1
|
Lima DDS, de Morais RV, Rechenmacher C, Michalowski MB, Goldani MZ. Epigenetics, hypersensibility and asthma: what do we know so far? Clinics (Sao Paulo) 2023; 78:100296. [PMID: 38043345 DOI: 10.1016/j.clinsp.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 12/05/2023] Open
Abstract
In this review, we describe recent advances in understanding the relationship between epigenetic changes, especially DNA methylation (DNAm), with hypersensitivity and respiratory disorders such as asthma in childhood. It is clearly described that epigenetic mechanisms can induce short to long-term changes in cells, tissues, and organs. Through the growing number of studies on the Origins of Health Development and Diseases, more and more data exist on how environmental and genomic aspects in early life can induce allergies and asthma. The lack of biomarkers, standardized assays, and access to more accessible tools for data collection and analysis are still a challenge for future studies. Through this review, the authors draw a panorama with the available information that can assist in the establishment of an epigenetic approach for the risk analysis of these pathologies.
Collapse
Affiliation(s)
- Douglas da Silva Lima
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rahuany Velleda de Morais
- Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ciliana Rechenmacher
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mariana Bohns Michalowski
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Marcelo Zubaran Goldani
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
3
|
DeVries A, McCauley K, Fadrosh D, Fujimura KE, Stern DA, Lynch SV, Vercelli D. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy 2022; 77:3617-3628. [PMID: 35841380 PMCID: PMC9712226 DOI: 10.1111/all.15442] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota. METHODS We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing. RESULTS Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months. CONCLUSIONS Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.
Collapse
Affiliation(s)
- Avery DeVries
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
| | - Kathryn McCauley
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Douglas Fadrosh
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kei E. Fujimura
- Genetic Disease LabCalifornia Department of Public HealthRichmondCaliforniaUSA
| | - Debra A. Stern
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Donata Vercelli
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
4
|
DNA methylation signatures in airway cells from adult children of asthmatic mothers reflect subtypes of severe asthma. Proc Natl Acad Sci U S A 2022; 119:e2116467119. [PMID: 35666868 PMCID: PMC9214527 DOI: 10.1073/pnas.2116467119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maternal asthma is one of the most replicated risk factors for childhood-onset asthma. However, the underlying mechanisms are unknown. We identified DNA methylation signatures in bronchial epithelial cells from adults with asthma that were specific to those with a mother with asthma. These maternal asthma-associated methylation signatures were correlated with distinct gene regulatory pathways and clinical features. Genes in 16 pathways discriminated cases with and without maternal asthma and suggested impaired T cell signaling and responses to viral and bacterial pathogens in asthmatic children of an asthmatic mother. Our findings suggest that the prenatal environment in pregnancies of mothers with asthma alters epigenetically mediated developmental programs that may lead to severe asthma in their children through diverse gene regulatory pathways. Maternal asthma (MA) is among the most consistent risk factors for asthma in children. Possible mechanisms for this observation are epigenetic modifications in utero that have lasting effects on developmental programs in children of mothers with asthma. To test this hypothesis, we performed differential DNA methylation analyses of 398,186 individual CpG sites in primary bronchial epithelial cells (BECs) from 42 nonasthma controls and 88 asthma cases, including 56 without MA (NMA) and 32 with MA. We used weighted gene coexpression network analysis (WGCNA) of 69 and 554 differentially methylated CpGs (DMCs) that were specific to NMA and MA cases, respectively, compared with controls. WGCNA grouped 66 NMA-DMCs and 203 MA-DMCs into two and five comethylation modules, respectively. The eigenvector of one MA-associated module (turquoise) was uniquely correlated with 85 genes expressed in BECs and enriched for 36 pathways, 16 of which discriminated between NMA and MA using machine learning. Genes in all 16 pathways were decreased in MA compared with NMA cases (P = 7.1 × 10−3), a finding that replicated in nasal epithelial cells from an independent cohort (P = 0.02). Functional interpretation of these pathways suggested impaired T cell signaling and responses to viral and bacterial pathogens. The MA-associated turquoise module eigenvector was additionally correlated with clinical features of severe asthma and reflective of type 2 (T2)-low asthma (i.e., low total serum immunoglobulin E, fractional exhaled nitric oxide, and eosinophilia). Overall, these data suggest that MA alters diverse epigenetically mediated pathways that lead to distinct subtypes of severe asthma in adults, including hard-to-treat T2-low asthma.
Collapse
|
5
|
Danielewicz H, Gurgul A, Dębińska A, Myszczyszyn G, Szmatoła T, Myszkal A, Jasielczuk I, Drabik-Chamerska A, Hirnle L, Boznański A. Maternal atopy and offspring epigenome-wide methylation signature. Epigenetics 2021; 16:629-641. [PMID: 32902349 PMCID: PMC8143219 DOI: 10.1080/15592294.2020.1814504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/18/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
The increase in the prevalence of allergic diseases is believed to partially depend on environmental changes. DNA methylation is a major epigenetic mechanism, which is known to respond to environmental factors. A number of studies have revealed that patterns of DNA methylation may potentially predict allergic diseases.Here, we examined how maternal atopy is associated with methylation patterns in the cord blood of neonates.We conducted an epigenome-wide association study in a cohort of 96 mother-child pairs. Pregnant women aged not more than 35 years old, not currently smoking or exposed to environmental tobacco smoke, who did not report obesity before conception were considered eligible. They were further tested for atopy. Converted DNA from cord blood was analysed using Infinium MethylationEPIC; for statistical analysis, RnBeads software was applied. Gestational age and sex were included as covariates in the final analysis.83 DM sites were associated with maternal atopy. Within the top DM sites, there were CpG sites which mapped to genes SCD, ITM2C, NT5C3A and NPEPL1. Regional analysis revealed 25 tiling regions, 4 genes, 3 CpG islands and 5 gene promoters, (including PIGCP1, ADAM3A, ZSCAN12P1) associated with maternal atopy. Gene content analysis revealed pointwise enrichments in pathways related to purine-containing compound metabolism, the G1/S transition of the mitotic cell cycle, stem cell division and cellular glucose homoeostasis.These findings suggest that maternal atopy provides a unique intrauterine environment that may constitute the first environment in which exposure is associated with methylation patterns in newborn.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Dębińska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Myszczyszyn
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Myszkal
- 1st Department of Gynecology and Obstetrics, University Hospital of Jan Mikulicz-Radecki in Wroclaw, Wroclaw, Poland
| | - Igor Jasielczuk
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Drabik-Chamerska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Lidia Hirnle
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Boznański
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
6
|
Lynch SV, Vercelli D. Microbiota, Epigenetics, and Trained Immunity. Convergent Drivers and Mediators of the Asthma Trajectory from Pregnancy to Childhood. Am J Respir Crit Care Med 2021; 203:802-808. [PMID: 33493428 DOI: 10.1164/rccm.202010-3779pp] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California; and
| | - Donata Vercelli
- Department of Cellular and Molecular Medicine & Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Forsberg A, Abrahamsson TR, Nilsson L, Ernerudh J, Duchén K, Jenmalm MC. Changes in peripheral immune populations during pregnancy and modulation by probiotics and ω-3 fatty acids. Sci Rep 2020; 10:18723. [PMID: 33127947 PMCID: PMC7599237 DOI: 10.1038/s41598-020-75312-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023] Open
Abstract
Allergic diseases have become a major health problem, partly due to reduced microbial stimulation and a decreased dietary ω-3/ω-6 long-chain polyunsaturated fatty acid ratio. Prenatal exposures have been reported to influence allergy development, possibly induced via changes in maternal immune regulation. In a randomized double-blind placebo-controlled multicenter allergy prevention trial (PROOM-3), pregnant women were recruited at gestational week 20, and randomized to four study groups, one receiving both L. reuteri oil drops and ω-3 PUFA capsules (n = 22), the second receiving ω-3 PUFA supplementation and placebo regarding L. reuteri (n = 21), the third receiving L. reuteri and placebo regarding ω-3 PUFA (n = 22) and the fourth group receiving placebo capsules and placebo oil drops (n = 23). In this substudy, supplemental and pregnancy-related effects on maternal peripheral immune cell populations during pregnancy were assessed by flow cytometry immune phenotyping at gestational week 20, 32 and 4 days after delivery. The numbers of activated and regulatory T (Treg) cells (CD45RA− Foxp3++/CD45RA+Foxp3+) were reduced after delivery, with the lowest count in the L. reuteri supplemented group compared with the placebo group 4 days after delivery, while the ω-3 PUFA group did not differ from the placebo group. Several treatment-independent changes were observed during and after pregnancy in lymphocytes (CD4+/8+/19+/56+/45RA+/−), CD14+16+/− monocytes, and in subpopulations of T helper cells (Th) CD4+CD45RA−Tbet+ (Th1) and CD4+CD45RA−RORC+ (Th17) cells. In conclusion, probiotic supplementation to the mother during the second half of pregnancy resulted in immunomodulatory effects among activated and resting Treg cells. Furthermore, several systemic immune modifying effects of pregnancy were observed.
Collapse
Affiliation(s)
- A Forsberg
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - T R Abrahamsson
- Department of Paediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - L Nilsson
- Department of Clinical and Experimental Medicine, Allergy Centre, Linköping University, Linköping, Sweden
| | - J Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - K Duchén
- Department of Paediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M C Jenmalm
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Bellanti JA. Epigenetic studies and pediatric research. Pediatr Res 2020; 87:378-384. [PMID: 31731288 DOI: 10.1038/s41390-019-0644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
The 2020 Annual Review Issue, "Preventing Disease in the 21st Century" was selected by the Editors-in-Chief of Pediatric Research to include a variety of disease entities that confront health-care practitioners entrusted to the care of infants and children. In keeping with this mandate, this article reviews the subject of epigenetics, which impacts pediatric research from bench to bedside. Epigenetic mechanisms exert their effects through the interaction of environment, various susceptibility genes, and immunologic development and include: (1) DNA methylation; (2) posttranslational modifications of histone proteins through acetylation and methylation, and (3) RNA-mediated gene silencing by microRNA (miRNA) regulation. The effects of epigenetics during fetal life and early periods of development are first reviewed together with clinical applications of cardiovascular and metabolic disorders in later life. The relationships of epigenetics to the allergic and autoimmune diseases and cancer are next reviewed. A specific focus of the article is directed to the recent recognition that many of these disorders are driven by aberrant immune responses in which immunoregulatory events are often poorly functioning and where through interventive epigenetic measures prevention may be possible by alterations in programming of DNA during fetal and early periods as well as in later life.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
9
|
Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, Maitland‐van der Zee AH. What did we learn from multiple omics studies in asthma? Allergy 2019; 74:2129-2145. [PMID: 31004501 DOI: 10.1111/all.13833] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
More than a decade has passed since the finalization of the Human Genome Project. Omics technologies made a huge leap from trendy and very expensive to routinely executed and relatively cheap assays. Simultaneously, we understood that omics is not a panacea for every problem in the area of human health and personalized medicine. Whilst in some areas of research omics showed immediate results, in other fields, including asthma, it only allowed us to identify the incredibly complicated molecular processes. Along with their possibilities, omics technologies also bring many issues connected to sample collection, analyses and interpretation. It is often impossible to separate the intrinsic imperfection of omics from asthma heterogeneity. Still, many insights and directions from applied omics were acquired-presumable phenotypic clusters of patients, plausible biomarkers and potential pathways involved. Omics technologies develop rapidly, bringing improvements also to asthma research. These improvements, together with our growing understanding of asthma subphenotypes and underlying cellular processes, will likely play a role in asthma management strategies.
Collapse
Affiliation(s)
- Olga Ivanova
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Levi B. Richards
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Peter J. Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
- Department of Paediatric Pulmonology Amsterdam UMC/ Emma Children's Hospital Amsterdam the Netherlands
| |
Collapse
|
10
|
Forhead AJ. Breathing for two: maternal asthma and lung development in the fetus. J Physiol 2019; 597:4125-4126. [PMID: 31271219 DOI: 10.1113/jp278450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.,Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
11
|
Caixia L, Yang X, Yurong T, Xiaoqun Q. Involvement of epigenetic modification in epithelial immune responses during respiratory syncytial virus infection. Microb Pathog 2019; 130:186-189. [PMID: 30890452 DOI: 10.1016/j.micpath.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/25/2023]
Abstract
The epithelial cells of bronchi (BECs) act as a protective wall against potential pathogens and foreign particles that controls many aspects of respiratory immune response. The BECs act as not only a physical protecting wall of the airways but also as a significant part of both the innate and adaptive immune responses. Many kind of epithelium-associated communicating pathways which are triggered by genetic and environmental causating agents get involved in development of respiratory tract abnormalities. Epigenetic dysregulation is one potential mechanism which may mediate between adverse in early life exposures such as severe infections and immunological function deficits in later life. Epigenetic factors which regulate the respiratory tract lining structure and role are also an attractive area to assess the susceptibility of respiratory tract diseases. Several studies show that the key genes in epithelium-related signaling pathways have epigenetic modifications. The interactions mediating the relationship between severe bronchiolitis caused by RSV and their adverse consequences in childhood are broadly understood as immunological in nature, however, are yet to be fully uncovered. Thus, our study explained the immune action of epithelium and RSV-triggered immune imbalance of epithelium through epigenetic modifications in the mechanism of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Liu Caixia
- From Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Xiang Yang
- From Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Tan Yurong
- From Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China; From Department of Basic Medicine, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Qin Xiaoqun
- From Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| |
Collapse
|
12
|
Shah R, Newcomb DC. Sex Bias in Asthma Prevalence and Pathogenesis. Front Immunol 2018; 9:2997. [PMID: 30619350 PMCID: PMC6305471 DOI: 10.3389/fimmu.2018.02997] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Sex-related differences in asthma prevalence are well established and change through the reproductive phases of life. As children, boys have increased prevalence of asthma compared to girls. However, as adults, women have increased prevalence of asthma compared to men. Many factors, including genetics, environment, immunological responses, and sex hormones, affect the sex disparity associated with the development and control of asthma and other allergic diseases. Fluctuations of hormones during puberty, menstruation, pregnancy, and menopause, alter asthma symptoms and severity. In this article, we review clinical and epidemiological studies that examined the sex disparity in asthma and other allergic diseases as well as the role of sex hormones on asthma pathogenesis.
Collapse
Affiliation(s)
- Ruchi Shah
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
13
|
Tost J, Gay S, Firestein G. Epigenetics of the immune system and alterations in inflammation and autoimmunity. Epigenomics 2018; 9:371-373. [PMID: 28378617 DOI: 10.2217/epi-2017-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| | - Gary Firestein
- Division of Rheumatology, Allergy & Immunology, University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
14
|
Tost J. Epigenetic plasticity of eosinophils and other immune cell subsets in childhood asthma. THE LANCET RESPIRATORY MEDICINE 2018; 6:322-324. [PMID: 29496483 DOI: 10.1016/s2213-2600(18)30051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, 2 rue Gaston Crémieux, 91000 Evry, France.
| |
Collapse
|
15
|
Vercelli D. Are we what our mothers made us? Lessons from epigenetics. J Allergy Clin Immunol 2017; 141:525-526. [PMID: 29274413 DOI: 10.1016/j.jaci.2017.12.973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Arizona Center for the Biology of Complex Diseases, and Asthma and Airway Disease Research Center, University of Arizona.
| |
Collapse
|