shooting, although both were reported as 'instantaneously insensible'. From our analysis, all animals displayed musculoskeletal responses to shooting, including peduncle stiffening and slack lower jaw, followed by musculature relaxation 24-, 10.3- and 20.8-seconds post-ballistics, respectively. The animal shot with a soft non-bonded projectile also displayed agonal convulsions and tail-lifting for 16-seconds post-shot; these were not observed for solid or soft bonded projectiles. PMCT findings indicated projectile disruption to the brainstem and/or spinal cord likely to cause near-instantaneous insensibility. However, extra-cranial wounding was also evident for the soft non-bonded projectile, highlighting potential for additional welfare compromise. Our results demonstrate that ballistics can achieve a relatively rapid death in young, stranded cetaceans, but careful equipment selection is required. To ensure a humane death, verification of insensibility must be undertaken immediately following shooting. Further studies should be undertaken to improve knowledge of appropriate procedures and equipment for euthanasia, ensuring humane deaths for compromised cetaceans.
Collapse
Affiliation(s)
- Rebecca M Boys
- Cetacean Ecology Research Group, College of Sciences, Massey University, Private Bag 102-904, Auckland, New Zealand.
| | - Brian C W Kot
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Gordon Lye
- Animal Referral Centre, 224 Albany Highway, Schnapper Rock, Auckland, 0632, New Zealand
| | - Ngaio J Beausoleil
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Stuart Hunter
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Karen A Stockin
- Cetacean Ecology Research Group, College of Sciences, Massey University, Private Bag 102-904, Auckland, New Zealand.
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| |
Collapse
|
6
|
Bigler ED, Allder S, Victoroff J. What traditional neuropsychological assessment got wrong about mild traumatic brain injury. II: limitations in test development, research design, statistical and psychometric issues. Brain Inj 2024; 38:1053-1074. [PMID: 39066740 DOI: 10.1080/02699052.2024.2376261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
PRIMARY OBJECTIVE This is Part II of a four-part opinion review on traditional neuropsychological assessment methods and findings associated with mild traumatic brain injury (mTBI). This Part II review focuses on historical, psychometric and statistical issues involving traditional neuropsychological methods that have been used in neuropsychological outcome studies of mTBI, but demonstrates the critical limitations of traditional methods. RESEARCH DESIGN This is an opinion review. METHODS AND PROCEDURES Traditional neuropsychological tests are dated and lack specificity in evaluating such a heterogenous and complex injury as occurs with mTBI. MAIN OUTCOME AND RESULTS In this review, we demonstrate traditional neuropsychological methods were never developed as standalone measures for detecting subtle changes in neurocognitive or neurobehavioral functioning and likewise, never designed to address the multifaceted issues related to underlying mTBI neuropathology symptom burden from having sustained a concussive brain injury. CONCLUSIONS For neuropsychological assessment to continue to contribute to clinical practice and outcome literature involving mTBI, major innovative changes are needed that will likely require technological advances of novel assessment techniques more specifically directed to evaluating the mTBI patient. These will be discussed in Part IV.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, Utah, USA
- Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Steven Allder
- Consultant Neurologist and Clinical Director, Re: Cognition Health, London, UK
| | - Jeff Victoroff
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Tate DF, Bigler ED, York GE, Newsome MR, Taylor BA, Mayer AR, Pugh MJ, Presson AP, Ou Z, Hovenden ES, Dimanche J, Abildskov TJ, Agarwal R, Belanger HG, Betts AM, Duncan T, Eapen BC, Jaramillo CA, Lennon M, Nathan JE, Scheibel RS, Spruiell MB, Walker WC, Wilde EA. White Matter Hyperintensities and Mild TBI in Post-9/11 Veterans and Service Members. Mil Med 2024; 189:e2578-e2587. [PMID: 39002108 PMCID: PMC11536319 DOI: 10.1093/milmed/usae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION The neurobehavioral significance of white matter hyperintensities (WMHs) seen on magnetic resonance imaging after traumatic brain injury (TBI) remains unclear, especially in Veterans and Service Members with a history of mild TBI (mTBI). In this study, we investigate the relation between WMH, mTBI, age, and cognitive performance in a large multisite cohort from the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. MATERIALS AND METHODS The neuroimaging and neurobehavioral assessments for 1,011 combat-exposed, post-9/11 Veterans and Service Members (age range 22-69 years), including those with a history of at least 1 mTBI (n = 813; median postinjury interval of 8 years) or negative mTBI history (n = 198), were examined. RESULTS White matter hyperintensities were present in both mTBI and comparison groups at similar rates (39% and 37%, respectively). There was an age-by-diagnostic group interaction, such that older Veterans and Service Members with a history of mTBI demonstrated a significant increase in the number of WMHs present compared to those without a history of mTBI. Additional associations between an increase in the number of WMHs and service-connected disability, insulin-like growth factor-1 levels, and worse performance on tests of episodic memory and executive functioning-processing speed were found. CONCLUSIONS Subtle but important clinical relationships are identified when larger samples of mTBI participants are used to examine the relationship between history of head injury and radiological findings. Future studies should use follow-up magnetic resonance imaging and longitudinal neurobehavioral assessments to evaluate the long-term implications of WMHs following mTBI.
Collapse
Affiliation(s)
- David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84103, USA
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Gerald E York
- Alaska Radiology Associates, Anchorage, AK 99508, USA
- Departments of Neurology and Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mary R Newsome
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian A Taylor
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew R Mayer
- Departments of Neurology and Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mary Jo Pugh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84103, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Angela P Presson
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Zhining Ou
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Elizabeth S Hovenden
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Josephine Dimanche
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Tracy J Abildskov
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Rajan Agarwal
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Heather G Belanger
- Defense and Veterans Brain Injury Center (DVBIC), MacDill AFB, FL 33621, USA
| | - Aaron M Betts
- Department of Radiology, Brooke Army Medical Center, San Antonio, TX 78234, USA
| | | | - Blessen C Eapen
- VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | | | - Michael Lennon
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Jennifer E Nathan
- Department of Radiology, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Randall S Scheibel
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew B Spruiell
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23220, USA
- Richmond Veterans Affairs (VA) Medical Center, Central Virginia VA Health Care System, Richmond, VA 23249, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84103, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Lyall DM, Russell ER, Ward J, Stewart W. A history of traumatic brain injury is associated with poorer cognition and imaging evidence of altered white matter tract integrity in UK Biobank ( n = 50 376). Brain Commun 2024; 6:fcae363. [PMID: 39670110 PMCID: PMC11635360 DOI: 10.1093/braincomms/fcae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease. We currently have no means to identify patients most at risk of neurodegenerative disease following injury and, resultantly, no means to target risk mitigation interventions. To address this, we explored the association between history of traumatic brain injury with cognitive performance and imaging measures of white matter integrity. From the UK Biobank imaging sub-study (n = 50 376), participants were identified with either self-reported (n = 177) or health record coded broad- (injury codes; n = 1096) or narrow-band (TBI specific codes; n = 274) TBI, or as controls with no such documented history (n = 49 280). Cognitive scores and imaging measures of corpus callosum white matter integrity were compared between injury participants (versus no injury), corrected for age, sex, socioeconomic status and medications. TBI was associated with poorer cognitive and imaging phenotypes. The strongest deleterious associations were for narrow-band injury (β difference 0.2-0.3; P < 0.01). All cognitive and imaging phenotypes were strongly inter-correlated (P < 0.001). This study provides insight into possible early biomarkers predating neurodegenerative disease following brain injury. Measures of cognition and white matter following injury may provide means to identify individuals most at risk of neurodegenerative disease, to which mitigation strategies might be targeted.
Collapse
Affiliation(s)
- Donald M Lyall
- School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, Scotland, UK
| | - Emma R Russell
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, Scotland, UK
| | - Joey Ward
- School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, Scotland, UK
| | - William Stewart
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, Scotland, UK
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, Scotland, UK
| |
Collapse
|
9
|
Poliva O, Herrera C, Sugai K, Whittle N, Leek MR, Barnes S, Holshouser B, Yi A, Venezia JH. Additive effects of mild head trauma, blast exposure, and aging within white matter tracts: A novel Diffusion Tensor Imaging analysis approach. J Neuropathol Exp Neurol 2024; 83:853-869. [PMID: 39053000 DOI: 10.1093/jnen/nlae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Existing diffusion tensor imaging (DTI) studies of neurological injury following high-level blast exposure (hlBE) in military personnel have produced widely variable results. This is potentially due to prior studies often not considering the quantity and/or recency of hlBE, as well as co-morbidity with non-blast head trauma (nbHT). Herein, we compare commonly used DTI metrics: fractional anisotropy and mean, axial, and radial diffusivity, in Veterans with and without history of hlBE and/or nbHT. We use both the traditional method of dividing participants into 2 equally weighted groups and an alternative method wherein each participant is weighted by quantity and recency of hlBE and/or nbHT. While no differences were detected using the traditional method, the alternative method revealed diffuse and extensive changes in all DTI metrics. These effects were quantified within 43 anatomically defined white matter tracts, which identified the forceps minor, middle corpus callosum, acoustic and optic radiations, fornix, uncinate, inferior fronto-occipital and inferior longitudinal fasciculi, and cingulum, as the pathways most affected by hlBE and nbHT. Moreover, additive effects of aging were present in many of the same tracts suggesting that these neuroanatomical effects may compound with age.
Collapse
Affiliation(s)
- Oren Poliva
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | | | - Kelli Sugai
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Nicole Whittle
- VA Portland Healthcare System, Portland, OR, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Samuel Barnes
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
10
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Urbanik A, Guz W, Brożyna M, Ostrogórska M. Changes in the central nervous system in football players: an MRI study. Acta Radiol 2024; 65:967-974. [PMID: 38767036 DOI: 10.1177/02841851241248410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Football (soccer) is the world's most popular team sport. PURPOSE To comprehensively examine the brain in football (soccer) players, with the use of magnetic resonance imaging (MRI) techniques. MATERIAL AND METHODS The study involved 65 football players and 62 controls. The MR examinations were performed using MR 1.5-T system (Optima MR 360; GE Medical Systems). The examinations were carried out in the 3D Bravo, CUBE, FSEpropeller, and diffusion-weighted imaging (DWI) sequences. The 1HMRS signal was obtained from the volume of interest in the frontal and occipital lobes on both sides. RESULTS The present study, based on structural MRI, shows some changes in the brains of the group of football players. The findings show asymmetry of the ventricular system in four football players, arachnoid cysts in the parieto-occipital region, and pineal cysts. NAA/Cr concentration in the right frontal lobe was lower in the football players than in the controls, and the Glx/Cr concentration in the right occipital lobe was higher. The apparent diffusion coefficient value is lower in football players in the occipital lobes. CONCLUSION Playing football can cause measurable changes in the brain, known to occur in patients diagnosed with traumatic brain injury. The present findings fill the gap in the literature by contributing evidence showing that playing football may lead to changes in the brain, without clinical symptoms of concussion.
Collapse
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wiesław Guz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Maciej Brożyna
- Institute of Physical Culture Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Monika Ostrogórska
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Rodriguez S, Sharma S, Tiarks G, Peterson Z, Jackson K, Thedens D, Wong A, Keffala-Gerhard D, Mahajan VB, Ferguson PJ, Newell EA, Glykys J, Nickl-Jockschat T, Bassuk AG. Neuroprotective effects of naltrexone in a mouse model of post-traumatic seizures. Sci Rep 2024; 14:13507. [PMID: 38867062 PMCID: PMC11169394 DOI: 10.1038/s41598-024-63942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) induces neuroinflammatory response that can initiate epileptogenesis, which develops into epilepsy. Recently, we identified anti-convulsive effects of naltrexone, a mu-opioid receptor (MOR) antagonist, used to treat drug addiction. While blocking opioid receptors can reduce inflammation, it is unclear if post-TBI seizures can be prevented by blocking MORs. Here, we tested if naltrexone prevents neuroinflammation and/or seizures post-TBI. TBI was induced by a modified Marmarou Weight-Drop (WD) method on 4-week-old C57BL/6J male mice. Mice were placed in two groups: non-telemetry assessing the acute effects or in telemetry monitoring for interictal events and spontaneous seizures both following TBI and naltrexone. Molecular, histological and neuroimaging techniques were used to evaluate neuroinflammation, neurodegeneration and fiber track integrity at 8 days and 3 months post-TBI. Peripheral immune responses were assessed through serum chemokine/cytokine measurements. Our results show an increase in MOR expression, nitro-oxidative stress, mRNA expression of inflammatory cytokines, microgliosis, neurodegeneration, and white matter damage in the neocortex of TBI mice. Video-EEG revealed increased interictal events in TBI mice, with 71% mice developing post-traumatic seizures (PTS). Naltrexone treatment ameliorated neuroinflammation, neurodegeneration, reduced interictal events and prevented seizures in all TBI mice, which makes naltrexone a promising candidate against PTS, TBI-associated neuroinflammation and epileptogenesis in a WD model of TBI.
Collapse
Affiliation(s)
- Saul Rodriguez
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Shaunik Sharma
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Grant Tiarks
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Zeru Peterson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Kyle Jackson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Daniel Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Angela Wong
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - David Keffala-Gerhard
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Polly J Ferguson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Elizabeth A Newell
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Joseph Glykys
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Wang Y, Li J, Huang Y, Lyu F, Wang Y, Wei P, Yuan Y, Fu Y, Gao Y. Microglial histone deacetylase 2 is dispensable for functional and histological outcomes in a mouse model of traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:817-835. [PMID: 38069842 PMCID: PMC11197137 DOI: 10.1177/0271678x231197173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 04/26/2024]
Abstract
The Class-I histone deacetylases (HDACs) mediate microglial inflammation and neurological dysfunction after traumatic brain injury (TBI). However, whether the individual Class-I HDACs play an indispensable role in TBI pathogenesis remains elusive. HDAC2 has been shown to upregulate pro-inflammatory genes in myeloid cells under brain injuries such as intracerebral hemorrhage, thereby worsening outcomes. Thus, we hypothesized that HDAC2 drives microglia toward a pro-inflammatory neurotoxic phenotype in a murine model of controlled cortical impact (CCI). Our results revealed that HDAC2 expression was highly induced in CD16/CD32+ pro-inflammatory microglia 3 and 7d after TBI. Surprisingly, microglia-targeted HDAC2 knockout (HDAC2 miKO) mice failed to demonstrate a beneficial phenotype after CCI/TBI compared to their wild-type (WT) littermates. HDAC2 miKO mice exhibited comparable levels of grey and white matter injury, efferocytosis, and sensorimotor and cognitive deficits after CCI/TBI as WT mice. RNA sequencing of isolated microglia 3d after CCI/TBI indicated the elevation of a panel of pro-inflammatory cytokines/chemokines in HDAC2 miKO mice over WT mice, and flow cytometry showed further elevated brain infiltration of neutrophils and B cells in HDAC2 miKO mice. Together, this study does not support a detrimental role for HDAC2 in microglial responses after TBI and calls for investigation into alternative mechanisms.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yongfang Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fan Lyu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yangfan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yiwen Yuan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Fu
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Boese M, Berman RY, Qiu J, Spencer HF, Radford KD, Choi KH. Effects of Mild Closed-Head Injury and Subanesthetic Ketamine Infusion on Microglia, Axonal Injury, and Synaptic Density in Sprague-Dawley Rats. Int J Mol Sci 2024; 25:4287. [PMID: 38673871 PMCID: PMC11050690 DOI: 10.3390/ijms25084287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.
Collapse
Affiliation(s)
- Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Jennifer Qiu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA;
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Kwang H. Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA;
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
- Department of Psychiatry, F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
15
|
McGill MB, Schnyer DM. The Effects of Early Life History of TBI on the Progression of Normal Brain Aging with Implications for Increased Dementia Risk. ADVANCES IN NEUROBIOLOGY 2024; 42:119-143. [PMID: 39432040 DOI: 10.1007/978-3-031-69832-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is increasing interest in the risk conferred on neurological health by a traumatic brain injury (TBI) and how that influences the lifespan trajectory of brain aging. This chapter explores the importance of this issue, population, and methodological considerations, including injury documentation and outcome assessment. We then explore some of the findings in the neuroimaging and neuropsychological research literature examining the interaction between an earlier life history of TBI and the normal aging process. Finally, we consider the limitations of our current knowledge and where the field needs to go in the future.
Collapse
Affiliation(s)
- Makenna B McGill
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
16
|
Meyers SP, Hirad A, Gonzalez P, Bazarian JJ, Mirabelli MH, Rizzone KH, Ma HM, Rosella P, Totterman S, Schreyer E, Tamez-Pena JG. Clinical performance of a multiparametric MRI-based post concussive syndrome index. Front Neurol 2023; 14:1282833. [PMID: 38170071 PMCID: PMC10759224 DOI: 10.3389/fneur.2023.1282833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Diffusion Tensor Imaging (DTI) has revealed measurable changes in the brains of patients with persistent post-concussive syndrome (PCS). Because of inconsistent results in univariate DTI metrics among patients with mild traumatic brain injury (mTBI), there is currently no single objective and reliable MRI index for clinical decision-making in patients with PCS. Purpose This study aimed to evaluate the performance of a newly developed PCS Index (PCSI) derived from machine learning of multiparametric magnetic resonance imaging (MRI) data to classify and differentiate subjects with mTBI and PCS history from those without a history of mTBI. Materials and methods Data were retrospectively extracted from 139 patients aged between 18 and 60 years with PCS who underwent MRI examinations at 2 weeks to 1-year post-mTBI, as well as from 336 subjects without a history of head trauma. The performance of the PCS Index was assessed by comparing 69 patients with a clinical diagnosis of PCS with 264 control subjects. The PCSI values for patients with PCS were compared based on the mechanism of injury, time interval from injury to MRI examination, sex, history of prior concussion, loss of consciousness, and reported symptoms. Results Injured patients had a mean PCSI value of 0.57, compared to the control group, which had a mean PCSI value of 0.12 (p = 8.42e-23) with accuracy of 88%, sensitivity of 64%, and specificity of 95%, respectively. No statistically significant differences were found in the PCSI values when comparing the mechanism of injury, sex, or loss of consciousness. Conclusion The PCSI for individuals aged between 18 and 60 years was able to accurately identify patients with post-concussive injuries from 2 weeks to 1-year post-mTBI and differentiate them from the controls. The results of this study suggest that multiparametric MRI-based PCSI has great potential as an objective clinical tool to support the diagnosis, treatment, and follow-up care of patients with post-concussive syndrome. Further research is required to investigate the replicability of this method using other types of clinical MRI scanners.
Collapse
Affiliation(s)
- Steven P. Meyers
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Adnan Hirad
- Department of Vascular Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | - Jeffrey J. Bazarian
- Departments of Emergency Medicine, Neurology, Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Mark H. Mirabelli
- Department of Orthopedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Katherine H. Rizzone
- Department of Orthopedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Heather M. Ma
- Department of Physical Medicine and Rehabilitation, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Peter Rosella
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | | | - Jose G. Tamez-Pena
- School of Medicine and Health Sciences, Tecnologico de Monterey, Monterrey, Mexico
| |
Collapse
|
17
|
Doucet M, Brisebois H, McKerral M. Heart Rate Variability in Concussed College Athletes: Follow-Up Study and Biological Sex Differences. Brain Sci 2023; 13:1669. [PMID: 38137117 PMCID: PMC10741497 DOI: 10.3390/brainsci13121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Finding reliable biomarkers to assess concussions could play a pivotal role in diagnosis, monitoring, and predicting associated risks. The present study aimed to explore the use of heart rate variability (HRV) in the follow-up of concussions among college athletes and to investigate the relationships between biological sex, symptomatology, and HRV values at baseline and after a concussion. Correlations between measures were also analyzed. A total of 169 (55 females) athletes aged 16 to 22 years old completed baseline testing, and 30 (8 females) concussion cases were followed. Baseline assessment (T1) included psychosocial and psychological questionnaires, symptoms report, and four minutes of HRV recording. In the event of a concussion, athletes underwent re-testing within 72 h (T2) and before returning to play (T3). Baseline findings revealed that girls had higher %VLF while sitting than boys, and a small negligible correlation was identified between %HF and total symptoms score as well as %HF and affective sx. Post-concussion analyses demonstrated a significant effect of time × position × biological sex for %HF, where girls exhibited higher %HF at T3. These findings suggest disruptions in HRV following a concussion and underscore biological sex as an important factor in the analysis of HRV variation in concussion recovery trajectory.
Collapse
Affiliation(s)
- Mariane Doucet
- Departement of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC H3S 2J4, Canada
| | - Hélène Brisebois
- Departement of Psychology, Collège Montmorency, Laval, QC H7N 5H9, Canada
| | - Michelle McKerral
- Departement of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC H3S 2J4, Canada
| |
Collapse
|
18
|
Asturias A, Knoblauch T, Rodriguez A, Vanier C, Le Tohic C, Barrett B, Eisenberg M, Gibbert R, Zimmerman L, Parikh S, Nguyen A, Azad S, Germin L, Fazzini E, Snyder T. Diffusion in the corpus callosum predicts persistence of clinical symptoms after mild traumatic brain injury, a multi-scanner study. FRONTIERS IN NEUROIMAGING 2023; 2:1153115. [PMID: 38025312 PMCID: PMC10654678 DOI: 10.3389/fnimg.2023.1153115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023]
Abstract
Background Mild traumatic brain injuries (mTBIs) comprise 80% of all TBI, but conventional MRI techniques are often insensitive to the subtle changes and injuries produced in a concussion. Diffusion tensor imaging (DTI) is one of the most sensitive MRI techniques for mTBI studies with outcome and symptom associations described. The corpus callosum (CC) is one of the most studied fiber tracts in TBI and mTBI, but the comprehensive post-mTBI symptom relationship has not fully been explored. Methods This is a retrospective observational study of how quantitative DTI data of the CC and its sub-regions may relate to clinical presentation of symptoms and timing of resolution of symptoms in patients diagnosed with uncomplicated mTBI. DTI and clinical data were obtained retrospectively from 446 (mean age 42 years, range 13-82) civilian patients. From patient medical charts, presentation of the following common post-concussive symptoms was noted: headache, balance issues, cognitive deficits, fatigue, anxiety, depression, and emotional lability. Also recorded was the time between injury and a visit to the physician when improvement or resolution of a particular symptom was reported. FA values from the total CC and 3 subregions of the CC (genu or anterior, mid body, and splenium or posterior) were obtained from hand tracing on the Olea Sphere v3.0 SP12 free-standing workstation. DTI data was obtained from 8 different 3T MRI scanners and harmonized via ComBat harmonization. The statistical models used to explore the association between regional Fractional Anisotropy (FA) values and symptom presentation and time to symptom resolution were logistic regression and interval-censored semi-parametric Cox proportional hazard models, respectively. Subgroups related to age and timing of first scan were also analyzed. Results Patients with the highest FA in the total CC (p = 0.01), anterior CC (p < 0.01), and mid-body CC (p = 0.03), but not the posterior CC (p = 0.91) recovered faster from post-concussive cognitive deficits. Patients with the highest FA in the posterior CC recovered faster from depression (p = 0.04) and emotional lability (p = 0.01). There was no evidence that FA in the CC or any of its sub-regions was associated with symptom presentation or with time to resolution of headache, balance issues, fatigue, or anxiety. Patients with mTBI under 40 had higher FA in the CC and the anterior and mid-body subregions (but not the posterior subregion: p = 1.00) compared to patients 40 or over (p ≤ 0.01). There was no evidence for differences in symptom presentation based on loss of consciousness (LOC) or sex (p ≥ 0.18). Conclusion This study suggests that FA of the CC has diagnostic and prognostic value for clinical assessment of mTBI in a large diverse civilian population, particularly in patients with cognitive symptoms.
Collapse
Affiliation(s)
- Alexander Asturias
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
- School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Alan Rodriguez
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Cheryl Vanier
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Caroline Le Tohic
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | - Brandon Barrett
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | - Matthew Eisenberg
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | | | - Lennon Zimmerman
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | | | - Anh Nguyen
- Touro University Nevada, Henderson, NV, United States
| | - Sherwin Azad
- MountainView Hospital, HCA Healthcare, Las Vegas, NV, United States
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV, United States
| | | | - Travis Snyder
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
- MountainView Hospital, HCA Healthcare, Las Vegas, NV, United States
- SimonMed Imaging, Scottsdale, AZ, United States
| |
Collapse
|
19
|
Dogahe MH, Ramezani S, Reihanian Z, Raminfard S, Feizkhah A, Alijani B, Herfeh SS. Role of brain metabolites during acute phase of mild traumatic brain injury in prognosis of post-concussion syndrome: A 1H-MRS study. Psychiatry Res Neuroimaging 2023; 335:111709. [PMID: 37688998 DOI: 10.1016/j.pscychresns.2023.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
This study has investigated the potency and accuracy of early magnetic resonance spectroscopy (MRS) to predict post-concussion syndrome (PCS) in adult patients with a single mild traumatic brain injury (mTBI) without abnormality on a routine brain scan. A total of 48 eligible mTBI patients and 24 volunteers in the control group participated in this project. Brain MRS over regions of interest (ROI) and signal stop task (SST) were done within the first 72 hours of TBI onset. After six months, PCS appearance and severity were determined. In non-PCS patients, N-acetyl aspartate (NAA) levels significantly increased in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) relative to the control group, however, this increase of NAA levels were recorded in all ROI versus PCS subjects. There were dramatic declines in creatinine (Cr) levels of all ROI and a decrease in choline levels of corpus callosum (CC) in the PCS group versus control and non-PCS ones. NAA and NAA/Cho values in ACC were the main predictors of PCS appearance. The Cho/Cr level in ACC was the first predictor of PCS severity. Predicting accuracy was higher in ACC than in other regions. This study suggested the significance of neuro-markers in ACC for optimal prediction of PCS and rendered a new insight into the biological mechanism of mTBI that underpins PCS.
Collapse
Affiliation(s)
| | - Sara Ramezani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Food Science and Nutrition, California State University, Fresno, CA, USA; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Zoheir Reihanian
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Samira Raminfard
- Neuroimaging and Analysis Group, Research Center of Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Physics, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Alijani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Sedaghat Herfeh
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
20
|
Sanchez-Molano J, Blaya MO, Padgett KR, Moreno WJ, Zhao W, Dietrich WD, Bramlett HM. Multimodal magnetic resonance imaging after experimental moderate and severe traumatic brain injury: A longitudinal correlative assessment of structural and cerebral blood flow changes. PLoS One 2023; 18:e0289786. [PMID: 37549175 PMCID: PMC10406285 DOI: 10.1371/journal.pone.0289786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a worldwide problem that results in death or disability for millions of people every year. Progressive neurological complications and long-term impairment can significantly disrupt quality of life. We demonstrated the feasibility of multiple magnetic resonance imaging (MRI) modalities to investigate and predict aberrant changes and progressive atrophy of gray and white matter tissue at several acute and chronic time points after moderate and severe parasagittal fluid percussion TBI. T2-weighted imaging, diffusion tensor imaging (DTI), and perfusion weighted imaging (PWI) were performed. Adult Sprague-Dawley rats were imaged sequentially on days 3, 14, and 1, 4, 6, 8, and 12 months following surgery. TBI caused dynamic white and gray matter alterations with significant differences in DTI values and injury-induced alterations in cerebral blood flow (CBF) as measured by PWI. Regional abnormalities after TBI were observed in T2-weighted images that showed hyperintense cortical lesions and significant cerebral atrophy in these hyperintense areas 1 year after TBI. Temporal DTI values indicated significant injury-induced changes in anisotropy in major white matter tracts, the corpus callosum and external capsule, and in gray matter, the hippocampus and cortex, at both early and chronic time points. These alterations were primarily injury-severity dependent with severe TBI exhibiting a greater degree of change relative to uninjured controls. PWI evaluating CBF revealed sustained global reductions in the cortex and in the hippocampus at most time points in an injury-independent manner. We next sought to investigate prognostic correlations across MRI metrics, timepoints, and cerebral pathology, and found that diffusion abnormalities and reductions in CBF significantly correlated with specific vulnerable structures at multiple time points, as well as with the degree of cerebral atrophy observed 1 year after TBI. This study further supports using DTI and PWI as a means of prognostic imaging for progressive structural changes after TBI and emphasizes the progressive nature of TBI damage.
Collapse
Affiliation(s)
- Juliana Sanchez-Molano
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Meghan O. Blaya
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kyle R. Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - William J. Moreno
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - W. Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, United States of America
| |
Collapse
|
21
|
Dsouza H, Dávila-Montero BM, Afanador IG, Torres GM, Cao Y, Mejia-Alvarez R, Sepúlveda N. Measuring vibrations on a biofidelic brain using ferroelectret nanogenerator. Sci Rep 2023; 13:8975. [PMID: 37268683 PMCID: PMC10238378 DOI: 10.1038/s41598-023-35782-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Our knowledge of traumatic brain injury has been fast growing with the emergence of new markers pointing to various neurological changes that the brain undergoes during an impact or any other form of concussive event. In this work, we study the modality of deformations on a biofidelic brain system when subject to blunt impacts, highlighting the importance of the time-dependent behavior of the resulting waves propagating through the brain. This study is carried out using two different approaches involving optical (Particle Image Velocimetry) and mechanical (flexible sensors) in the biofidelic brain. Results show that the system has a natural mechanical frequency of [Formula: see text] 25 oscillations per second, which was confirmed by both methods, showing a positive correlation with one another. The consistency of these results with previously reported brain pathology validates the use of either technique, and establishes a new, simpler mechanism to study brain vibrations by using flexible piezoelectric patches. The visco-elastic nature of the biofidelic brain is validated by observing the the relationship between both methods at two different time intervals, by using the information of the strain and stress inside the brain from the Particle Image Velocimetry and flexible sensor, respectively. A non-linear stress-strain relationship was observed and justified to support the same.
Collapse
Affiliation(s)
- Henry Dsouza
- Electrical and computer engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI, 48824, USA
| | | | - Ian Gonzalez Afanador
- Electrical and computer engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Gerardo Morales Torres
- Electrical and computer engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Yunqi Cao
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Ricardo Mejia-Alvarez
- Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, United States
| | - Nelson Sepúlveda
- Electrical and computer engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Esagoff AI, Stevens DA, Kosyakova N, Woodard K, Jung D, Richey LN, Daneshvari NO, Luna LP, Bray MJ, Bryant BR, Rodriguez CP, Krieg A, Trapp NT, Jones MB, Roper C, Goldwaser EL, Berich-Anastasio E, Pletnikova A, Lobner K, Lauterbach M, Sair HI, Peters ME. Neuroimaging Correlates of Post-Traumatic Stress Disorder in Traumatic Brain Injury: A Systematic Review of the Literature. J Neurotrauma 2023; 40:1029-1044. [PMID: 36259461 PMCID: PMC10402701 DOI: 10.1089/neu.2021.0453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuroimaging is widely utilized in studying traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). The risk for PTSD is greater after TBI than after non-TBI trauma, and PTSD is associated with worse outcomes after TBI. Studying the neuroimaging correlates of TBI-related PTSD may provide insights into the etiology of both conditions and help identify those TBI patients most at risk of developing persistent symptoms. The objectives of this systematic review were to examine the current literature on neuroimaging in TBI-related PTSD, summarize key findings, and highlight strengths and limitations to guide future research. A Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) compliant literature search was conducted in PubMed (MEDLINE®), PsycINFO, Embase, and Scopus databases prior to January 2022. The database query yielded 4486 articles, which were narrowed based on specified inclusion criteria to a final cohort of 16 studies, composed of 854 participants with TBI. There was no consensus regarding neuroimaging correlates of TBI-related PTSD among the included articles. A small number of studies suggest that TBI-related PTSD is associated with white matter tract changes, particularly in frontotemporal regions, as well as changes in whole-brain networks of resting-state connectivity. Future studies hoping to identify reliable neuroimaging correlates of TBI-related PTSD would benefit from ensuring consistent case definition, preferably with clinician-diagnosed TBI and PTSD, selection of comparable control groups, and attention to imaging timing post-injury. Prospective studies are needed and should aim to further differentiate predisposing factors from sequelae of TBI-related PTSD.
Collapse
Affiliation(s)
- Aaron I. Esagoff
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel A. Stevens
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalia Kosyakova
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Kaylee Woodard
- Louisiana State University Health Sciences Center – New Orleans, New Orleans, Louisiana, USA
| | - Diane Jung
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa N. Richey
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas O. Daneshvari
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Licia P. Luna
- Department of Radiology and Radiological Science, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J.C. Bray
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R. Bryant
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carla P. Rodriguez
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akshay Krieg
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas T. Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Melissa B. Jones
- Menninger Department of Psychiatry and Behavioral Sciences, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Carrie Roper
- VA Maryland Healthcare System, Baltimore, Maryland, USA
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric L. Goldwaser
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Alexandra Pletnikova
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katie Lobner
- Department of Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Margo Lauterbach
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haris I. Sair
- Louisiana State University Health Sciences Center – New Orleans, New Orleans, Louisiana, USA
| | - Matthew E. Peters
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Ismail R, George DD, Kohli GS, Khan MW, Wang HZ, Mattingly TK. A case of spontaneous basal ganglia hemorrhage with contralateral extension utilizing the canal of Gratiolet. BMC Neurol 2023; 23:190. [PMID: 37173644 PMCID: PMC10176786 DOI: 10.1186/s12883-023-03232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Intracranial hemorrhage accounts for 10-20% of stroke etiologies annually. Basal ganglia is the most common site for intracranial hemorrhage accounting for 50% of all cases. Bilateral spontaneous basal ganglia hemorrhages (BGH) are rare with few reported cases. CASE PRESENTATION We report an unusual case of a 69-year-old female who presented with a spontaneous bilateral basal ganglia hemorrhage secondary to a right BGH with contralateral extension through the anterior commissure (AC) utilizing the Canal of Gratiolet. Clinical course and imaging findings are discussed. CONCLUSIONS To our knowledge, this is the first case to specifically detail the extension of spontaneous hemorrhage across the AC via the Canal of Gratiolet, and imaging findings provide a novel depiction of AC anatomy and fiber distribution in a clinical context. These findings may explain the mechanism behind this rare clinical entity.
Collapse
Affiliation(s)
- Rahim Ismail
- Department of Radiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Derek D George
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Gurkirat S Kohli
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Muhammad W Khan
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Henry Z Wang
- Department of Radiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Thomas K Mattingly
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
24
|
Vomer RP, Narducci D, York E, Milon R, Udoh I. An Unexpected Finding in a Concussed Circus Acrobat. Cureus 2023; 15:e37960. [PMID: 37223133 PMCID: PMC10200774 DOI: 10.7759/cureus.37960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
Persistent post-concussive syndrome (PPCS) outlines a complex array of neurocognitive and psychological symptoms that persist in patients after a concussion. A 58-year-old female presented reporting recurrent loss of consciousness, and retrograde and anterograde amnesia following multiple concussions. She also endorsed persistent nausea, balance insufficiencies, hearing loss, and cognitive impairment. In addition, this patient had high-risk sexual behavior without prior testing for sexually transmitted infections. Given her clinical history, the differential included PPCS, complex post-traumatic stress disorder, Korsakoff syndrome, hypothyroidism, and sexually transmitted infection (STI)-related neurocognitive disorder. On exam, this patient had a positive Romberg sign, prominent resting tremoring of upper extremities, and pinpoint pupils unresponsive to light, with bilateral nystagmus. Syphilis testing was positive. The patient was treated with intramuscular benzathine penicillin with significant improvement in gait, balance, headaches, vision, and cognition three months after treatment. Although rare, neurocognitive disorders, including late-stage syphilis, should be considered in the differential diagnosis for PPCS.
Collapse
Affiliation(s)
- Rock P Vomer
- Family Medicine, Mayo Clinic Jacksonville Campus, Jacksonville, USA
- Department of Family and Community Health, Department of Orthopaedic Surgery, Division of Sports Medicine, Duke University, Durham, USA
| | - Dusty Narducci
- Family Medicine, University of South Florida Morsani College of Medicine, Tampa, USA
| | - Emma York
- Family Medicine, Eastern Virginia Medical School, Norfolk, USA
| | - Ryan Milon
- Family and Community Medicine, Mayo Clinic Jacksonville Campus, Jacksonville, USA
| | - Imoh Udoh
- Department of Orthopaedic Surgery, Division of Sports Medicine, Duke University, Durham, USA
| |
Collapse
|
25
|
Qiu X, Ping S, Kyle M, Chin L, Zhao LR. Stem Cell Factor and Granulocyte Colony-Stimulating Factor Promote Remyelination in the Chronic Phase of Severe Traumatic Brain Injury. Cells 2023; 12:705. [PMID: 36899841 PMCID: PMC10000780 DOI: 10.3390/cells12050705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Severe traumatic brain injury (TBI) causes long-term disability and death in young adults. White matter is vulnerable to TBI damage. Demyelination is a major pathological change of white matter injury after TBI. Demyelination, which is characterized by myelin sheath disruption and oligodendrocyte cell death, leads to long-term neurological function deficits. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) treatments have shown neuroprotective and neurorestorative effects in the subacute and chronic phases of experimental TBI. Our previous study has revealed that combined SCF and G-CSF treatment (SCF + G-CSF) enhances myelin repair in the chronic phase of TBI. However, the long-term effect and mechanism of SCF + G-CSF-enhanced myelin repair remain unclear. In this study, we uncovered persistent and progressive myelin loss in the chronic phase of severe TBI. SCF + G-CSF treatment in the chronic phase of severe TBI enhanced remyelination in the ipsilateral external capsule and striatum. The SCF + G-CSF-enhanced myelin repair is positively correlated with the proliferation of oligodendrocyte progenitor cells in the subventricular zone. These findings reveal the therapeutic potential of SCF + G-CSF in myelin repair in the chronic phase of severe TBI and shed light on the mechanism underlying SCF + G-CSF-enhanced remyelination in chronic TBI.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lawrence Chin
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
26
|
Qiu X, Ping S, Kyle M, Chin L, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor promote remyelination in the chronic phase of severe traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525450. [PMID: 36747858 PMCID: PMC9900822 DOI: 10.1101/2023.01.24.525450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe traumatic brain injury (TBI) causes long-term disability and death in young adults. White matter is vulnerable to TBI damage. Demyelination is a major pathological change of white matter injury after TBI. Demyelination which is characterized by myelin sheath disruption and oligodendrocyte cell death leads to long-term neurological function deficits. Stem cell factor (SCF) and granulocyte colonyâ€"stimulating factor (G-CSF) treatments have shown neuroprotective and neurorestorative effects in the subacute and chronic phases of experimental TBI. Our previous study has revealed that combined SCF and G-CSF treatment (SCF+G-CSF) enhances myelin repair in the chronic phase of TBI. However, the long-term effect and mechanism of SCF+G-CSF-enhanced myelin repair remain unclear. In this study, we uncovered persistent and progressive myelin loss in the chronic phase of severe TBI. SCF+G-CSF treatment in the chronic phase of severe TBI enhanced remyelination in the ipsilateral external capsule and striatum. The SCF+G-CSF-enhanced myelin repair is positively correlated with the proliferation of oligodendrocyte progenitor cells in the subventricular zone. These findings reveal the therapeutic potential of SCF+G-CSF in myelin repair in the chronic phase of severe TBI and shed light on the mechanism underlying SCF+G-CSF-enhanced remyelination in chronic TBI.
Collapse
|
27
|
Azor AM, Sharp DJ, Jolly AE, Bourke NJ, Hellyer PJ. Automation and standardization of subject-specific region-of-interest segmentation for investigation of diffusion imaging in clinical populations. PLoS One 2022; 17:e0268233. [PMID: 36480567 PMCID: PMC9731501 DOI: 10.1371/journal.pone.0268233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Diffusion weighted imaging (DWI) is key in clinical neuroimaging studies. In recent years, DWI has undergone rapid evolution and increasing applications. Diffusion magnetic resonance imaging (dMRI) is widely used to analyse group-level differences in white matter (WM), but suffers from limitations that can be particularly impactful in clinical groups where 1) structural abnormalities may increase erroneous inter-subject registration and 2) subtle differences in WM microstructure between individuals can be missed. It also lacks standardization protocols for analyses at the subject level. Region of Interest (ROI) analyses in native diffusion space can help overcome these challenges, with manual segmentation still used as the gold standard. However, robust automated approaches for the analysis of ROI-extracted native diffusion characteristics are limited. Subject-Specific Diffusion Segmentation (SSDS) is an automated pipeline that uses pre-existing imaging analysis methods to carry out WM investigations in native diffusion space, while overcoming the need to interpolate diffusion images and using an intermediate T1 image to limit registration errors and guide segmentation. SSDS is validated in a cohort of healthy subjects scanned three times to derive test-retest reliability measures and compared to other methods, namely manual segmentation and tract-based spatial statistics as an example of group-level method. The performance of the pipeline is further tested in a clinical population of patients with traumatic brain injury and structural abnormalities. Mean FA values obtained from SSDS showed high test-retest and were similar to FA values estimated from the manual segmentation of the same ROIs (p-value > 0.1). The average dice similarity coefficients (DSCs) comparing results from SSDS and manual segmentations was 0.8 ± 0.1. Case studies of TBI patients showed robustness to the presence of significant structural abnormalities, indicating its potential clinical application in the identification and diagnosis of WM abnormalities. Further recommendation is given regarding the tracts used with SSDS.
Collapse
Affiliation(s)
- Adriana M. Azor
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
- Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
- The Royal British Legion, Centre for Blast Injury Studies, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail: (AMA); (DJS)
| | - David J. Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
- Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London, London, United Kingdom
- * E-mail: (AMA); (DJS)
| | - Amy E. Jolly
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Niall J. Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
| | - Peter J. Hellyer
- Centre for Neuroimaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Mustafi SM, Yang HC, Harezlak J, Meier TB, Brett BL, Giza CC, Goldman J, Guskiewicz KM, Mihalik JP, LaConte SM, Duma SM, Broglio SP, McCrea MA, McAllister TW, Wu YC. Effects of White-Matter Tract Length in Sport-Related Concussion: A Tractography Study from the NCAA-DoD CARE Consortium. J Neurotrauma 2022; 39:1495-1506. [PMID: 35730116 PMCID: PMC9689766 DOI: 10.1089/neu.2021.0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sport-related concussion (SRC) is an important public health issue. White-matter alterations after SRC are widely studied by neuroimaging approaches, such as diffusion magnetic resonance imaging (MRI). Although the exact anatomical location of the alterations may differ, significant white-matter alterations are commonly observed in long fiber tracts, but are never proven. In the present study, we performed streamline tractography to characterize the association between tract length and white-matter microstructural alterations after SRC. Sixty-eight collegiate athletes diagnosed with acute concussion (24-48 h post-injury) and 64 matched contact-sport controls were included in this study. The athletes underwent diffusion tensor imaging (DTI) in 3.0 T MRI scanners across three study sites. DTI metrics were used for tract-based spatial statistics to map white-matter regions-of-interest (ROIs) with significant group differences. Whole-brain white-mater streamline tractography was performed to extract "affected" white-matter streamlines (i.e., streamlines passing through the identified ROIs). In the concussed athletes, streamline counts and DTI metrics of the affected white-matter fiber tracts were summarized and compared with unaffected white-matter tracts across tract length in the same participant. The affected white-matter tracts had a high streamline count at length of 80-100 mm and high length-adjusted affected ratio for streamline length longer than 80 mm. DTI mean diffusivity was higher in the affected streamlines longer than 100 mm with significant associations with the Brief Symptom Inventory score. Our findings suggest that long fibers in the brains of collegiate athletes are more vulnerable to acute SRC with higher mean diffusivity and a higher affected ratio compared with the whole distribution.
Collapse
Affiliation(s)
- Sourajit M. Mustafi
- Institute of Genetics, San Diego, California, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ho-Ching Yang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin L. Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher C. Giza
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Division of Pediatric Neurology, Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, California, USA
| | - Joshua Goldman
- Family Medicine, Ronald Reagan UCLA Medical Center, UCLA Health - Santa Monica Medical Center, Los Angeles, California, USA
| | - Kevin M. Guskiewicz
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina, at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason P. Mihalik
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina, at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen M. LaConte
- School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University, Blacksburg, Virginia, USA
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Stefan M. Duma
- School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University, Blacksburg, Virginia, USA
| | - Steven P. Broglio
- Michigan Concussion Center, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Toman E, Hodgson S, Riley M, Welbury R, Di Pietro V, Belli A. Concussion in the UK: a contemporary narrative review. Trauma Surg Acute Care Open 2022; 7:e000929. [PMID: 36274785 PMCID: PMC9582316 DOI: 10.1136/tsaco-2022-000929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
Concussion has been receiving an increasing amount of media exposure following several high-profile professional sports controversies and multimillion-dollar lawsuits. The potential life-changing sequalae of concussion and the rare, but devasting, second impact syndrome have also gained much attention. Despite this, our knowledge of the pathological processes involved is limited and often extrapolated from research into more severe brain injuries. As there is no objective diagnostic test for concussion. Relying on history and examination only, the diagnosis of concussion has become the rate-limiting step in widening research into the disease. Clinical study protocols therefore frequently exclude the most vulnerable groups of patients such as those with existing cognitive impairment, concurrent intoxication, mental health issues or learning difficulties. This up-to-date narrative review aims to summarize our current concussion knowledge and provides an insight into promising avenues for future research.
Collapse
Affiliation(s)
- Emma Toman
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK,Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sam Hodgson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Max Riley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Richard Welbury
- School of Dentistry, University of Central Lancashire, Preston, UK
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Antonio Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK,Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
30
|
Abdullah AN, Ahmad AH, Zakaria R, Tamam S, Abd Hamid AI, Chai WJ, Omar H, Abdul Rahman MR, Fitzrol DN, Idris Z, Ghani ARI, Wan Mohamad WNA, Mustafar F, Hanafi MH, Reza MF, Umar H, Mohd Zulkifly MF, Ang SY, Zakaria Z, Musa KI, Othman A, Embong Z, Sapiai NA, Kandasamy R, Ibrahim H, Abdullah MZ, Amaruchkul K, Valdes-Sosa PA, Bringas Vega ML, Biswal B, Songsiri J, Yaacob HS, Sumari P, Noh NA, Azman A, Jamir Singh PS, Abdullah JM. Disruption of white matter integrity and its relationship with cognitive function in non-severe traumatic brain injury. Front Neurol 2022; 13:1011304. [PMID: 36303559 PMCID: PMC9592834 DOI: 10.3389/fneur.2022.1011304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Impairment in cognitive function is a recognized outcome of traumatic brain injury (TBI). However, the degree of impairment has variable relationship with TBI severity and time post injury. The underlying pathology is often due to diffuse axonal injury that has been found even in mild TBI. In this study, we examine the state of white matter putative connectivity in patients with non-severe TBI in the subacute phase, i.e., within 10 weeks of injury and determine its relationship with neuropsychological scores. METHODS We conducted a case-control prospective study involving 11 male adult patients with non-severe TBI and an age-matched control group of 11 adult male volunteers. Diffusion MRI scanning and neuropsychological tests were administered within 10 weeks post injury. The difference in fractional anisotropy (FA) values between the patient and control groups was examined using tract-based spatial statistics. The FA values that were significantly different between patients and controls were then correlated with neuropsychological tests in the patient group. RESULTS Several clusters with peak voxels of significant FA reductions (p < 0.05) in the white matter skeleton were seen in patients compared to the control group. These clusters were located in the superior fronto-occipital fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and cingulum, as well as white matter fibers in the area of genu of corpus callosum, anterior corona radiata, superior corona radiata, anterior thalamic radiation and part of inferior frontal gyrus. Mean global FA magnitude correlated significantly with MAVLT immediate recall scores while matrix reasoning scores correlated positively with FA values in the area of right superior fronto-occipital fasciculus and left anterior corona radiata. CONCLUSION The non-severe TBI patients had abnormally reduced FA values in multiple regions compared to controls that correlated with several measures of executive function during the sub-acute phase of TBI.
Collapse
Affiliation(s)
- Aimi Nadhiah Abdullah
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Sofina Tamam
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Aini Ismafairus Abd Hamid
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wen Jia Chai
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hazim Omar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Riddha Abdul Rahman
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Diana Noma Fitzrol
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zamzuri Idris
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Abdul Rahman Izaini Ghani
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wan Nor Azlen Wan Mohamad
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Faiz Mustafar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Hafiz Hanafi
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohamed Faruque Reza
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hafidah Umar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Faizal Mohd Zulkifly
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Song Yee Ang
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zaitun Zakaria
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Azizah Othman
- Department of Pediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zunaina Embong
- Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nur Asma Sapiai
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Haidi Ibrahim
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Mohd Zaid Abdullah
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Kannapha Amaruchkul
- Graduate School of Applied Statistics, National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Pedro Antonio Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, La Habana, Cuba
| | - Maria Luisa Bringas Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, La Habana, Cuba
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jitkomut Songsiri
- EE410 Control Systems Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hamwira Sakti Yaacob
- Department of Computer Science, Kulliyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Putra Sumari
- School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nor Azila Noh
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Azlinda Azman
- School of Social Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Jafri Malin Abdullah
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
31
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
32
|
Crasta JE, Tucker RN, Robinson J, Chen HW, Crocetti D, Suskauer SJ. Altered white matter diffusivity and subtle motor function in a pilot cohort of adolescents with sports-related concussion. Brain Inj 2022; 36:393-400. [PMID: 35157539 PMCID: PMC9133076 DOI: 10.1080/02699052.2022.2034181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background and objective: Adolescents with sports-related concussion (SRC) demonstrate acute and persistent deficits in subtle motor function. However, there is limited research examining related neurological underpinnings. This pilot study examined changes in motor-associated white matter pathways using diffusion tensor imaging (DTI) and their relationship with subtle motor function. Methods: Twelve adolescents with SRC (12–17 years) within two-weeks post-injury and 13 never-injured neurotypical peers completed DTI scanning. A subset of 6 adolescents with SRC returned for a follow-up visit post-medical clearance from concussion. Subtle motor function was evaluated using the Physical and Neurological Examination of Subtle Signs (PANESS). Results: Adolescents with SRC showed higher mean diffusivity (MD) of the superior corona radiata and greater subtle motor deficits compared to controls. Across all participants, greater subtle motor deficits were associated with higher (more atypical) MD of the superior corona radiata. Preliminary longitudinal analysis indicated reduction in fractional anisotropy of the corpus callosum but no change in the MD of the superior corona radiata from the initial visit to the follow-up visit post-medical clearance. Conclusions: These findings support preliminary evidence for a brain–behavior relationship between superior corona radiata microstructure and subtle motor deficits in adolescents with SRC that merits further investigation.
Collapse
Affiliation(s)
- Jewel E Crasta
- Occupational Therapy Division, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Physical Medicine and Rehabilitation and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Mollica A, Dey A, Cairncross M, Silverberg N, Burke MJ. Neuropsychiatric Treatment for Mild Traumatic Brain Injury: Nonpharmacological Approaches. Semin Neurol 2022; 42:168-181. [PMID: 35114694 DOI: 10.1055/s-0041-1742143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postconcussive symptoms following mild traumatic brain injury (mTBI)/concussion are common, disabling, and challenging to manage. Patients can experience a range of symptoms (e.g., mood disturbance, headaches, insomnia, vestibular symptoms, and cognitive dysfunction), and neuropsychiatric management relies heavily on nonpharmacological and multidisciplinary approaches. This article presents an overview of current nonpharmacological strategies for postconcussive symptoms including psychoeducation; psychotherapy; vestibular, visual, and physical therapies; cognitive rehabilitation; as well as more novel approaches, such as neuromodulation. Ultimately, treatment and management of mTBI should begin early with appropriate psychoeducation/counseling, and be tailored based on core symptoms and individual goals.
Collapse
Affiliation(s)
- Adriano Mollica
- Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ayan Dey
- Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Molly Cairncross
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.,Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Noah Silverberg
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.,Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Matthew J Burke
- Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Adamson MM, Main K, Harris OA, Kang X. Sex differences in cortical thickness and diffusion properties in patients with traumatic brain injury: a pilot study. Brain Inj 2022; 36:488-502. [PMID: 35113752 DOI: 10.1080/02699052.2022.2034046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Cortical thickness and diffusion properties are important measures of gray and white matter integrity in those with traumatic brain injury (TBI). Many studies show that healthy adult females have greater cortical thickness than males across numerous brain sites. In this study, we explored this sex difference in patients with TBI. METHOD Participants consisted of 32 patients with TBI and 21 neurologically healthy controls. All were scanned by magnetic resonance imaging (MRI). Differences in cortical thickness and diffusion properties were examined between groups (i.e., TBI/control, male/female). RESULTS Patients with TBI had more cortical thinning (both hemispheres) compared to controls. They also showed decreased fractional anisotropy (FA) for several major white matter tracts. Healthy females had significantly greater cortical thickness compared to healthy males. However, this difference was smaller among the patients with TBI. We found no sex differences in diffusion properties. There were moderate correlations between cortical thickness, diffusion properties, and cognitive performance, as measured by the Trail Making Test B. CONCLUSION These findings contribute to a growing discussion on sex differences in cortical thickness and diffusion properties. Sexual dimorphism could necessitate different clinical profiles, targets, and rehabilitation strategies in patients with TBI.
Collapse
Affiliation(s)
- Maheen M Adamson
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA.,Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Keith Main
- Research Division, Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Odette A Harris
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA.,Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Xiaojian Kang
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
35
|
Tamez-Peña J, Rosella P, Totterman S, Schreyer E, Gonzalez P, Venkataraman A, Meyers SP. Post-concussive mTBI in Student Athletes: MRI Features and Machine Learning. Front Neurol 2022; 12:734329. [PMID: 35082743 PMCID: PMC8784748 DOI: 10.3389/fneur.2021.734329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: To determine and characterize the radiomics features from structural MRI (MPRAGE) and Diffusion Tensor Imaging (DTI) associated with the presence of mild traumatic brain injuries on student athletes with post-concussive syndrome (PCS). Material and Methods: 122 student athletes (65 M, 57 F), median (IQR) age 18.8 (15–20) years, with a mixed level of play and sports activities, with a known history of concussion and clinical PCS, and 27 (15 M, 12 F), median (IQR) age 20 (19, 21) years, concussion free athlete subjects were MRI imaged in a clinical MR machine. MPRAGE and DTI-FA and DTI-ADC images were used to extract radiomic features from white and gray matter regions within the entire brain (2 ROI) and the eight main lobes of the brain (16 ROI) for a total of 18 analyzed regions. Radiomic features were divided into five different data sets used to train and cross-validate five different filter-based Support Vector Machines. The top selected features of the top model were described. Furthermore, the test predictions of the top four models were ensembled into a single average prediction. The average prediction was evaluated for the association to the number of concussions and time from injury. Results: Ninety-one PCS subjects passed inclusion criteria (91 Cases, 27 controls). The average prediction of the top four models had a sensitivity of 0.80, 95% CI: [0.71, 0.88] and specificity of 0.74 95%CI [0.54, 0.89] for distinguishing subjects from controls. The white matter features were strongly associated with mTBI, while the whole-brain analysis of gray matter showed the worst association. The predictive index was significantly associated with the number of concussions (p < 0.0001) and associated with the time from injury (p < 0.01). Conclusion: MRI Radiomic features are associated with a history of mTBI and they were successfully used to build a predictive machine learning model for mTBI for subjects with PCS associated with a history of one or more concussions.
Collapse
Affiliation(s)
- José Tamez-Peña
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey, Mexico.,Qmetrics Technologies, Rochester, NY, United States
| | - Peter Rosella
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | | | | | | | - Arun Venkataraman
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | - Steven P Meyers
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
36
|
Wiingaard Uldall S, Lundell H, Baaré WFC, Roman Siebner H, Rostrup E, Carlsson J. White matter diffusivity and its correlations to state measures of psychopathology in male refugees with posttraumatic stress disorder. Neuroimage Clin 2021; 33:102929. [PMID: 34998125 PMCID: PMC8741622 DOI: 10.1016/j.nicl.2021.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a heterogenous condition and the underlying neurobiology is still poorly understood. In this study, we tested the hypothesis that PTSD is associated with microstructural changes in white matter (WM) fibre tracts that connect regions involved in emotional processing, memory, attention, and language. Furthermore, we examined how different response patterns to individualized trauma-provoking stimuli related to underlying WM microstructure. Sixty-nine trauma-affected male refugees with PTSD (N = 38) or without PTSD (N = 31) underwent clinical assessments and diffusion-weighted magnetic resonance imaging (DWI) of the whole brain at 3 Tesla. Diffusion tensor metrics were computed from DWI data and used to characterize regional white-matter microstructure. An automated tract segmentation method was used to extract diffusion tensor metrics from subject-based reconstructions of tract segments (ROI), including uncinate fasciculus (UF), cingulum bundle (CB), superior longitudinal fasciculus (SLF) in three subdivisions (SLF I - III), and fibre bundles connecting orbito-frontal cortex to striatum (OF-ST). Outside the scanner we obtained measures of immediate (state) arousal, avoidance and dissociation symptoms assessed in response to auditory exposure to a personal traumatic memory. Using mean FA of the middle part of each ROI, mixed ANOVA revealed a significant interaction between group, ROI and hemisphere. Post-hoc comparisons showed that, relative to refugees without PTSD, refugees with PTSD had lower FA in right CB, left SLF-I, bilateral OF-ST and bilateral SLF-II. Mean FA scaled negatively with avoidance in right CB while mean FA in bilateral UF scaled positively with individual scores reflecting dissociation symptoms. The results support a pathophysiological model of PTSD that implicates limbic structures, prefrontal cortex and striatum. The results also emphasize the need to consider PTSD's multifaceted manifestations when searching for functional-structural relationships.
Collapse
Affiliation(s)
- Sigurd Wiingaard Uldall
- Competence Centre for Transcultural Psychiatry (CTP), Mental Health Centre, Ballerup, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department for Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre, Glostrup, Copenhagen University Hospital, Denmark
| | - Jessica Carlsson
- Competence Centre for Transcultural Psychiatry (CTP), Mental Health Centre, Ballerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre, Glostrup, Copenhagen University Hospital, Denmark
| |
Collapse
|
37
|
Kim E, Yoo RE, Seong MY, Oh BM. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. Eur J Radiol 2021; 147:110117. [PMID: 34973540 DOI: 10.1016/j.ejrad.2021.110117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE This study aimed to review diffusion tensor imaging studies of mild traumatic brain injury (mTBI) in adults with longitudinal acquisition of data and investigate the variability of findings in association with related factors, such as the time post-injury. METHODS Eligible studies from PubMed and EMBASE were searched to identify relevant studies for review. Of the 540 studies, 23 observational studies without intervention and with the following characteristics were included: original research in which adults with mTBI were examined, diffusion tensor imaging was acquired at least twice, white matter integrity was investigated by estimating diffusion metrics, and mode of injury was not restricted to sport- or blast-related mTBI. RESULTS Baseline scans were acquired within 3 weeks post-injury, followed by longitudinal scans within 3 months and at 12 months post-injury. During the acute/subacute period, mixed results (increase, decrease, or no significant change) of fractional anisotropy (FA) were observed compared to those in controls. Some studies reported increased FA during the acute/subacute period compared to controls, followed by normalization of FA. Decreased FA was also reported during the acute/subacute period, which lasted long into the chronic phase. In the acute phase, the mean diffusivity (MD) was greater than that in the controls. Compared to the early phase of injury, MD was reduced in the follow-up phase in most studies in the mTBI group. Insignificant differences in FA and MD have been reported in several studies. Such variability limits the clinical usefulness of diffusion tensor metrics. CONCLUSIONS There was a high variability in reported changes in white matter integrity. Decreased FA not only in acute/subacute but also in long-term period after injury may indicate long-term neurodegenerative processes after mTBI. Nevertheless, longitudinal changes in MD towards normalization suggest possible recovery. Long-term cohort studies with research initiatives should be considered to elucidate brain changes after mTBI.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea.
| |
Collapse
|
38
|
Shan W, Duan Y, Zheng Y, Wu Z, Chan SW, Wang Q, Gao P, Liu Y, He K, Wang Y. Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System. Front Med (Lausanne) 2021; 8:681183. [PMID: 34901045 PMCID: PMC8656685 DOI: 10.3389/fmed.2021.681183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Reliable quantification of white matter hyperintensities (WHMs) resulting from cerebral small vessel diseases (CSVD) is essential for understanding their clinical impact. We aim to develop and clinically validate a deep learning system for automatic segmentation of CSVD-WMH from fluid-attenuated inversion recovery (FLAIR) imaging using large multicenter data. Method: A FLAIR imaging dataset of 1,156 patients diagnosed with CSVD associated WMH (median age, 54 years; 653 males) obtained between September 2018 and September 2019 from Beijing Tiantan Hospital was retrospectively analyzed in this study. Locations of CSVD-WMH on the FLAIR scans were manually marked by two experienced neurologists. Using the manually labeled data of 996 patients (development set), a U-shaped novel 2D convolutional neural network (CNN) architecture was trained for automatic segmentation of CSVD-WMH. The segmentation performance of the network was evaluated with per pixel and lesion level dice scores using an independent internal test set (n = 160) and a multi-center external test set (n = 90, three medical centers). The clinical suitability of the segmentation results, classified as acceptable, acceptable with minor revision, acceptable with major revision, and not acceptable, was analyzed by three independent neuroradiologists. The inter-neuroradiologists agreement rate was assessed by the Kendall-W test. Results: On the internal and external test sets, the proposed CNN architecture achieved per pixel and lesion level dice scores of 0.72 (external test set), and they were significantly better than the state-of-the-art deep learning architectures proposed for WMH segmentation. In the clinical evaluation, neuroradiologists observed the segmentation results for 95% of the patients were acceptable or acceptable with a minor revision. Conclusions: A deep learning system can be used for automated, objective, and clinically meaningful segmentation of CSVD-WMH with high accuracy.
Collapse
Affiliation(s)
- Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yunyun Duan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Zheng
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Zhenzhou Wu
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Shang Wei Chan
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Peiyi Gao
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Yaou Liu
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Ministry of Industry and Information Technology of Biomedical Engineering and Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| |
Collapse
|
39
|
Shinoda J, Yano H, Nakayama N. Altered biphasic serotonin discharge hypothesis in mild traumatic brain injury. Concussion 2021; 6:CNC94. [PMID: 34408908 PMCID: PMC8369523 DOI: 10.2217/cnc-2021-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Japan,Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Minokamo, Japan,Author for correspondence: Tel.: +81 574 24 2233;
| | - Hirohito Yano
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Japan,Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Minokamo, Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
40
|
Hellewell SC, Welton T, Pearce AJ, Maller JJ, Grieve SM. Diffusion MRI as a complementary assessment to cognition, emotion, and motor dysfunction after sports-related concussion: a systematic review and critical appraisal of the literature. Brain Imaging Behav 2021; 15:1685-1704. [PMID: 32720180 DOI: 10.1007/s11682-020-00336-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sports-related concussion (SRC) is a complex and heterogeneous injury with psychological, cognitive and functional consequences. Advances in diffusion magnetic resonance imaging (dMRI) allow sensitive measurement of white matter pathology post-SRC and may provide insight into injury and recovery. We systematically reviewed and meta-analyzed the literature examining dMRI alongside cognitive, emotional or motor assessments to determine relationships between these analyses. Sixteen studies examining young athletes (n = 6) or retired professionals (n = 10) met the inclusion criteria, with 12 emotional, 10 cognitive and four motor assessments. Studies had heterogeneous methodology, moderate quality and modest sample sizes. Fractional anisotropy (FA) was the most frequent dMRI metric, with SRC-induced changes described most commonly in the frontal lobe and least in the cerebellum and brainstem. There is an emerging complementary role for dMRI as part of a comprehensive assessment battery for SRC. However, larger-scale studies with broader subject populations (specifically, in females and in the 30-45 year age range) are needed to corroborate findings and determine the true diagnostic utility of dMRI post-SRC.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Thomas Welton
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Alan J Pearce
- School of Allied Health, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jerome J Maller
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.,General Electric Healthcare, Richmond, VIC, 3181, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia. .,Department of Radiology, Royal Prince Alfred Hospital, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
41
|
Bottari SA, Lamb DG, Murphy AJ, Porges EC, Rieke JD, Harciarek M, Datta S, Williamson JB. Hyperarousal symptoms and decreased right hemispheric frontolimbic white matter integrity predict poorer sleep quality in combat-exposed veterans. Brain Inj 2021; 35:922-933. [PMID: 34053386 DOI: 10.1080/02699052.2021.1927186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Disrupted sleep is common following combat deployment. Contributors to risk include posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI); however, the mechanisms linking PTSD, mTBI, and sleep are unclear. Both PTSD and mTBI affect frontolimbic white matter tracts, such as the uncinate fasciculus. The current study examined the relationship between PTSD symptom presentation, lateralized uncinate fasciculus integrity, and sleep quality. METHOD Participants include 42 combat veterans with and without PTSD and mTBI. Freesurfer and Tracula were used to establish specific white matter ROI integrity via 3-T MRI. The Pittsburgh Sleep Quality Index and PTSD Checklist were used to assess sleep quality and PTSD symptoms. RESULTS Decreased fractional anisotropy in the right uncinate fasciculus (β = -1.11, SE = 0.47, p < .05) and increased hyperarousal symptom severity (β = 3.50, SE = 0.86, p < .001) were associated with poorer sleep quality. CONCLUSION Both right uncinate integrity and hyperarousal symptom severity are associated withsleep quality in combat veterans. The right uncinate is a key regulator of limbic behavior and sympathetic nervous system reactivity, a core component of hyperarousal. Damage to this pathway may be one mechanism by which mTBI and/or PTSD could create vulnerability for sleep problems following combat deployment.
Collapse
Affiliation(s)
- Sarah A Bottari
- Center for OCD, Anxiety, and Related Disorders, Department of Psychiatry, University of Florida, Gainesville, Florida, USA.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Damon G Lamb
- Center for OCD, Anxiety, and Related Disorders, Department of Psychiatry, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, USA.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Aidan J Murphy
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Eric C Porges
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jake D Rieke
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Michał Harciarek
- Department of Social Sciences, Division of Clinical Psychology and Neuropsychology, Institute of Psychology, University of Gdansk, Gdansk, Poland
| | - Somnath Datta
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - John B Williamson
- Center for OCD, Anxiety, and Related Disorders, Department of Psychiatry, University of Florida, Gainesville, Florida, USA.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, USA.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Bajaj S, Raikes AC, Razi A, Miller MA, Killgore WDS. Blue-Light Therapy Strengthens Resting-State Effective Connectivity within Default-Mode Network after Mild TBI. J Cent Nerv Syst Dis 2021; 13:11795735211015076. [PMID: 34104033 PMCID: PMC8145607 DOI: 10.1177/11795735211015076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that post concussive symptoms, including mood changes, may be improved through morning blue-wavelength light therapy (BLT). However, the neurobiological mechanisms underlying these effects remain unknown. We hypothesize that BLT may influence the effective brain connectivity (EC) patterns within the default-mode network (DMN), particularly involving the medial prefrontal cortex (MPFC), which may contribute to improvements in mood. METHODS Resting-state functional MRI data were collected from 41 healthy-controls (HCs) and 28 individuals with mild traumatic brain injury (mTBI). Individuals with mTBI also underwent a diffusion-weighted imaging scan and were randomly assigned to complete either 6 weeks of daily morning BLT (N = 14) or amber light therapy (ALT; N = 14). Advanced spectral dynamic causal modeling (sDCM) and diffusion MRI connectometry were used to estimate EC patterns and structural connectivity strength within the DMN, respectively. RESULTS The sDCM analysis showed dominant connectivity pattern following mTBI (pre-treatment) within the hemisphere contralateral to the one observed for HCs. BLT, but not ALT, resulted in improved directional information flow (ie, EC) from the left lateral parietal cortex (LLPC) to MPFC within the DMN. The improvement in EC from LLPC to MPFC was accompanied by stronger structural connectivity between the 2 areas. For the BLT group, the observed improvements in function and structure were correlated (at a trend level) with changes in self-reported happiness. CONCLUSIONS The current preliminary findings provide empirical evidence that morning short-wavelength light therapy could be used as a novel alternative rehabilitation technique for mTBI. TRIAL REGISTRY The research protocols were registered in the ClinicalTrials.gov database (CT Identifiers NCT01747811 and NCT01721356).
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience (SCAN) Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging at Monash University, Clayton, VIC, Australia
- The Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Michael A Miller
- Social, Cognitive and Affective Neuroscience (SCAN) Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - William DS Killgore
- Social, Cognitive and Affective Neuroscience (SCAN) Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
43
|
Abstract
Supplemental digital content is available in the text. Objective The aims of this study were to investigate changes in regional brain volume after concussion (mild traumatic brain injury) and to examine the relationship between change in brain volume and cognitive deficits. Design Twenty-eight patients with mild traumatic brain injury and 27 age-matched controls were included in this study. Magnetic resonance imaging (3 T) data were obtained from the participants. Structural brain volume changes were examined using tensor-based morphometry, which identifies regional structural differences in the whole brain, including cerebrospinal fluid, gray matter, and white matter. Volume contraction and expansion were compared between groups using a two-sample t test. The association between time post-injury or neurocognitive function and volumetric changes was examined using regression analysis. Results Individuals with mild traumatic brain injury exhibited volume reduction in the brainstem, including the pontine reticular formation. Regional cerebral volume changes were not associated with time post-injury but were significantly associated with neurocognitive function, especially with executive card sorting test, forward digit span test, and performance on verbal learning test. The greater regional cerebral volume was associated with better cognitive performance after mild traumatic brain injury. Conclusion Decreased brainstem volume may indicate its vulnerability to traumatic injury, and cerebral volume in specific regions was positively associated with patients’ cognitive function after injury.
Collapse
|
44
|
Russell-Schulz B, Vavasour IM, Zhang J, MacKay AL, Purcell V, Muller AM, Brucar LR, Torres IJ, Panenka WJ, Virji-Babul N. Myelin water fraction decrease in individuals with chronic mild traumatic brain injury and persistent symptoms. Heliyon 2021; 7:e06709. [PMID: 33898831 PMCID: PMC8056430 DOI: 10.1016/j.heliyon.2021.e06709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
The diffuse and continually evolving secondary changes after mild traumatic brain injury (mTBI) make it challenging to assess alterations in brain-behaviour relationships. In this study we used myelin water imaging to evaluate changes in myelin water fraction (MWF) in individuals with chronic mTBI and persistent symptoms and measured their cognitive status using the NIH Toolbox Cognitive Battery. Fifteen adults with mTBI with persistent symptoms and twelve age, gender and education matched healthy controls took part in this study. We found a significant decrease in global white matter MWF in patients compared to the healthy controls. Significantly lower MWF was evident in most white matter region of interest (ROIs) examined including the corpus callosum (separated into genu, body and splenium), minor forceps, right anterior thalamic radiation, left inferior longitudinal fasciculus; and right and left superior longitudinal fasciculus and corticospinal tract. Although patients showed lower cognitive functioning, no significant correlations were found between MWF and cognitive measures. These results suggest that individuals with chronic mTBI who have persistent symptoms have reduced MWF.
Collapse
Affiliation(s)
- Bretta Russell-Schulz
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Irene M. Vavasour
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Zhang
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Alex L. MacKay
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Victoria Purcell
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Angela M. Muller
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leyla R. Brucar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ivan J. Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - William J. Panenka
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Naznin Virji-Babul
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
45
|
Plekhova NG, Radkov IV, Zinoviev SV, Dyuizen IV, Baryshev AN, Shumatov VB. Effect of Mild Traumatic Brain Injury on Behavioral Reactions and Neocortical Morphology in Rats. Bull Exp Biol Med 2021; 170:672-676. [PMID: 33788107 DOI: 10.1007/s10517-021-05130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 11/26/2022]
Abstract
The original weight-drop model was employed to examine the effect of mild traumatic brain injury (TBI) on behavioral phenotype and neocortical morphology in rats. The neurological examination of rats with moderate TBI revealed the focal symptoms corresponding to pronounced neurological disorders, whereas in rats after mild TBI, there were only minor coordination disorders. On day 7 after injury, the rats with mild TBI demonstrated enhanced anxiety assessed by conditioned passive avoidance response. The morphometric analysis of the brain tissues revealed narrowing of the capillaries and increased score of hyperchromic neocortical neurons, which attested to cerebral hypoxia. The manifestations of mild TBI in original rat model demonstrated a close similarity to the symptoms of TBI in humans.
Collapse
Affiliation(s)
- N G Plekhova
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia.
| | - I V Radkov
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - S V Zinoviev
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - I V Dyuizen
- A. V. Zhirmunsky Institute of Marine Biology, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia
| | - A N Baryshev
- A. V. Zhirmunsky Institute of Marine Biology, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia
| | - V B Shumatov
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| |
Collapse
|
46
|
Turner S, Lazarus R, Marion D, Main KL. Molecular and Diffusion Tensor Imaging Biomarkers of Traumatic Brain Injury: Principles for Investigation and Integration. J Neurotrauma 2021; 38:1762-1782. [PMID: 33446015 DOI: 10.1089/neu.2020.7259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The last 20 years have seen the advent of new technologies that enhance the diagnosis and prognosis of traumatic brain injury (TBI). There is recognition that TBI affects the brain beyond initial injury, in some cases inciting a progressive neuropathology that leads to chronic impairments. Medical researchers are now searching for biomarkers to detect and monitor this condition. Perhaps the most promising developments are in the biomolecular and neuroimaging domains. Molecular assays can identify proteins indicative of neuronal injury and/or degeneration. Diffusion imaging now allows sensitive evaluations of the brain's cellular microstructure. As the pace of discovery accelerates, it is important to survey the research landscape and identify promising avenues of investigation. In this review, we discuss the potential of molecular and diffusion tensor imaging (DTI) biomarkers in TBI research. Integration of these technologies could advance models of disease prognosis, ultimately improving care. To date, however, few studies have explored relationships between molecular and DTI variables in patients with TBI. Here, we provide a short primer on each technology, review the latest research, and discuss how these biomarkers may be incorporated in future studies.
Collapse
Affiliation(s)
- Stephanie Turner
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Rachel Lazarus
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Donald Marion
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Keith L Main
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| |
Collapse
|
47
|
Ved R, Sharouf F, Harari B, Muzaffar M, Manivannan S, Ormonde C, Gray WP, Zaben M. Disulfide HMGB1 acts via TLR2/4 receptors to reduce the numbers of oligodendrocyte progenitor cells after traumatic injury in vitro. Sci Rep 2021; 11:6181. [PMID: 33731757 PMCID: PMC7971069 DOI: 10.1038/s41598-021-84932-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with poor clinical outcomes; autopsy studies of TBI victims demonstrate significant oligodendrocyte progenitor cell (OPC) death post TBI; an observation, which may explain the lack of meaningful repair of injured axons. Whilst high-mobility group box-1 (HMGB1) and its key receptors TLR2/4 are identified as key initiators of neuroinflammation post-TBI, they have been identified as attractive targets for development of novel therapeutic approaches to improve post-TBI clinical outcomes. In this report we establish unequivocal evidence that HMGB1 released in vitro impairs OPC response to mechanical injury; an effect that is pharmacologically reversible. We show that needle scratch injury hyper-acutely induced microglial HMGB1 nucleus-to-cytoplasm translocation and subsequent release into culture medium. Application of injury-conditioned media resulted in significant decreases in OPC number through anti-proliferative effects. This effect was reversed by co-treatment with the TLR2/4 receptor antagonist BoxA. Furthermore, whilst injury conditioned medium drove OPCs towards an activated reactive morphology, this was also abolished after BoxA co-treatment. We conclude that HMGB1, through TLR2/4 dependant mechanisms, may be detrimental to OPC proliferation following injury in vitro, negatively affecting the potential for restoring a mature oligodendrocyte population, and subsequent axonal remyelination. Further study is required to assess how HMGB1-TLR signalling influences OPC maturation and myelination capacity.
Collapse
Affiliation(s)
- R Ved
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - F Sharouf
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - B Harari
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - M Muzaffar
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - S Manivannan
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - C Ormonde
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - W P Gray
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - M Zaben
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
48
|
James SN, Nicholas JM, Lane CA, Parker TD, Lu K, Keshavan A, Buchanan SM, Keuss SE, Murray-Smith H, Wong A, Cash DM, Malone IB, Barnes J, Sudre CH, Coath W, Prosser L, Ourselin S, Modat M, Thomas DL, Cardoso J, Heslegrave A, Zetterberg H, Crutch SJ, Schott JM, Richards M, Fox NC. A population-based study of head injury, cognitive function and pathological markers. Ann Clin Transl Neurol 2021; 8:842-856. [PMID: 33694298 PMCID: PMC8045921 DOI: 10.1002/acn3.51331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/01/2023] Open
Abstract
Objective To assess associations between head injury (HI) with loss of consciousness (LOC), ageing and markers of later‐life cerebral pathology; and to explore whether those effects may help explain subtle cognitive deficits in dementia‐free individuals. Methods Participants (n = 502, age = 69–71) from the 1946 British Birth Cohort underwent cognitive testing (subtests of Preclinical Alzheimer Cognitive Composite), 18F‐florbetapir Aβ‐PET and MR imaging. Measures include Aβ‐PET status, brain, hippocampal and white matter hyperintensity (WMH) volumes, normal appearing white matter (NAWM) microstructure, Alzheimer’s disease (AD)‐related cortical thickness, and serum neurofilament light chain (NFL). LOC HI metrics include HI occurring: (i) >15 years prior to the scan (ii) anytime up to age 71. Results Compared to those with no evidence of an LOC HI, only those reporting an LOC HI>15 years prior (16%, n = 80) performed worse on cognitive tests at age 69–71, taking into account premorbid cognition, particularly on the digit‐symbol substitution test (DSST). Smaller brain volume (BV) and adverse NAWM microstructural integrity explained 30% and 16% of the relationship between HI and DSST, respectively. We found no evidence that LOC HI was associated with Aβ load, hippocampal volume, WMH volume, AD‐related cortical thickness or NFL (all p > 0.01). Interpretation Having a LOC HI aged 50’s and younger was linked with lower later‐life cognitive function at age ~70 than expected. This may reflect a damaging but small impact of HI; explained in part by smaller BV and different microstructure pathways but not via pathology related to AD (amyloid, hippocampal volume, AD cortical thickness) or ongoing neurodegeneration (serum NFL).
Collapse
Affiliation(s)
- Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom.,Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher A Lane
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thomas D Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kirsty Lu
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah M Buchanan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah E Keuss
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Heidi Murray-Smith
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Josephine Barnes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom.,Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, Institute of Nuclear Medicine, University College London Hospitals, London, United Kingdom.,Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lloyd Prosser
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, Institute of Nuclear Medicine, University College London Hospitals, London, United Kingdom
| | - Marc Modat
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, Institute of Nuclear Medicine, University College London Hospitals, London, United Kingdom
| | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, Institute of Nuclear Medicine, University College London Hospitals, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| |
Collapse
|
49
|
Human brain FE modeling including incompressible fluid dynamics of intraventricular cerebrospinal fluid. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Montanino A, Li X, Zhou Z, Zeineh M, Camarillo D, Kleiven S. Subject-specific multiscale analysis of concussion: from macroscopic loads to molecular-level damage. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|