1
|
Obando-González RI, Martínez-Hernández LE, Núñez-Muñoz LA, Calderón-Pérez B, Ruiz-Medrano R, Ramírez-Pool JA, Xoconostle-Cázares B. Plant growth Enhancement in Colchicine-Treated Tomato Seeds without Polyploidy Induction. PLANT MOLECULAR BIOLOGY 2024; 115:3. [PMID: 39668327 PMCID: PMC11638462 DOI: 10.1007/s11103-024-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/15/2024] [Indexed: 12/14/2024]
Abstract
Plant breeding plays a pivotal role in the development of improved tomato cultivars, addressing various challenges faced by this crop worldwide. Tomato crop yield is affected by biotic and abiotic stress, including diverse pathogens and pests, extreme temperatures, drought, and soil salinity, thus affecting fruit quality, and overall crop productivity. Through strategic plant breeding approaches, it is possible to increase the genetic diversity of tomato cultivars, leading to the development of varieties with increased resistance to prevalent diseases and pests, improved tolerance to environmental stress, and enhanced adaptability to changing agroclimatic conditions. The induction of genetic variability using antimitotic agents, such as colchicine, has been widely employed in plant breeding precisely to this end. In this study, we analyzed the transcriptome of colchicine-treated tomato plants exhibiting larger size, characterized by larger leaves, while seedlings of the T2 generation harbored three cotyledons. A total of 382 differentially expressed genes encoding proteins associated with anatomical structure development, hormone synthesis and transport, flavonoid biosynthesis, and responses to various stimuli, stresses, and defense mechanisms were identified. Gene enrichment analysis suggests a role for auxin and flavonoid biosynthesis in cotyledon formation. Furthermore, single-nucleotide polymorphisms were mapped in colchicine-treated plants and determined which corresponded to differentially- expressed genes. Interestingly, most were associated to only a few genes in a similar location. This study provides significant insights into the genes and metabolic pathways affected in colchicine-treated tomatoes that exhibit improved agronomic traits, such as plant vigor and improved photosynthesis rate.
Collapse
Affiliation(s)
- Rosa Irma Obando-González
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, 07360, México
| | - Luis Enrique Martínez-Hernández
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, 07360, México
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, 07360, México
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, 07360, México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, 07360, México
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, 07360, México
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, 07360, México.
| |
Collapse
|
2
|
Siegelmann R, Siegelmann HT. Meta-Analytic Operation of Threshold-independent Filtering (MOTiF) reveals sub-threshold genomic robustness in trisomy: The Jörmungandr Effect. Biochem Biophys Res Commun 2024; 737:150802. [PMID: 39500042 DOI: 10.1016/j.bbrc.2024.150802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 11/13/2024]
Abstract
Trisomy, a form of aneuploidy wherein the cell possesses an additional copy of a specific chromosome, exhibits a high correlation with cancer. Studies from across different hosts, cell-lines, and labs into the cellular effects induced by aneuploidy have conflicted, ranging from small, chaotic global changes to large instances of either overexpression or underexpression throughout the trisomic chromosome. We ascertained that conflicting findings may be correct but miss the overarching ground truth due to injudicious use of thresholds. To correct this deficiency, we introduce the Meta-analytic Operation of Threshold-independent Filtering (MOTiF) method, which begins by providing a panoramic view of all thresholds, transforms the data to eliminate the effects accounted for by known mechanisms, and then reconstructs an explanation of the mechanisms that underly the difference between the baseline and the uncharacterized effects observed. As a proof of concept, we applied MOTiF to human colonic epithelial cells, discovering a uniform decrease in gene expression levels throughout the genome, which while significant, is beneath most common thresholds. Using Hi-C data we identified the structural correlate, wherein the physical genomic architecture condenses, compactifying in a uniform, genome-wide manner. This effect, which we dub the Jörmungandr Effect, is likely a robustness mechanism counteracting the addition of a chromosome. We were able to break down the gene expression alterations into three overlapping mechanisms: the raw chromosome content, the genomic compartmentalization, and the global structural condensation. While further studies must be conducted to corroborate the hypothesized Jörmungandr Effect, MOTiF presents a useful meta-analytic tool in the realm of gene expression and beyond.
Collapse
Affiliation(s)
- Roy Siegelmann
- Department of Applied Mathematics and Statistics Johns Hopkins University, Baltimore, MD 21218-2680, USA.
| | - Hava T Siegelmann
- Manning College of Information and Computer Sciences University of Massachusetts, Amherst Amherst, MA 01003-9264, USA.
| |
Collapse
|
3
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
4
|
Escalante LE, Hose J, Howe H, Paulsen N, Place M, Gasch AP. Premature aging in aneuploid yeast is caused in part by aneuploidy-induced defects in Ribosome Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600216. [PMID: 38948718 PMCID: PMC11213126 DOI: 10.1101/2024.06.22.600216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.
Collapse
Affiliation(s)
- Leah E. Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Norah Paulsen
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
5
|
Zhang S, Wang R, Zhang L, Birchler JA, Sun L. Inverse and Proportional Trans Modulation of Gene Expression in Human Aneuploidies. Genes (Basel) 2024; 15:637. [PMID: 38790266 PMCID: PMC11121296 DOI: 10.3390/genes15050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Genomic imbalance in aneuploidy is often detrimental to organisms. To gain insight into the molecular basis of aneuploidies in humans, we analyzed transcriptome data from several autosomal and sex chromosome aneuploidies. The results showed that in human aneuploid cells, genes located on unvaried chromosomes are inversely or proportionally trans-modulated, while a subset of genes on the varied chromosomes are compensated. Less genome-wide modulation is found for sex chromosome aneuploidy compared with autosomal aneuploidy due to X inactivation and the retention of dosage sensitive regulators on both sex chromosomes to limit the effective dosage change. We also found that lncRNA and mRNA can have different responses to aneuploidy. Furthermore, we analyzed the relationship between dosage-sensitive transcription factors and their targets, which illustrated the modulations and indicates genomic imbalance is related to stoichiometric changes in components of gene regulatory complexes.In summary, this study demonstrates the existence of trans-acting effects and compensation mechanisms in human aneuploidies and contributes to our understanding of gene expression regulation in unbalanced genomes and disease states.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Maurya N, Shanmukhaiah C, Dhangar S, Madkaikar M, Vundinti BR. Comprehensive Study of Chromosomal Copy Number Variations and Genomic Variations Predicting Overall Survival in Myelodysplastic Syndromes. Oncology 2024; 102:897-906. [PMID: 38442690 DOI: 10.1159/000536446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/13/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) is a heterogeneous disease characterized by cytopenia, marrow dysplasia and has a propensity to develop into acute myeloid leukemia. The disease progression is majorly affected by genetic defects. However, about 40-50% of patients with MDS present with a normal karyotype and develop different courses of disease. Hence, there remains a room to advance the biological understanding and find molecular prognostic markers for cytogenetically normal MDS. METHODS We performed a high-resolution CGH + SNP array along with next-generation sequencing (NGS) of 77 primary diagnosed MDS patients, and also they were clinically followed up. RESULTS Our study revealed 82 clinically significant genomic lesions (losses/gains) in 49% of MDS patients. CGH + SNP array reduced the proportion of normal karyotype by 30%. SNP array in combination with NGS confirmed the biallelic loss of function of the TP53 gene (2/6), which is a clinically relevant biomarker and new genetic-based MDS entity, i.e., MDS-biTP53, as per the new WHO classification 2022. Genomic region 2p22.3 presented with frequent lesions and also with a more hazard ratio (2.7, 95% CI: 0.37-21) when analyzed by Kaplan-Meier survival analysis. CONCLUSION CGH + SNP array changed the cytogenetic and IPSS-R risk group in 18% and 13% of patients, respectively, with an improved prediction of prognosis. This study emphasizes the cytogenetic heterogeneity of MDS and highlights that abnormality with chromosome 2 may have a diagnostic and prognostic impact.
Collapse
Affiliation(s)
- Nehakumari Maurya
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| | | | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| | - Manisha Madkaikar
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|
7
|
Budrewicz J, Chavez SL. Insights into embryonic chromosomal instability: mechanisms of DNA elimination during mammalian preimplantation development. Front Cell Dev Biol 2024; 12:1344092. [PMID: 38374891 PMCID: PMC10875028 DOI: 10.3389/fcell.2024.1344092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Mammalian preimplantation embryos often contend with aneuploidy that arose either by the inheritance of meiotic errors from the gametes, or from mitotic mis-segregation events that occurred following fertilization. Regardless of the origin, mis-segregated chromosomes become encapsulated in micronuclei (MN) that are spatially isolated from the main nucleus. Much of our knowledge of MN formation comes from dividing somatic cells during tumorigenesis, but the error-prone cleavage-stage of early embryogenesis is fundamentally different. One unique aspect is that cellular fragmentation (CF), whereby small subcellular bodies pinch off embryonic blastomeres, is frequently observed. CF has been detected in both in vitro and in vivo-derived embryos and likely represents a response to chromosome mis-segregation since it only appears after MN formation. There are multiple fates for MN, including sequestration into CFs, but the molecular mechanism(s) by which this occurs remains unclear. Due to nuclear envelope rupture, the chromosomal material contained within MN and CFs becomes susceptible to double stranded-DNA breaks. Despite this damage, embryos may still progress to the blastocyst stage and exclude chromosome-containing CFs, as well as non-dividing aneuploid blastomeres, from participating in further development. Whether these are attempts to rectify MN formation or eliminate embryos with poor implantation potential is unknown and this review will discuss the potential implications of DNA removal by CF/blastomere exclusion. We will also extrapolate what is known about the intracellular pathways mediating MN formation and rupture in somatic cells to preimplantation embryogenesis and how nuclear budding and DNA release into the cytoplasm may impact overall development.
Collapse
Affiliation(s)
- Jacqueline Budrewicz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
8
|
Hawley LE, Stringer M, Deal AJ, Folz A, Goodlett CR, Roper RJ. Sex-specific developmental alterations in DYRK1A expression in the brain of a Down syndrome mouse model. Neurobiol Dis 2024; 190:106359. [PMID: 37992782 PMCID: PMC10843801 DOI: 10.1016/j.nbd.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.
Collapse
Affiliation(s)
- Laura E Hawley
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Megan Stringer
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Abigail J Deal
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Andrew Folz
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Charles R Goodlett
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Bravo‐Estupiñan DM, Aguilar‐Guerrero K, Quirós S, Acón M, Marín‐Müller C, Ibáñez‐Hernández M, Mora‐Rodríguez RA. Gene dosage compensation: Origins, criteria to identify compensated genes, and mechanisms including sensor loops as an emerging systems-level property in cancer. Cancer Med 2023; 12:22130-22155. [PMID: 37987212 PMCID: PMC10757140 DOI: 10.1002/cam4.6719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The gene dosage compensation hypothesis presents a mechanism through which the expression of certain genes is modulated to compensate for differences in the dose of genes when additional chromosomes are present. It is one of the means through which cancer cells actively cope with the potential damaging effects of aneuploidy, a hallmark of most cancers. Dosage compensation arises through several processes, including downregulation or overexpression of specific genes and the relocation of dosage-sensitive genes. In cancer, a majority of compensated genes are generally thought to be regulated at the translational or post-translational level, and include the basic components of a compensation loop, including sensors of gene dosage and modulators of gene expression. Post-translational regulation is mostly undertaken by a general degradation or aggregation of remaining protein subunits of macromolecular complexes. An increasingly important role has also been observed for transcriptional level regulation. This article reviews the process of targeted gene dosage compensation in cancer and other biological conditions, along with the mechanisms by which cells regulate specific genes to restore cellular homeostasis. These mechanisms represent potential targets for the inhibition of dosage compensation of specific genes in aneuploid cancers. This article critically examines the process of targeted gene dosage compensation in cancer and other biological contexts, alongside the criteria for identifying genes subject to dosage compensation and the intricate mechanisms by which cells orchestrate the regulation of specific genes to reinstate cellular homeostasis. Ultimately, our aim is to gain a comprehensive understanding of the intricate nature of a systems-level property. This property hinges upon the kinetic parameters of regulatory motifs, which we have termed "gene dosage sensor loops." These loops have the potential to operate at both the transcriptional and translational levels, thus emerging as promising candidates for the inhibition of dosage compensation in specific genes. Additionally, they represent novel and highly specific therapeutic targets in the context of aneuploid cancer.
Collapse
Affiliation(s)
- Diana M. Bravo‐Estupiñan
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Programa de Doctorado en Ciencias, Sistema de Estudios de Posgrado (SEP)Universidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Karol Aguilar‐Guerrero
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Maestría académica en Microbiología, Programa de Posgrado en Microbiología, Parasitología, Química Clínica e InmunologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Steve Quirós
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Man‐Sai Acón
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
| | - Christian Marín‐Müller
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Miguel Ibáñez‐Hernández
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
| | - Rodrigo A. Mora‐Rodríguez
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| |
Collapse
|
10
|
Hunter S, Hendrix J, Freeman J, Dowell RD, Allen MA. Transcription dosage compensation does not occur in Down syndrome. BMC Biol 2023; 21:228. [PMID: 37946204 PMCID: PMC10636926 DOI: 10.1186/s12915-023-01700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The increase in DNA copy number in Down syndrome (DS; caused by trisomy 21) has led to the DNA dosage hypothesis, which posits that the level of gene expression is proportional to the gene's DNA copy number. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back towards typical expression levels (1.0×). In contrast, other reports suggest that dosage compensation is not a common mechanism of gene regulation in trisomy 21, providing support to the DNA dosage hypothesis. RESULTS In our work, we use both simulated and real data to dissect the elements of differential expression analysis that can lead to the appearance of dosage compensation, even when compensation is demonstrably absent. Using lymphoblastoid cell lines derived from a family with an individual with Down syndrome, we demonstrate that dosage compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. Furthermore, we link the limited apparent dosage compensation to expected allelic variation in transcription levels. CONCLUSIONS Transcription dosage compensation does not occur in Down syndrome. Simulated data containing no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.
Collapse
Affiliation(s)
- Samuel Hunter
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
| | - Jo Hendrix
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
- Computational Bioscience, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Justin Freeman
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Robin D Dowell
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
- Linda Crnic Institute for Down Syndrome, 80045, Aurora, USA
- Crnic Boulder Branch, BioFrontiers, Boulder, 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA.
- Linda Crnic Institute for Down Syndrome, 80045, Aurora, USA.
- Crnic Boulder Branch, BioFrontiers, Boulder, 80309, USA.
| |
Collapse
|
11
|
Torres EM. Consequences of gaining an extra chromosome. Chromosome Res 2023; 31:24. [PMID: 37620607 PMCID: PMC10449985 DOI: 10.1007/s10577-023-09732-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Mistakes in chromosome segregation leading to aneuploidy are the primary cause of miscarriages in humans. Excluding sex chromosomes, viable aneuploidies in humans include trisomies of chromosomes 21, 18, or 13, which cause Down, Edwards, or Patau syndromes, respectively. While individuals with trisomy 18 or 13 die soon after birth, people with Down syndrome live to adulthood but have intellectual disabilities and are prone to multiple diseases. At the cellular level, mistakes in the segregation of a single chromosome leading to a cell losing a chromosome are lethal. In contrast, the cell that gains a chromosome can survive. Several studies support the hypothesis that gaining an extra copy of a chromosome causes gene-specific phenotypes and phenotypes independent of the identity of the genes encoded within that chromosome. The latter, referred to as aneuploidy-associated phenotypes, are the focus of this review. Among the conserved aneuploidy-associated phenotypes observed in yeast and human cells are lower viability, increased gene expression, increased protein synthesis and turnover, abnormal nuclear morphology, and altered metabolism. Notably, abnormal nuclear morphology of aneuploid cells is associated with increased metabolic demand for de novo synthesis of sphingolipids. These findings reveal important insights into the possible pathological role of aneuploidy in Down syndrome. Despite the adverse effects on cell physiology, aneuploidy is a hallmark of cancer cells. Understanding how aneuploidy affects cell physiology can reveal insights into the selective pressure that aneuploid cancer cells must overcome to support unlimited proliferation.
Collapse
Affiliation(s)
- Eduardo M Torres
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
12
|
Avecilla G, Spealman P, Matthews J, Caudal E, Schacherer J, Gresham D. Copy number variation alters local and global mutational tolerance. Genome Res 2023; 33:1340-1353. [PMID: 37652668 PMCID: PMC10547251 DOI: 10.1101/gr.277625.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Pieter Spealman
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Julia Matthews
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Elodie Caudal
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| | - David Gresham
- Department of Biology, New York University, New York, New York 10003, USA;
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
13
|
Wang F, McCulloh DH, Chan K, Wiltshire A, McCaffrey C, Grifo JA, Keefe DL. The Landscape of Telomere Length and Telomerase in Human Embryos at Blastocyst Stage. Genes (Basel) 2023; 14:1200. [PMID: 37372380 DOI: 10.3390/genes14061200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The telomere length of human blastocysts exceeds that of oocytes and telomerase activity increases after zygotic activation, peaking at the blastocyst stage. Yet, it is unknown whether aneuploid human embryos at the blastocyst stage exhibit a different profile of telomere length, telomerase gene expression, and telomerase activity compared to euploid embryos. In present study, 154 cryopreserved human blastocysts, donated by consenting patients, were thawed and assayed for telomere length, telomerase gene expression, and telomerase activity using real-time PCR (qPCR) and immunofluorescence (IF) staining. Aneuploid blastocysts showed longer telomeres, higher telomerase reverse transcriptase (TERT) mRNA expression, and lower telomerase activity compared to euploid blastocysts. The TERT protein was found in all tested embryos via IF staining with anti-hTERT antibody, regardless of ploidy status. Moreover, telomere length or telomerase gene expression did not differ in aneuploid blastocysts between chromosomal gain or loss. Our data demonstrate that telomerase is activated and telomeres are maintained in all human blastocyst stage embryos. The robust telomerase gene expression and telomere maintenance, even in aneuploid human blastocysts, may explain why extended in vitro culture alone is insufficient to cull out aneuploid embryos during in vitro fertilization.
Collapse
Affiliation(s)
- Fang Wang
- NYU Langone Fertility Center, New York, NY 10022, USA
- Department of Obstetrics and Gynecology, NYU Grossman, School of Medicine, New York, NY 10016, USA
| | | | - Kasey Chan
- Department of Obstetrics and Gynecology, NYU Grossman, School of Medicine, New York, NY 10016, USA
| | | | | | - James A Grifo
- NYU Langone Fertility Center, New York, NY 10022, USA
| | - David L Keefe
- NYU Langone Fertility Center, New York, NY 10022, USA
- Department of Obstetrics and Gynecology, NYU Grossman, School of Medicine, New York, NY 10016, USA
| |
Collapse
|
14
|
Liu S, Akula N, Reardon P, Russ J, Torres E, Clasen L, Blumenthal J, Lalonde F, McMahon F, Szele F, Disteche C, Cader M, Raznahan A. Aneuploidy effects on human gene expression across three cell types. Proc Natl Acad Sci U S A 2023; 120:e2218478120. [PMID: 37192167 PMCID: PMC10214149 DOI: 10.1073/pnas.2218478120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/15/2023] [Indexed: 05/18/2023] Open
Abstract
Aneuploidy syndromes impact multiple organ systems but understanding of tissue-specific aneuploidy effects remains limited-especially for the comparison between peripheral tissues and relatively inaccessible tissues like brain. Here, we address this gap in knowledge by studying the transcriptomic effects of chromosome X, Y, and 21 aneuploidies in lymphoblastoid cell lines, fibroblasts and iPSC-derived neuronal cells (LCLs, FCL, and iNs, respectively). We root our analyses in sex chromosome aneuploidies, which offer a uniquely wide karyotype range for dosage effect analysis. We first harness a large LCL RNA-seq dataset from 197 individuals with one of 6 sex chromosome dosages (SCDs: XX, XXX, XY, XXY, XYY, and XXYY) to i) validate theoretical models of SCD sensitivity and ii) define an expanded set of 41 genes that show obligate dosage sensitivity to SCD and are all in cis (i.e., reside on the X or Y chromosome). We then use multiple complementary analyses to show that cis effects of SCD in LCLs are preserved in both FCLs (n = 32) and iNs (n = 24), whereas trans effects (i.e., those on autosomal gene expression) are mostly not preserved. Analysis of additional datasets confirms that the greater cross-cell type reproducibility of cis vs. trans effects is also seen in trisomy 21 cell lines. These findings i) expand our understanding of X, Y, and 21 chromosome dosage effects on human gene expression and ii) suggest that LCLs may provide a good model system for understanding cis effects of aneuploidy in harder-to-access cell types.
Collapse
Affiliation(s)
- Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Nirmala Akula
- Section on the Genetic Basis of Mood and Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Paul K. Reardon
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Jill Russ
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
- Section on the Genetic Basis of Mood and Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Liv S. Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Francois Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Francis J. McMahon
- Section on the Genetic Basis of Mood and Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| | - Francis Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, OxfordOX1 3PT, United Kingdom
| | - Christine M. Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98195
- Department of Medicine, University of Washington, Seattle, WA98195
| | - M. Zameel Cader
- Nuffield Department of Clinical Neurosciences, Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD20892
| |
Collapse
|
15
|
Dhital B, Rodriguez-Bravo V. Mechanisms of chromosomal instability (CIN) tolerance in aggressive tumors: surviving the genomic chaos. Chromosome Res 2023; 31:15. [PMID: 37058263 PMCID: PMC10104937 DOI: 10.1007/s10577-023-09724-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Chromosomal instability (CIN) is a pervasive feature of human cancers involved in tumor initiation and progression and which is found elevated in metastatic stages. CIN can provide survival and adaptation advantages to human cancers. However, too much of a good thing may come at a high cost for tumor cells as excessive degree of CIN-induced chromosomal aberrations can be detrimental for cancer cell survival and proliferation. Thus, aggressive tumors adapt to cope with ongoing CIN and most likely develop unique susceptibilities that can be their Achilles' heel. Determining the differences between the tumor-promoting and tumor-suppressing effects of CIN at the molecular level has become one of the most exciting and challenging aspects in cancer biology. In this review, we summarized the state of knowledge regarding the mechanisms reported to contribute to the adaptation and perpetuation of aggressive tumor cells carrying CIN. The use of genomics, molecular biology, and imaging techniques is significantly enhancing the understanding of the intricate mechanisms involved in the generation of and adaptation to CIN in experimental models and patients, which were not possible to observe decades ago. The current and future research opportunities provided by these advanced techniques will facilitate the repositioning of CIN exploitation as a feasible therapeutic opportunity and valuable biomarker for several types of human cancers.
Collapse
Affiliation(s)
- Brittiny Dhital
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Thomas Jefferson University Graduate School, Philadelphia, PA, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Veronica Rodriguez-Bravo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Huang Y, Liao J, Wu S, Ye Y, Zeng H, Liang F, Yin X, Jiang Y, Ouyang N, Han P, Huang X. Upregulated YTHDF1 associates with tumor immune microenvironment in head and neck squamous cell carcinomas. Transl Cancer Res 2022; 11:3986-3999. [PMID: 36523307 PMCID: PMC9745380 DOI: 10.21037/tcr-22-503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/25/2022] [Indexed: 02/19/2024]
Abstract
BACKGROUND The nature of the tumor immune microenvironment (TME) is essential for the head and neck squamous cell carcinomas (HNSCC) initiation, prognosis, and response to immunotherapy. However, its gene regulatory network remains to be elucidated. METHODS To identify N6-methyladenosine (m6A) regulators that are involved in regulating the HNSCC TME, a computational screen was applied to The Cancer Genome Atlas (TCGA) HNSCC patient samples. The effects of mutation, copy number variation (CNV), and transcriptional regulation on YTHDF1 expression were analyzed. We analyzed the TME infiltration, cancer-immunity cycle activities, and YTHDF1-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS Among the 24 m6A regulators, 3 factors (YTHDF1, ELAVL1, and METTL3) were highly correlated with TME infiltration. As the top candidate, YTHDF1 was up-regulated and amplified in HNSCC. YTHDF1 promoter gains active histone marks and high chromatin accessibility, which might be transcriptionally activated by SOX2 and TP63. Moreover, YTHDF1 expression significantly associates with tumor malignant phenotype in HNSCC, which has a positive correlation with CD4+ T cells and a negative correlation with CD8+ T cells infiltration. Specifically, YTHDF1 expression is negatively associated with the cancer-immunity cycle and immune checkpoint inhibitors. In terms of the underlying biological mechanisms, YTHDF1 may interact with YTHDF2/3 to regulate several vital immune-related pathways. CONCLUSIONS We identify YTHDF1 associated with TME and elucidate an underlying mechanism of immune escape in HNSCC, which might be used as a predictive marker in guiding immunotherapy.
Collapse
Affiliation(s)
- Yongsheng Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sangqing Wu
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuchu Ye
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haicang Zeng
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Faya Liang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Ragipani B, Albritton SE, Morao AK, Mesquita D, Kramer M, Ercan S. Increased gene dosage and mRNA expression from chromosomal duplications in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac151. [PMID: 35731207 PMCID: PMC9339279 DOI: 10.1093/g3journal/jkac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.
Collapse
Affiliation(s)
- Bhavana Ragipani
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Diogo Mesquita
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Maxwell Kramer
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
18
|
Senger G, Santaguida S, Schaefer MH. Regulation of protein complex partners as a compensatory mechanism in aneuploid tumors. eLife 2022; 11:e75526. [PMID: 35575458 PMCID: PMC9135399 DOI: 10.7554/elife.75526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Aneuploidy, a state of chromosome imbalance, is a hallmark of human tumors, but its role in cancer still remains to be fully elucidated. To understand the consequences of whole-chromosome-level aneuploidies on the proteome, we integrated aneuploidy, transcriptomic, and proteomic data from hundreds of The Cancer Genome Atlas/Clinical Proteomic Tumor Analysis Consortium tumor samples. We found a surprisingly large number of expression changes happened on other, non-aneuploid chromosomes. Moreover, we identified an association between those changes and co-complex members of proteins from aneuploid chromosomes. This co-abundance association is tightly regulated for aggregation-prone aneuploid proteins and those involved in a smaller number of complexes. On the other hand, we observed that complexes of the cellular core machinery are under functional selection to maintain their stoichiometric balance in aneuploid tumors. Ultimately, we provide evidence that those compensatory and functional maintenance mechanisms are established through post-translational control, and that the degree of success of a tumor to deal with aneuploidy-induced stoichiometric imbalance impacts the activation of cellular protein degradation programs and patient survival.
Collapse
Affiliation(s)
- Gökçe Senger
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
| | - Stefano Santaguida
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato-Oncology, University of MilanMilanItaly
| | - Martin H Schaefer
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
19
|
Acón M, Geiß C, Torres-Calvo J, Bravo-Estupiñan D, Oviedo G, Arias-Arias JL, Rojas-Matey LA, Edwin B, Vásquez-Vargas G, Oses-Vargas Y, Guevara-Coto J, Segura-Castillo A, Siles-Canales F, Quirós-Barrantes S, Régnier-Vigouroux A, Mendes P, Mora-Rodríguez R. MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer. iScience 2021; 24:103407. [PMID: 34877484 PMCID: PMC8627999 DOI: 10.1016/j.isci.2021.103407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs involved and downregulation of endogenous MYC. In addition, MYC overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative correlation of MYC dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.
Collapse
Affiliation(s)
- ManSai Acón
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Carsten Geiß
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jorge Torres-Calvo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Diana Bravo-Estupiñan
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Ph.D. Program in Sciences, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Guillermo Oviedo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Jorge L Arias-Arias
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Luis A Rojas-Matey
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Baez Edwin
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Gloriana Vásquez-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Yendry Oses-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - José Guevara-Coto
- School of Computer Sciences and Informatics (ECCI), University of Costa Rica, San Jose Costa Rica, 11501-2060 San José, Costa Rica
| | - Andrés Segura-Castillo
- Laboratorio de Investigación e Innovación Tecnológica, Universidad Estatal a Distancia (UNED), 474-2050 San José, Costa Rica
| | - Francisco Siles-Canales
- Pattern Recognition and Intelligent Systems Laboratory, Department of Electrical Engineering, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Steve Quirós-Barrantes
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Pedro Mendes
- Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030 CT, USA
| | - Rodrigo Mora-Rodríguez
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
20
|
Basilicata MF, Keller Valsecchi CI. The good, the bad, and the ugly: Evolutionary and pathological aspects of gene dosage alterations. PLoS Genet 2021; 17:e1009906. [PMID: 34882671 PMCID: PMC8659298 DOI: 10.1371/journal.pgen.1009906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diploid organisms contain a maternal and a paternal genome complement that is thought to provide robustness and allow developmental progression despite genetic perturbations that occur in heterozygosity. However, changes affecting gene dosage from the chromosome down to the individual gene level possess a significant pathological potential and can lead to developmental disorders (DDs). This indicates that expression from a balanced gene complement is highly relevant for proper cellular and organismal function in eukaryotes. Paradoxically, gene and whole chromosome duplications are a principal driver of evolution, while heteromorphic sex chromosomes (XY and ZW) are naturally occurring aneuploidies important for sex determination. Here, we provide an overview of the biology of gene dosage at the crossroads between evolutionary benefit and pathogenicity during disease. We describe the buffering mechanisms and cellular responses to alterations, which could provide a common ground for the understanding of DDs caused by copy number alterations.
Collapse
|
21
|
Yang F, Gritsenko V, Slor Futterman Y, Gao L, Zhen C, Lu H, Jiang YY, Berman J. Tunicamycin Potentiates Antifungal Drug Tolerance via Aneuploidy in Candida albicans. mBio 2021; 12:e0227221. [PMID: 34465026 PMCID: PMC8406271 DOI: 10.1128/mbio.02272-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
How cells exposed to one stress are later able to better survive other types of stress is not well understood. In eukaryotic organisms, physiological and pathological stresses can disturb endoplasmic reticulum (ER) function, resulting in "ER stress." Here, we found that exposure to tunicamycin, an inducer of ER stress, resulted in the acquisition of a specific aneuploidy, chromosome 2 trisomy (Chr2x3), in Candida albicans. Importantly, the resulting aneuploidy also conferred cross-tolerance to caspofungin, a first-line echinocandin antifungal, as well as to hydroxyurea, a common chemotherapeutic agent. Exposure to a range of tunicamycin concentrations induced similar ER stress responses. Extra copies of one Chr2 gene, MKK2, affected both tunicamycin and caspofungin tolerance, while at least 3 genes on chromosome 2 (ALG7, RTA2, and RTA3) affected only tunicamycin and not caspofungin responses. Other Chr2 genes (RNR1 and RNR21) affected hydroxyurea tolerance but neither tunicamycin nor caspofungin tolerance. Deletion of components of the protein kinase C (PKC) or calcineurin pathways affected tolerance to both tunicamycin and caspofungin, supporting the idea that the ER stress response and echinocandin tolerance are regulated by overlapping stress response pathways. Thus, antifungal drug tolerance can arise rapidly via ER stress-induced aneuploidy. IMPORTANCE Candida albicans is a prevalent human fungal commensal and also a pathogen that causes life-threatening systemic infections. Treatment failures are frequent because few therapeutic antifungal drug classes are available and because drug resistance and tolerance limit drug efficacy. We found that C. albicans rapidly overcomes the cellular stress induced by the drug tunicamycin by duplicating chromosome 2. Also, chromosome 2 duplication confers tolerance not only to tunicamycin but also to the following two unrelated drugs: caspofungin, an antifungal drug, and hydroxyurea, a chemotherapeutic. Cross tolerance to the three drugs involves different sets of genes, although some genetic pathways affect the tolerance to two of these three drugs. This work highlights a serious concern, namely, that changes in whole chromosome copy number can occur in response to one type of stress, and yet, they may facilitate the emergence of tolerance to multiple drugs, including the few antifungal drug classes available to treat Candida infections.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladimir Gritsenko
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Slor Futterman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lu Gao
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Abstract
An abnormal number of chromosomes or aneuploidy accounts for most spontaneous abortions, as missegregation of a single chromosome during development is often lethal. Only individuals with trisomy 21, which causes Down syndrome, can live to adulthood but show cognitive disabilities, increased risk for leukemias, autoimmune disorders, and clinical symptoms associated with premature aging. The mechanisms by which aneuploidy affects cellular function to cause Down syndrome are not understood. Our studies revealed that aneuploidy causes several defects in cells from individuals with Down syndrome. These include increased gene and protein expression, lower viability, and increased dependency on serine to proliferate. Our studies establish a critical role of aneuploidy, independent of triplicated gene identity, in driving cellular defects associated with trisomy 21. An extra copy of chromosome 21 causes Down syndrome, the most common genetic disease in humans. The mechanisms contributing to aneuploidy-related pathologies in this syndrome, independent of the identity of the triplicated genes, are not well defined. To characterize aneuploidy-driven phenotypes in trisomy 21 cells, we performed global transcriptome, proteome, and phenotypic analyses of primary human fibroblasts from individuals with Patau (trisomy 13), Edwards (trisomy 18), or Down syndromes. On average, mRNA and protein levels were increased by 1.5-fold in all trisomies, with a subset of proteins enriched for subunits of macromolecular complexes showing signs of posttranscriptional regulation. These results support the lack of evidence for widespread dosage compensation or dysregulation of chromosomal domains in human autosomes. Furthermore, we show that several aneuploidy-associated phenotypes are present in trisomy 21 cells, including lower viability and increased dependency on serine-driven lipid synthesis. Our studies establish a critical role of aneuploidy, independent of triplicated gene identity, in driving cellular defects associated with trisomy 21.
Collapse
|
23
|
Tsvetkova M, Levkova M, Tsvetkova S, Hachmeriyan M, Kovachev E, Angelova L. Double aneuploidy 48,ХХХ,+21 of a Bulgarian newborn with Down phenotype: a case report. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Aneuploidy is one of the most important chromosomal aberrations, which involves an abnormal number of the chromosomes. Trisomy 21 (Down syndrome) and numerical aberrations of the sex chromosomes have a relatively high prevalence in the general population. However, the patients usually have one of the above genetic disorders and combined cases of two different trisomies are unusual.
Case presentation
We report a case of a patient with double aneuploidy—a combination of trisomy 21 and triple X syndrome. The proband had typical features of Down syndrome and did not manifest any symptoms of polysomy X. The patient had hypotonia, a cardiac defect, and an annular pancreas. A clinical diagnosis of Down syndrome was established, but the cytogenetic analysis found two free full trisomies—trisomy 21 (Down syndrome) and triple X.
Conclusion
Cases of double aneuploidy, combining trisomy 21 and trisomy of a sex chromosome, could be challenging because the patients manifest only symptoms, typical for Down syndrome. The discovery of a second complete free trisomy X in our case was an incidental finding. This illustrates the importance of the cytogenetic analysis, despite the evident phenotype of trisomy 21.
Collapse
|
24
|
Huang Y, Lin L, Shen Z, Li Y, Cao H, Peng L, Qiu Y, Cheng X, Meng M, Lu D, Yin D. CEBPG promotes esophageal squamous cell carcinoma progression by enhancing PI3K-AKT signaling. Am J Cancer Res 2020; 10:3328-3344. [PMID: 33163273 PMCID: PMC7642652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023] Open
Abstract
CCAAT/enhancer binding proteins (CEBPs, including CEBPA, CEBPB, CEBPD, CEBPE, CEBPG, and CEBPZ) play critical roles in a variety of physiological and pathological processes. However, the molecular characteristics and biological significance of CEBPs in esophageal squamous cell carcinoma (ESCC) have rarely been reported. Here, we show that most of the CEBPs are upregulated and accompanied with copy number amplifications in ESCC. Of note, high CEBPG expression is regulated by the ESCC specific transcription factor TP63 and serves as a prognostic factor for poor survival in ESCC patients. Functionally, CEBPG significantly promotes the proliferation and migration of ESCC cells both in vitro and in vivo. Mechanistically, CEBPG activates the PI3K-AKT signaling pathway through directly binding to distal enhancers and/or promoters of genes involved in this pathway, including genes of CCND1, MYC, CDK2, etc. These findings provide new insights into CEBPs dysregulation in ESCC and elucidate a crucial role for CEBPG in the progression of ESCC, highlighting its potential therapeutic value for ESCC treatment.
Collapse
Affiliation(s)
- Yongsheng Huang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Lehang Lin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Zhuojian Shen
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Yu Li
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Haotian Cao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Li Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Yuntan Qiu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Xu Cheng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Meng Meng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Daning Lu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Dong Yin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| |
Collapse
|