1
|
Krupa MM, Pienkowski T, Tankiewicz-Kwedlo A, Lyson T. Targeting the kynurenine pathway in gliomas: Insights into pathogenesis, therapeutic targets, and clinical advances. Biochim Biophys Acta Rev Cancer 2025; 1880:189343. [PMID: 40345262 DOI: 10.1016/j.bbcan.2025.189343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Gliomas, the most prevalent primary brain tumors, continue to present significant challenges in oncology due to poor patient prognosis despite advances in treatment such as immunotherapy and cancer vaccines. Recent research highlights the potential of targeting tryptophan metabolism, particularly the kynurenine pathway (KP) and combinatorial approaches with immunotherapies, as a promising strategy in cancer research. The key enzymes of the kynurenine pathway, such as IDO1, IDO2, and TDO, and metabolites like kynurenine, kynurenic acid, and quinolinic acid, are implicated in fostering an immunosuppressive tumor microenvironment and promoting glioma cell survival. In glioblastoma, a highly aggressive glioma subtype, elevated IDO and TDO expression correlates with reduced survival rates. KP metabolites, such as kynurenine (KYN), 3-hydroxykynurenine (3-HK), kynurenic acid (KYNA), and quinolinic acid (QUIN), are involved in modulating immune responses, oxidative stress, neuroprotection, and neurotoxicity. This review synthesizes recent findings on the kynurenine pathway involvement in glioma pathogenesis, examining potential therapeutic targets within this pathway and discussing ongoing clinical trials that draw attention to treatments based on this pathway. Furthermore, it highlights novel findings on the post-translational modifications of kynurenine pathway enzymes and their regulatory roles, presenting their potential as therapeutic targets in gliomas.
Collapse
Affiliation(s)
- Mikolaj Marek Krupa
- Department of Neurosurgery, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Tomasz Pienkowski
- Laboratory of Metabolomics and Proteomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland.
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, 15-276 Bialystok, Poland; Department of Interventional Neurology, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
2
|
Gagliardi F, De Domenico P, Snider S, Roncelli F, Comai S, Mortini P. Immunomodulatory mechanisms driving tumor escape in glioblastoma: The central role of IDO and tryptophan metabolism in local and systemic immunotolerance. Crit Rev Oncol Hematol 2025; 209:104657. [PMID: 39986404 DOI: 10.1016/j.critrevonc.2025.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive primary brain tumor exhibiting extensive immune evasion mechanisms that hinder effective therapeutic interventions. This narrative review explores the immunomodulatory pathways contributing to tumor escape in GBM, specifically focusing on the role of Tryptophan (TRP) metabolism and its downstream mediators Tryptophan metabolism through the kynurenine pathway (KP) is initiated by indoleamine 2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO2) enzymes and serves as a crucial mechanism for promoting an immunosuppressive microenvironments and systemic immunotolerance. Emerging evidence also indicates a non-enzymatic role for IDO1 signaling in these processes. The downstream effectors interact with immune cells, inducing local immunosuppression within the tumor microenvironment and altering peripheral immune responses. METHODS We systematically reviewed databases (MEDLINE via PubMed, Science Direct, and Embase) through October 2024 to highlight the interplay between local immune escape mechanisms and circulating immunotolerance, emphasizing the role of TRP metabolic enzymes in supporting GBM progression. RESULTS The literature review identified 99 records. TRP-related mechanisms play a central role in fostering immunotolerance in GBM. These phenomena involve intricate interactions between the infiltrating and circulating myeloid and lymphoid compartments, ultimately shaping a tolerant, pro-tumoral environment and the peripheral immunophenotype. CONCLUSIONS The biological activity of IDO1 and TRP metabolites positions these compounds as potential markers of disease activity and promising molecular targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Filippo Gagliardi
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| | - Pierfrancesco De Domenico
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy.
| | - Silvia Snider
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| | - Francesca Roncelli
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada; IRCSS San Raffaele Scientific Institute, Division of Neuroscience, Milan, Italy
| | - Pietro Mortini
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| |
Collapse
|
3
|
BharathwajChetty B, Kumar A, Deevi P, Abbas M, Alqahtani A, Liang L, Sethi G, Liu L, Kunnumakkara AB. Gut microbiota and their influence in brain cancer milieu. J Neuroinflammation 2025; 22:129. [PMID: 40312370 PMCID: PMC12046817 DOI: 10.1186/s12974-025-03434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Microbial communities are not simply remnants of the past but dynamic entities that continuously evolve under the selective pressures of nature, reflecting the intricate and adaptive processes of evolution. The microbiota residing in the various regions of the human body has numerous roles in different physiological processes such as nutrition, metabolism, immune regulation, etc. In the zeal of achieving empirical insights into the ambit of the gut microbiome, the research over the years led to the revelation of reciprocal interaction between the gut microbiome and the cognitive functioning of the human body. Dysbiosis in the gut microbial composition disturbs the homeostatic cognitive functioning of the human body. This dysbiosis has been associated with various chronic diseases, including brain cancer, such as glioma, glioblastoma, etc. This review explores the mechanistic role of dysbiosis-mediated progression of brain cancers and their subtypes. Moreover, it demonstrates the regulatory role of microbial metabolites produced by the gut microbiota, such as short-chain fatty acids, amino acids, lipids, etc., in the tumour progression. Further, we also provide valuable insights into the microbiota mediating the efficiency of therapeutic regimens, thereby leveraging gut microbiota as potential biomarkers and targets for improved treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Pranav Deevi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
- International Joint M. Tech Degree in Food Science and Technology, Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, Riyadh, 11525, Saudi Arabia
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin Scool of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
- International Joint M. Tech Degree in Food Science and Technology, Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Oldak L, Basa A, Milewska P, Chludzinska-Kasperuk S, Starosz A, Grubczak K, Kobus K, Reszec-Gielazyn J, Gorodkiewicz E. Preliminary studies on changes in the amount of tryptophan metabolites in human glioma tissues. Anal Chim Acta 2024; 1327:343149. [PMID: 39266061 DOI: 10.1016/j.aca.2024.343149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND We have developed and validated methods for the determination of three major tryptophan metabolites metabolized by the kynurenine pathway, namely kynurenine (KYN), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HAA). KYN and 3-HK were determined using RP-HPLC-UV, and 3-HAA using RP-HPLC-FL. We then developed a comparative method based on CE-UV. The developed methods were validated and 36 samples of human brain glioma tissue homogenates were assayed in all 4 grades of malignancy, and the concentration levels of assayed metabolites were compared with available clinical data. RESULTS Each of the methods is characterized by high precision, accuracy and repeatability, and the determined LOQ values indicate the possibility of performing quantitative analysis on the available samples of human glioma tumors (36 samples in grades G1-G4). The concentration values of selected metabolites obtained using HPLC methods were subjected to statistical analysis and preliminary clinical data processing. We found statistically significant differences in the concentrations of KYN, 3-HK and 3-HAA between the various grades of the disease, and characterized these differences more precisely by means of the Dunn-Bonferroni post hoc test. We did not find that the patient's environment or habits significantly affected the metabolites concentration of the study samples population. In addition, we showed a high positive correlation between KYN, 3-HK and 3-HAA, which appears to be a characteristic that describes metabolic changes of Trp in relation to KYN, 3-HK and 3-HAA, and indicates potential diagnostic value. SIGNIFICANCE The preliminary studies carried out contribute new knowledge on the molecular basis of human brain glioma. They also provide valuable information useful for the development of glioma diagnostics, differentiation of disease grades and assessment of the patient's condition. The obtained relationships between metabolite concentrations and the grade of malignancy of the disease and correlations between metabolite concentrations constitute the basis for further broader biochemical and clinical analysis.
Collapse
Affiliation(s)
- Lukasz Oldak
- Bioanalysis Laboratory, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Anna Basa
- Department of Materials Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Patrycja Milewska
- Biobank, Biobank at Medical University of Bialystok, Waszyngtona 13, 15-269, Bialystok, Poland.
| | | | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269, Bialystok, Poland.
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269, Bialystok, Poland.
| | - Krzysztof Kobus
- Private Surgical Clinic in Bialystok, Dr. Kobus Chirurgia, Fabryczna 20, 15-482, Poland.
| | - Joanna Reszec-Gielazyn
- Biobank, Biobank at Medical University of Bialystok, Waszyngtona 13, 15-269, Bialystok, Poland; Department of Medical Pathology, Medical University of Bialystok, Waszyngtona 13, 15-269, Bialystok, Poland.
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
5
|
Rahmat JN, Liu J, Chen T, Li Z, Zhang Y. Engineered biological nanoparticles as nanotherapeutics for tumor immunomodulation. Chem Soc Rev 2024; 53:5862-5903. [PMID: 38716589 DOI: 10.1039/d3cs00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.
Collapse
Affiliation(s)
- Juwita N Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yong Zhang
- Department of Biomedical Engineering, College of Engineering, The City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
6
|
Zhao S, Wang Q, Ni K, Zhang P, Liu Y, Xie J, Ji W, Cheng C, Zhou Q. Combining single-cell sequencing and spatial transcriptome sequencing to identify exosome-related features of glioblastoma and constructing a prognostic model to identify BARD1 as a potential therapeutic target for GBM patients. Front Immunol 2023; 14:1263329. [PMID: 37727789 PMCID: PMC10505933 DOI: 10.3389/fimmu.2023.1263329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Background Glioblastoma (GBM) is a malignant primary brain tumor. This study focused on exploring the exosome-related features of glioblastoma to better understand its cellular composition and molecular characteristics. Methods Single-cell RNA sequencing (scRNA-seq) and spatial transcriptome RNA sequencing (stRNA-seq) were used to analyze the heterogeneity of glioblastomas. After data integration, cell clustering, and annotation, five algorithms were used to calculate scores for exosome-related genes(ERGs). Cell trajectory analysis and intercellular communication analysis were performed to explore exosome-related communication patterns. Spatial transcriptome sequencing data were analyzed to validate the findings. To further utilize exosome-related features to aid in clinical decision-making, a prognostic model was constructed using GBM's bulk RNA-seq. Results Different cell subpopulations were observed in GBM, with Monocytes/macrophages and malignant cells in tumor samples showing higher exosome-related scores. After identifying differentially expressed ERGs in malignant cells, pseudotime analysis revealed the cellular status of malignant cells during development. Intercellular communication analysis highlighted signaling pathways and ligand-receptor interactions. Spatial transcriptome sequencing confirmed the high expression of exosome-related gene features in the tumor core region. A prognostic model based on six ERGs was shown to be predictive of overall survival and immunotherapy outcome in GBM patients. Finally, based on the results of scRNA-seq and prognostic modeling as well as a series of cell function experiments, BARD1 was identified as a novel target for the treatment of GBM. Conclusion This study provides a comprehensive understanding of the exosome-related features of GBM in both scRNA-seq and stRNA-seq, with malignant cells with higher exosome-related scores exhibiting stronger communication with Monocytes/macrophages. In terms of spatial data, highly scored malignant cells were also concentrated in the tumor core region. In bulk RNA-seq, patients with a high exosome-related index exhibited an immunosuppressive microenvironment, which was accompanied by a worse prognosis as well as immunotherapy outcomes. Prognostic models constructed using ERGs are expected to be independent prognostic indicators for GBM patients, with potential implications for personalized treatment strategies for GBM. Knockdown of BARD1 in GBM cell lines reduces the invasive and value-added capacity of tumor cells, and thus BARD1-positively expressing malignant cells are a risk factor for GBM patients.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kaixiang Ni
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuan Liu
- Department of General Surgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Qiang Zhou
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| |
Collapse
|
7
|
Hou X, Du H, Deng Y, Wang H, Liu J, Qiao J, Liu W, Shu X, Sun B, Liu Y. Gut microbiota mediated the individualized efficacy of Temozolomide via immunomodulation in glioma. J Transl Med 2023; 21:198. [PMID: 36927689 PMCID: PMC10018922 DOI: 10.1186/s12967-023-04042-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the preferred chemotherapy strategy for glioma therapy. As a second-generation alkylating agent, TMZ provides superior oral bio-availability. However, limited response rate (less than 50%) and high incidence of drug resistance seriously restricts TMZ's application, there still lack of strategies to increase the chemotherapy sensitivity. METHODS Luci-GL261 glioma orthotopic xenograft model combined bioluminescence imaging was utilized to evaluate the anti-tumor effect of TMZ and differentiate TMZ sensitive (S)/non-sensitive (NS) individuals. Integrated microbiomics and metabolomics analysis was applied to disentangle the involvement of gut bacteria in TMZ sensitivity. Spearman's correlation analysis was applied to test the association between fecal bacteria levels and pharmacodynamics indices. Antibiotics treatment combined TMZ treatment was used to confirm the involvement of gut microbiota in TMZ response. Flow cytometry analysis, ELISA and histopathology were used to explore the potential role of immunoregulation in gut microbiota mediated TMZ response. RESULTS Firstly, gut bacteria composition was significantly altered during glioma development and TMZ treatment. Meanwhile, in vivo anti-cancer evaluation suggested a remarkable difference in chemotherapy efficacy after TMZ administration. Moreover, 16s rRNA gene sequencing and non-targeted metabolomics analysis revealed distinct different gut microbiota and immune infiltrating state between TMZ sensitive and non-sensitive mice, while abundance of differential gut bacteria and related metabolites was significantly correlated with TMZ pharmacodynamics indices. Further verification suggested that gut microbiota deletion by antibiotics treatment could accelerate glioma development, attenuate TMZ efficacy and inhibit immune cells (macrophage and CD8α+ T cell) recruitment. CONCLUSIONS The current study confirmed the involvement of gut microbiota in glioma development and individualized TMZ efficacy via immunomodulation, hence gut bacteria may serve as a predictive biomarker as well as a therapeutic target for clinical TMZ application.
Collapse
Affiliation(s)
- Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jinmi Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
8
|
Zhang L, Zhou Y, Wu B, Zhang S, Zhu K, Liu CH, Yu X, Alfano RR. A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma. Cancers (Basel) 2023; 15:cancers15061752. [PMID: 36980638 PMCID: PMC10046110 DOI: 10.3390/cancers15061752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
There is still a lack of reliable intraoperative tools for glioma diagnosis and to guide the maximal safe resection of glioma. We report continuing work on the optical biopsy method to detect glioma grades and assess glioma boundaries intraoperatively using the VRR-LRRTM Raman analyzer, which is based on the visible resonance Raman spectroscopy (VRR) technique. A total of 2220 VRR spectra were collected during surgeries from 63 unprocessed fresh glioma tissues using the VRR-LRRTM Raman analyzer. After the VRR spectral analysis, we found differences in the native molecules in the fingerprint region and in the high-wavenumber region, and differences between normal (control) and different grades of glioma tissues. A principal component analysis–support vector machine (PCA-SVM) machine learning method was used to distinguish glioma tissues from normal tissues and different glioma grades. The accuracy in identifying glioma from normal tissue was over 80%, compared with the gold standard of histopathology reports of glioma. The VRR-LRRTM Raman analyzer may be a new label-free, real-time optical molecular pathology tool aiding in the intraoperative detection of glioma and identification of tumor boundaries, thus helping to guide maximal safe glioma removal and adjacent healthy tissue preservation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery, Medical School of Nankai University, Tianjin 300071, China
- Department of Neurosurgery, PLA General Hospital, Beijing 100853, China
| | - Yan Zhou
- Department of Neurosurgery, Air Force Medical Center, Beijing 100142, China
- Correspondence: (Y.Z.); (X.Y.)
| | - Binlin Wu
- Physics Department and CSCU Center for Nanotechnology, Southern Connecticut State University, New Haven, CT 06515, USA
| | | | - Ke Zhu
- Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Cheng-Hui Liu
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, NY 10031, USA
| | - Xinguang Yu
- Department of Neurosurgery, Medical School of Nankai University, Tianjin 300071, China
- Department of Neurosurgery, PLA General Hospital, Beijing 100853, China
- Correspondence: (Y.Z.); (X.Y.)
| | - Robert R. Alfano
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
9
|
SESN2 Could Be a Potential Marker for Diagnosis and Prognosis in Glioma. Genes (Basel) 2023; 14:genes14030701. [PMID: 36980973 PMCID: PMC10048065 DOI: 10.3390/genes14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
(1) Background: Glioma is among the most common brain tumors, and is difficult to eradicate with current therapeutic strategies due to its highly invasive and aggressive characteristics. Sestrin2 (SESN2) is an autophagy inducer. The effect of SESN2 on glioma is controversial and unclear. (2) Methods: We downloaded related RNA-seq data from the TCGA and GTEx databases. Bioinformatic analyses including differential gene expression analysis, KM survival curve analysis, univariate and multivariate Cox regression analyses, nomogram analysis, ROC curve analysis, gene function enrichment analysis, and immune cell infiltration analysis were conducted. In addition, data from the Human Protein Atlas (HPA) database were collected to validate SESN2 expression in glioma. (3) Results: In comparison with normal tissue, expression of SESN2 in glioma tissue was higher, and those with higher expressions had significantly lower overall survival rates. The results of univariate Cox regression analyses showed that SESN2 can be a disadvantageous factor in poor glioma prognosis. Both nomograms and ROC curves confirmed these findings. Meanwhile, according to gene function analysis, SESN2 may be involved in immune responses and the tumor microenvironment (TME). Based on the HPA database results, SESN2 is localized in the cytosol and shows high expression in glioma. (4) Conclusions: The expression of SESN2 in gliomas was positively relevant to a poorer prognosis, suggesting that SESN2 could be used as a prognostic gene.
Collapse
|
10
|
Chen S, Jiang J, Shen A, Miao Y, Cao Y, Zhang Y, Cong P, Gao P. Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022; 12:918. [PMID: 36295820 PMCID: PMC9611130 DOI: 10.3390/metabo12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are indispensable building blocks of diverse bio-macromolecules as well as functional regulators for various metabolic processes. The fact that cancer cells live with a voracious appetite for specific AAs has been widely recognized. Glioma is one of the most lethal malignancies occurring in the central nervous system. The reprogrammed metabolism of AAs benefits glioma proliferation, signal transduction, epigenetic modification, and stress tolerance. Metabolic alteration of specific AAs also contributes to glioma immune escape and chemoresistance. For clinical consideration, fluctuations in the concentrations of AAs observed in specific body fluids provides opportunities to develop new diagnosis and prognosis markers. This review aimed at providing an extra dimension to understanding glioma pathology with respect to the rewired AA metabolism. A deep insight into the relevant fields will help to pave a new way for new therapeutic target identification and valuable biomarker development.
Collapse
Affiliation(s)
- Sirui Chen
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ao Shen
- HE University, Shenyang 110163, China
| | - Ying Miao
- E&M College, Shenyang Aerospace University, Shenyang 110136, China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ying Zhang
- Internal Medicine Department, Dalian Public Health Clinical Center, Dalian 116033, China
| | - Peiyu Cong
- Neurosurgery Department, Affiliated Dalian Municipal Central Hospital of Dalian Medical University, Dalian 116022, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
11
|
Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol 2022; 96:e13201. [PMID: 35778892 DOI: 10.1111/sji.13201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma, formerly known as Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The brain is an immunopriviledged organ and the blood brain barrier shields the brain from immune surveillance. In this review we discuss the composition of the immunosuppressive tumor micromilieu and potential immune escape mechanisms in GBM. In this respect, we focus on the role of the NKG2D receptor/ligand system. NKG2D ligands are frequently expressed on GBM tumor cells and can activate NKG2D-expressing killer cells including NK cells and γδ T cells. Soluble NKG2D ligands, however, contribute to tumor escape from immunological attack. We also discuss the current immunotherapeutic strategies to improve the survival of GBM patients. Such approaches include the modulation of the NKG2D receptor/ligand system, the application of checkpoint inhibitors, the adoptive transfer of ex vivo expanded and/or modified immune cells, or the application of antibodies and antibody constructs to target cytotoxic effector cells in vivo. In view of the multitude of pursued strategies, there is hope for improved overall survival of GBM patients in the future.
Collapse
Affiliation(s)
- Guranda Chitadze
- Unit for Hematological Diagnostics, Department of Internal Medicine II
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
12
|
Marin J, Journe F, Ghanem GE, Awada A, Kindt N. Cytokine Landscape in Central Nervous System Metastases. Biomedicines 2022; 10:biomedicines10071537. [PMID: 35884845 PMCID: PMC9313120 DOI: 10.3390/biomedicines10071537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood–brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut–brain axis on cytokine release during this process will also be addressed.
Collapse
Affiliation(s)
- Julie Marin
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Laboratory of Human Anatomy and Experimental Oncology, Institut Santé, Université de Mons (UMons), 7000 Mons, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Nadège Kindt
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Correspondence:
| |
Collapse
|
13
|
Xu Y, Zhang H, Sun Q, Geng R, Yuan F, Liu B, Chen Q. Immunomodulatory Effects of Tryptophan Metabolism in the Glioma Tumor Microenvironment. Front Immunol 2021; 12:730289. [PMID: 34659216 PMCID: PMC8517402 DOI: 10.3389/fimmu.2021.730289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common primary malignant tumor in adults’ central nervous system. While current research on glioma treatment is advancing rapidly, there is still no breakthrough in long-term treatment. Abnormalities in the immune regulatory mechanism in the tumor microenvironment are essential to tumor cell survival. The alteration of amino acid metabolism is considered a sign of tumor cells, significantly impacting tumor cells and immune regulation mechanisms in the tumor microenvironment. Despite the fact that the metabolism of tryptophan in tumors is currently discussed in the literature, we herein focused on reviewing the immune regulation of tryptophan metabolism in the tumor microenvironment of gliomas and analyzed possible immune targets. The objective is to identify potential targets for the treatment of glioma and improve the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods. Sci Rep 2021; 11:2282. [PMID: 33500529 PMCID: PMC7838178 DOI: 10.1038/s41598-021-81945-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the leading cause of mortalities in cancer patients due to the spreading of cancer cells to various organs. Detecting cancer and identifying its metastatic potential at the early stage is important. This may be achieved based on the quantification of the key biomolecular components within tissues and cells using recent optical spectroscopic techniques. The aim of this study was to develop a noninvasive label-free optical biopsy technique to retrieve the characteristic molecular information for detecting different metastatic potentials of prostate cancer cells. Herein we report using native fluorescence (NFL) spectroscopy along with machine learning (ML) to differentiate prostate cancer cells with different metastatic abilities. The ML algorithms including principal component analysis (PCA) and nonnegative matrix factorization (NMF) were used for dimension reduction and feature detection. The characteristic component spectra were used to identify the key biomolecules that are correlated with metastatic potentials. The relative concentrations of the molecular spectral components were retrieved and used to classify the cancer cells with different metastatic potentials. A multi-class classification was performed using support vector machines (SVMs). The NFL spectral data were collected from three prostate cancer cell lines with different levels of metastatic potentials. The key biomolecules in the prostate cancer cells were identified to be tryptophan, reduced nicotinamide adenine dinucleotide (NADH) and hypothetically lactate as well. The cancer cells with different metastatic potentials were classified with high accuracy using the relative concentrations of the key molecular components. The results suggest that the changes in the relative concentrations of these key fluorophores retrieved from NFL spectra may present potential criteria for detecting prostate cancer cells of different metastatic abilities.
Collapse
|
15
|
Eisa NH, Reddy SV, Elmansi AM, Kondrikova G, Kondrikov D, Shi XM, Novince CM, Hamrick MW, McGee-Lawrence ME, Isales CM, Fulzele S, Hill WD. Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway. Int J Mol Sci 2020; 21:ijms21217931. [PMID: 33114603 PMCID: PMC7662708 DOI: 10.3390/ijms21217931] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Nada H. Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sakamuri V. Reddy
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Ahmed M. Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Xing-Ming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark W. Hamrick
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Meghan E. McGee-Lawrence
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Carlos M. Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William D. Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
- Correspondence: ; Tel.: +1-(843)-792-6623
| |
Collapse
|
16
|
Weenink B, French PJ, Sillevis Smitt PA, Debets R, Geurts M. Immunotherapy in Glioblastoma: Current Shortcomings and Future Perspectives. Cancers (Basel) 2020; 12:E751. [PMID: 32235752 PMCID: PMC7140029 DOI: 10.3390/cancers12030751] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas are aggressive, fast-growing primary brain tumors. After standard-of-care treatment with radiation in combination with temozolomide, the overall prognosis of newly diagnosed patients remains poor, with a 2-year survival rate of less than 20%. The remarkable survival benefit gained with immunotherapy in several extracranial tumor types spurred a variety of experimental intervention studies in glioblastoma patients. These ranged from immune checkpoint inhibition to vaccinations and adoptive T cell therapies. Unfortunately, almost all clinical outcomes were universally disappointing. In this perspective, we provide an overview of immune interventions performed to date in glioblastoma patients and re-evaluate their performance. We argue that shortcomings of current immune therapies in glioblastoma are related to three major determinants of resistance, namely: low immunogenicity; immune privilege of the central nervous system; and immunosuppressive micro-environment. In this perspective, we propose strategies that are guided by exact shortcomings to sensitize glioblastoma prior to treatment with therapies that enhance numbers and/or activation state of CD8 T cells.
Collapse
Affiliation(s)
- Bas Weenink
- Department of Neurology, Erasmus MC Cancer Institute, Be430A, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Pim J. French
- Department of Neurology, Erasmus MC Cancer Institute, Be430A, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Peter A.E. Sillevis Smitt
- Department of Neurology, Erasmus MC Cancer Institute, Be430A, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Marjolein Geurts
- Department of Neurology, Erasmus MC Cancer Institute, Be430A, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
17
|
Bioinformatic Profiling Identifies a Fatty Acid Metabolism-Related Gene Risk Signature for Malignancy, Prognosis, and Immune Phenotype of Glioma. DISEASE MARKERS 2019; 2019:3917040. [PMID: 31885736 PMCID: PMC6914924 DOI: 10.1155/2019/3917040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/03/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells commonly have metabolic abnormalities. Aside from altered glucose and amino acid metabolism, cancers cells often share the attribute of fatty acid metabolic alterations. However, fatty acid metabolism related-gene set has not been systematically investigated in gliomas. Here, we provide a bioinformatic profiling of the fatty acid catabolic metabolism-related gene risk signature for the malignancy, prognosis and immune phenotype of glioma. In this study, a cohort of 325 patients with whole genome RNA-seq expression data from the Chinese Glioma Genome Atlas (CGGA) dataset was used as training set, while another cohort of 667 patients from The Cancer Genome Atlas (TCGA) dataset was used as validating set. After confirmed that fatty acid catabolic metabolism-related gene set could distinguish clinicopathological features of gliomas, we used LASSO regression analysis to develop a fatty-acid metabolism-related gene risk signature for glioma. This 8-gene risk signature was found to be a good predictor of clinical and molecular features involved in the malignancy of gliomas. We also identified that this 8-gene risk signature had high prognostic values in patients with gliomas. Correlation analysis showed that our risk signature was closely associated with the immune cells involved in the microenvironment of glioma. Furthermore, the fatty acid catabolic metabolism-related gene risk signature was also found to be significantly correlated with immune checkpoint members B7-H3 and Tim-3. In summary, we have identified a fatty acid metabolism-related gene risk signature for malignancy, prognosis, and immune phenotype of glioma; and our study might contribute to better understanding of metabolic pathways and further developing of novel therapeutic approaches for gliomas.
Collapse
|
18
|
Fang N, Wu Z, Wang X, Lin Y, Li L, Huang Z, Chen Y, Zheng X, Cai S, Tu H, Kang D, Chen J. Quantitative assessment of microenvironment characteristics and metabolic activity in glioma via multiphoton microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900136. [PMID: 31251837 DOI: 10.1002/jbio.201900136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Tumor microenvironment and metabolic activity in gliomas are the important biomarkers to evaluate the progression of gliomas. Many evidences have suggested that the targeting of metabolic activity and tumor microenvironment simultaneously can be more effective to take the tumor therapy. Therefore, the noninvasive, accurate assessment of tumor microenvironment and metabolic activity is quite important in clinical practice. Multiphoton microscopy (MPM), based on two-photon-excited fluorescence and second harmonic generation was performed on unstained glioma tissues. With our combined image analysis approaches, our research findings indicate that MPM is able to qualitatively and quantitatively describe the microenvironment characteristics in gliomas, such as collage deposition in extracellular matrix, lymphocyte infiltration and tumor angiogenesis, etc. Meanwhile, the metabolic activity can also be quantitatively evaluated by optical redox ratio, NADH and FAD intensity. With the microendoscope and fiberscope are portable, MPM technique can be used to perform in-vivo studies and clinical examinations in gliomas.
Collapse
Affiliation(s)
- Na Fang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, PR China
| | - Zanyi Wu
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xingfu Wang
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Yuanxiang Lin
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, PR China
| | - Zufang Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, PR China
| | - Yupeng Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xianying Zheng
- Department of Radiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Shanshan Cai
- Department of Pathology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Dezhi Kang
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, PR China
| |
Collapse
|
19
|
Zhou Y, Liu CH, Wu B, Yu X, Cheng G, Zhu K, Wang K, Zhang C, Zhao M, Zong R, Zhang L, Shi L, Alfano RR. Optical biopsy identification and grading of gliomas using label-free visible resonance Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31512439 PMCID: PMC6997631 DOI: 10.1117/1.jbo.24.9.095001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/26/2019] [Indexed: 05/06/2023]
Abstract
Glioma is one of the most refractory types of brain tumor. Accurate tumor boundary identification and complete resection of the tumor are essential for glioma removal during brain surgery. We present a method based on visible resonance Raman (VRR) spectroscopy to identify glioma margins and grades. A set of diagnostic spectral biomarkers features are presented based on tissue composition changes revealed by VRR. The Raman spectra include molecular vibrational fingerprints of carotenoids, tryptophan, amide I/II/III, proteins, and lipids. These basic in situ spectral biomarkers are used to identify the tissue from the interface between brain cancer and normal tissue and to evaluate glioma grades. The VRR spectra are also analyzed using principal component analysis for dimension reduction and feature detection and support vector machine for classification. The cross-validated sensitivity, specificity, and accuracy are found to be 100%, 96.3%, and 99.6% to distinguish glioma tissues from normal brain tissues, respectively. The area under the receiver operating characteristic curve for the classification is about 1.0. The accuracies to distinguish normal, low grade (grades I and II), and high grade (grades III and IV) gliomas are found to be 96.3%, 53.7%, and 84.1% for the three groups, respectively, along with a total accuracy of 75.1%. A set of criteria for differentiating normal human brain tissues from normal control tissues is proposed and used to identify brain cancer margins, yielding a diagnostic sensitivity of 100% and specificity of 71%. Our study demonstrates the potential of VRR as a label-free optical molecular histopathology method used for in situ boundary line judgment for brain surgery in the margins.
Collapse
Affiliation(s)
- Yan Zhou
- PLA Air Force Medical Center, Department of Neurosurgery, Beijing, China
| | - Cheng-Hui Liu
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| | - Binlin Wu
- Southern Connecticut State University, CSCU Center for Nanotechnology, Physics Department, New Haven, Connecticut, United States
| | - Xinguang Yu
- PLA General Hospital, Department of Neurosurgery, Beijing, China
| | - Gangge Cheng
- PLA Air Force Medical Center, Department of Neurosurgery, Beijing, China
| | - Ke Zhu
- Chinese Academy of Sciences, Institute of Physics, Beijing, China
| | - Kai Wang
- Jilin University, State Key Laboratory of Superhard Materials, Changchun, China
| | - Chunyuan Zhang
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| | - Mingyue Zhao
- PLA Air Force Medical Center, Department of Neurosurgery, Beijing, China
| | - Rui Zong
- PLA General Hospital, Department of Neurosurgery, Beijing, China
| | - Lin Zhang
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| | - Lingyan Shi
- University of California San Diego, Department of Bioengineering, La Jolla, California, United States
| | - Robert R. Alfano
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW More effective therapies for glioblastoma are urgently needed. Immunotherapeutic strategies appear particularly promising and are therefore intensively studied. This article reviews the current understanding of the immunosuppressive glioblastoma microenvironment, discusses the rationale behind various immunotherapies, and outlines the findings of several recently published clinical studies. RECENT FINDINGS The results of CheckMate-143 indicated that nivolumab is not superior to bevacizumab in patients with recurrent glioblastoma. A first-in man exploratory study evaluating EGFRvIII-specific CAR T cells for patients with newly diagnosed glioblastoma demonstrated overall safety of CAR T cell therapy and effective target recognition. A pilot study evaluating treatment with adoptively transferred CMV-specific T cells combined with a CMV-specific DC vaccine was found to be safe and resulted in increased polyclonality of CMV-specific T cells in vivo. Despite the success of immunotherapies in many cancers, clinical evidence supporting their efficacy for patients with glioblastoma is still lacking. Nevertheless, the recently published studies provide important proof-of-concept in several areas of immunotherapy research. The careful and critical interpretation of these results will enhance our understanding of the opportunities and challenges of immunotherapies for high-grade gliomas and improve the immunotherapeutic strategies investigated in future clinical trials.
Collapse
Affiliation(s)
- Sylvia C Kurz
- Perlmutter Cancer Institute, Brain Tumor Program, NYU Langone Medical Center, 240 E. 38th Street, 19th floor, New York, NY, 10016, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Li J, Liu X, Duan Y, Wang H, Su W, Wang Y, Zhuang G, Fan Y. Abnormal expression of circulating and tumor-infiltrating carcinoembryonic antigen-related cell adhesion molecule 1 in patients with glioma. Oncol Lett 2018; 15:3496-3503. [PMID: 29467871 PMCID: PMC5796289 DOI: 10.3892/ol.2018.7786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Glioma, the most prevalent primary tumor of the central nervous system, is known to evade immune surveillance and escape immune attacks by inducing immunosuppression. The homophilic interactions of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) serve a critical function in immunoregulation. In the present study, the expression levels of CEACAM1 in peripheral blood mononuclear cells and tumor-infiltrating lymphocytes (TILs) from patients with gliomas were assessed. Furthermore, associations between CEACAM1 expression and multiple clinicopathological characteristics in patients with gliomas were analyzed. The results of the present study suggested that the expression of CEACAM1 in circulating T cells was markedly increased in patients with gliomas compared with control subjects, and was further increased in TILs. Patients with high-grade gliomas [World Health Organization (WHO) grade III–IV] demonstrated a significantly increased expression of CEACAM1 on T cells compared with those with low-grade gliomas (WHO grade I–II). Furthermore, the expression of CEACAM1 on T cells was negatively correlated with the Karnofsky score and the plasma level of interferon-γ in patients with gliomas. Immunohistochemical analysis revealed that the expression levels of CEACAM1 in high-grade glioma tissues (WHO grade III–IV) were increased compared with the expression levels in the controls, and were associated with the expression of CEACAM1 in TILs. In summary, the results of the present study indicate that homophilic interactions of CEACAM1 may participate in the progression and development of gliomas through their negative regulatory effects on T cells. Thus, CEACAM1 may be a promising candidate for targeted glioma immunotherapy.
Collapse
Affiliation(s)
- Jinhu Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaodong Liu
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yijun Duan
- Department of Immunology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Hongqin Wang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wen Su
- Department of Immunology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Yazhou Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou, Zhengzhou, Henan 450053, P.R. China
| | - Guotao Zhuang
- Department of Neurosurgery, The Fifth People's Hospital of Datong, Datong, Shanxi 037006, P.R. China
| | - Yimin Fan
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
22
|
Pandey R, Caflisch L, Lodi A, Brenner AJ, Tiziani S. Metabolomic signature of brain cancer. Mol Carcinog 2017; 56:2355-2371. [PMID: 28618012 DOI: 10.1002/mc.22694] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022]
Abstract
Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - Laura Caflisch
- Department of Hematology and Medical oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - Andrew J Brenner
- Department of Hematology and Medical oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
23
|
|
24
|
Mangani D, Weller M, Roth P. The network of immunosuppressive pathways in glioblastoma. Biochem Pharmacol 2017; 130:1-9. [DOI: 10.1016/j.bcp.2016.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
|
25
|
Wang T, Liu G, Wang R. The Intercellular Metabolic Interplay between Tumor and Immune Cells. Front Immunol 2014; 5:358. [PMID: 25120544 PMCID: PMC4112791 DOI: 10.3389/fimmu.2014.00358] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/12/2014] [Indexed: 01/14/2023] Open
Abstract
Functional and effective immune response requires a metabolic rewiring of immune cells to meet their energetic and anabolic demands. Beyond this, the availability of extracellular and intracellular metabolites may serve as metabolic signals interconnecting with cellular signaling events to influence cellular fate and immunological function. As such, tumor microenvironment represents a dramatic example of metabolic derangement, where the highly metabolic demanding tumor cells may compromise the function of some immune cells by competing nutrients (a form of intercellular competition), meanwhile may support the function of other immune cells by forming a metabolic symbiosis (a form of intercellular collaboration). It has been well known that tumor cells harness immune system through information exchanges that are largely attributed to soluble protein factors and intercellular junctions. In this review, we will discuss recent advance on tumor metabolism and immune metabolism, as well as provide examples of metabolic communications between tumor cells and immune system, which may represent a novel mechanism of conveying tumor-immune privilege.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA
| | - Guangwei Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, Fudan University , Shanghai , China ; Biotherapy Research Center, Fudan University , Shanghai , China
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA ; Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA ; Department of Pediatrics, The Ohio State University School of Medicine , Columbus, OH , USA
| |
Collapse
|
26
|
Immunomodulatory effects of hemagglutinin- (HA-) modified A20 B-cell lymphoma expanded as a brain tumor on adoptively transferred HA-Specific CD4+ T cells. ScientificWorldJournal 2014; 2014:165265. [PMID: 24693228 PMCID: PMC3947776 DOI: 10.1155/2014/165265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/06/2013] [Indexed: 11/17/2022] Open
Abstract
Previously, the mouse A20 B-cell lymphoma engineered to express hemagglutinin (HA) antigen (A20HA) was used as a systemic tumor model. In this work, we used the A20HA cells as a brain tumor. HA-specific CD4(+) T cells were transferred intravenously in a tail vein 5 days after A20HA intracranial inoculation and analyzed on days 2, 9, and 16 after the adoptive transfer by different methods. The transferred cells demonstrated state of activation as early as day 2 after the adoptive transfer and most the of viable HA-specific cells became anergic on day 16. Additionally, symptoms of systemic immunosuppression were observed in mice with massive brain tumors at a late stage of the brain tumor progression (days 20-24 after the A20HA inoculation). Despite that, a deal of HA-specific CD4(+) T cells kept the functional activity even at the late stage of A20HA tumor growth. The activated HA-specific CD4(+) T cells were found also in the brain of brain-tumor-bearing mice. These cells were still responding to reactivation with HA-peptide in vitro. Our data support an idea about sufficient role of both the tumor-specific and -nonspecific mechanisms inducing immunosuppression in cancer patients.
Collapse
|
27
|
Yu L, Jiang C, Huang S, Gong X, Wang S, Shen P. Analysis of urinary metabolites for breast cancer patients receiving chemotherapy by CE-MS coupled with on-line concentration. Clin Biochem 2013; 46:1065-1073. [DOI: 10.1016/j.clinbiochem.2013.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/24/2022]
|