1
|
Yuan Z, Fang K, Miao X, Zhang Y, Gu M, Xu W, Li H, Zhu D, Zhou J, Sun J, Gu X. Investigating the mechanisms by which low NAT1 expression in tumor cells contributes to chemo-resistance in colorectal cancer. Clin Epigenetics 2025; 17:77. [PMID: 40329330 PMCID: PMC12053866 DOI: 10.1186/s13148-025-01882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND In the therapeutic landscape of colorectal cancer (CRC), chemo-resistance poses a significant and prevalent obstacle that complicates treatment efficacy and patient outcomes. Over time, cancer cells can develop mechanisms to resist the toxic effects of chemo-therapy drugs, leading to reduced sensitivity or complete insensitivity to these agents. The enzyme Arylamine N-acetyltransferase 1 (NAT1) has emerged as a promising target in strategies aimed at overcoming this challenge. NAT1 is involved in the metabolism of various xenobiotics, including some chemotherapeutic agents. Understanding the complex interactions between NAT1 and chemotherapeutic agents, as well as the molecular mechanisms underlying chemo-resistance, is crucial for the development of novel therapeutic approaches. OBJECTIVE This study aimed to assess the role of NAT1 in mediating chemo-resistance in CRC, with the goal of identifying novel strategies to overcome this clinical challenge. METHODS We conducted a comprehensive analysis using various bioinformatics tools and in vitro experiments to evaluate the effect of NAT1 expression on chemo-resistance in CRC. Furthermore, we employed a multi-omics approach, including metabolomics and next-generation sequencing, to uncover the mechanisms by which NAT1 influences chemo-resistance. Additionally, we utilized single-cell RNA sequencing (scRNA-seq), the Cellchat assay, and western blot to explore the intercellular communication between tumor and endothelial cells in the context of anti-PD-1 therapy and NAT1's impact. RESULTS Our study reveals that decreased NAT1 expression in CRC tumor tissues, relative to adjacent normal tissues, is significantly associated with a poorer patient prognosis. Experimental data indicate that silencing NAT1 in CaCO2 and HCT116 cell lines results in heightened resistance to five chemotherapeutic agents: vinblastine, docetaxel, gemcitabine, vincristine, and daporinad. Additionally, NAT1 silencing increases the proportion of LGR5+ cells, which are known to be chemo-resistant. Our research further revealed that exposure to these five drugs induces a decrease in NAT1 expression within CRC cells. Mechanistic insights show that NAT1 knockdown triggers a metabolic reprogramming in CRC cells, shifting from oxidative phosphorylation and the tricarboxylic acid cycle to a preference for glycolysis. Furthermore, silencing of NAT1 in CRC cells leads to an up-regulation of VEGFA expression. Notably, the application of anti-PD-1 therapy was demonstrated to significantly disrupt the VEGFA-VEGFR axis signaling, an interaction critical between CRC cells and endothelial cells. This discovery underscores the potential of targeting the VEGFA pathway as a therapeutic approach to mitigate the adverse effects associated with NAT1 down-regulation in CRC. CONCLUSION Our study underscores the multifaceted role of NAT1 in modulating chemo-sensitivity, cellular metabolism, and angiogenesis in CRC. These findings position NAT1 as a compelling candidate for a biomarker and a potential therapeutic target, offering new avenues for CRC management.
Collapse
Affiliation(s)
- Zheng Yuan
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Kai Fang
- College of Basic Medical Sciences, Suzhou University, Suzhou, China
| | - Xinsheng Miao
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Yan Zhang
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Menghui Gu
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Wei Xu
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Hao Li
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Dawei Zhu
- Nanjing Medical University, Suzhou, China
| | - Jiahui Zhou
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China.
| | - Jian Sun
- Affiliated Suzhou Hospital of Nanjing Medical University, Center for Reproduction and Genetics of Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China.
| | - Xinhua Gu
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
2
|
Yuan Z, Fang K, Miao X, Zhang Y, Gu M, Xu W, Li H, Zhu D, Zhou J, Sun J, Gu X. Investigating the mechanisms by which low NAT1 expression in tumor cells contributes to chemo-resistance in colorectal cancer. Clin Epigenetics 2025; 17:77. [DOI: doi.org/10.1186/s13148-025-01882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
|
3
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Brisset M, Mehlen P, Meurette O, Hollande F. Notch receptor/ligand diversity: contribution to colorectal cancer stem cell heterogeneity. Front Cell Dev Biol 2023; 11:1231416. [PMID: 37860822 PMCID: PMC10582728 DOI: 10.3389/fcell.2023.1231416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Patrick Mehlen
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Olivier Meurette
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
6
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
7
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Nguyen A, Kim AH, Kang MK, Park NH, Kim RH, Kim Y, Shin KH. Chronic Alcohol Exposure Promotes Cancer Stemness and Glycolysis in Oral/Oropharyngeal Squamous Cell Carcinoma Cell Lines by Activating NFAT Signaling. Int J Mol Sci 2022; 23:ijms23179779. [PMID: 36077186 PMCID: PMC9456298 DOI: 10.3390/ijms23179779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.
Collapse
Affiliation(s)
- Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Anna H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K. Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Yong Kim
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Broad Stem Cell Research Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| |
Collapse
|
9
|
Xu L, Zhang J, Sun J, Hou K, Yang C, Guo Y, Liu X, Kalvakolanu DV, Zhang L, Guo B. Epigenetic regulation of cancer stem cells: Shedding light on the refractory/relapsed cancers. Biochem Pharmacol 2022; 202:115110. [PMID: 35640714 DOI: 10.1016/j.bcp.2022.115110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
The resistance to drugs, ability to enter quiescence and generate heterogeneous cancer cells, and enhancement of aggressiveness, make cancer stem cells (CSCs) integral part of tumor progression, metastasis and recurrence after treatment. The epigenetic modification machinery is crucial for the viability of CSCs and evolution of aggressive forms of a tumor. These mechanisms can also be targeted by specific drugs, providing a promising approach for blocking CSCs. In this review, we summarize the epigenetic regulatory mechanisms in CSCs which contribute to drug resistance, quiescence and tumor heterogeneity. We also discuss the drugs that can potentially target these processes and data from experimental and clinical studies.
Collapse
Affiliation(s)
- Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jinghua Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jicheng Sun
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Kunlin Hou
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Chenxin Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Ying Guo
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Ling Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
10
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
11
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
12
|
Zhang Z, Gao S, Xu Y, Zhao C. Regulation of ABCG2 expression by Wnt5a through FZD7 in human pancreatic cancer cells. Mol Med Rep 2020; 23:52. [PMID: 33200805 PMCID: PMC7705994 DOI: 10.3892/mmr.2020.11690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
ATP-binding cassette subfamily G member 2 (ABCG2), a member of the ABC transporter superfamily, has been implicated in the development of chemotherapeutic drug resistance in cancer cells. However, the regulators of ABCG2 expression and their roles in anticancer drug resistance have not been fully characterized, especially in the context of pancreatic cancer. The aim of the present study was to investigate whether ABCG2 contributed to drug resistance in pancreatic cancer and to elucidate its regulatory molecular pathways. Using immunohistochemical analysis of pancreatic ductal adenocarcinoma and adjacent healthy tissue samples, the present study identified a positive correlation between ABCG2 and Wnt5a, a member of the Wnt family of secreted proteins. It was also determined that treatment with recombinant human Wnt5a protein could upregulate the expression of ABCG2 in the Capan-2 human pancreatic cancer cell line and enhance its resistance to gemcitabine. The upregulation of ABCG2 by Wnt5a was inhibited by small interfering RNA silencing of Frizzled class receptor 7 (FZD7) or by FZD7 inhibitors. Moreover, both FZD7 silencing or inhibition of its function attenuated gemcitabine resistance induced by Wnt5a in Capan-2 cells. Therefore, the present findings suggested that Wnt5a and FZD7 acted as upstream regulators of ABCG2 expression and that FZD7 may be an essential factor for Wnt5a-induced gemcitabine resistance in pancreatic cancer cells.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Gao
- Department of Bioengineering, College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chenghai Zhao
- Department of Pathophysiology, Basic Medical College, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
13
|
Kim D, Park S, Yoo H, Park S, Kim J, Yum K, Kim K, Kim H. Overcoming anticancer resistance by photodynamic therapy-related efflux pump deactivation and ultrasound-mediated improved drug delivery efficiency. NANO CONVERGENCE 2020; 7:30. [PMID: 32897469 PMCID: PMC7479087 DOI: 10.1186/s40580-020-00241-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/29/2020] [Indexed: 05/26/2023]
Abstract
One of the major obstacles to successful chemotherapy is multi-drug resistance (MDR). A multi-drug resistant cancerous cell abnormally overexpresses membrane transporters that pump anticancer drugs out of the cell, resulting in low anticancer drug delivery efficiency. To overcome the limitation, many attempts have been performed to inhibit the abilities of efflux receptors chemically or genetically or to increase the delivery efficiency of anticancer drugs. However, the results have not yet been satisfactory. In this study, we developed nanoparticle-microbubble complexes (DOX-NPs/Ce6-MBs) by conjugating doxorubicin loaded human serum albumin nanoparticles (DOX-NPs) onto the surface of Chlorin e6 encapsulated microbubbles (Ce6-MBs) in order to maximize anticancer efficiency by overcoming MDR. Under the ultrasound irradiation, DOX-NPs and Ce6 encapsulating self-assembled liposomes or micelles were effectively delivered into the cells due to the sonoporation effect caused by the microbubble cavitation. At the same time, reactive oxygen (ROS) generated from intracellularly delivered Ce6 by laser irradiation arrested the activity of ABCG2 efflux receptor overexpressed in doxorubicin-resistant breast cancer cells (MCF-7/ADR), resulting in increased the chemotherapy efficacy. In addition, the total number of side population cells that exhibit the properties of cancer stem-like cells were also reduced by the combination of photodynamic therapy and chemotherapy. In conclusion, DOX-NPs/Ce6-MBs will provide a platform for simultaneously overcoming MDR and increasing drug delivery and therefore, treatment efficiency, under ultrasound irradiation.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Suhyun Park
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Hongkeun Yoo
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Suhyeon Park
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jeewon Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kyuhee Yum
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
14
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer. Front Oncol 2020; 10:992. [PMID: 32670880 PMCID: PMC7326773 DOI: 10.3389/fonc.2020.00992] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
The development of resistance to anti-cancer therapeutics remains one of the core issues preventing the improvement of survival rates in cancer. Therapy resistance can arise in a multitude of ways, including the accumulation of epigenetic alterations in cancer cells. By remodeling DNA methylation patterns or modifying histone proteins during oncogenesis, cancer cells reorient their epigenomic landscapes in order to aggressively resist anti-cancer therapy. To combat these chemoresistant effects, epigenetic modifiers such as DNA hypomethylating agents, histone deacetylase inhibitors, histone demethylase inhibitors, along with others have been used. While these modifiers have achieved moderate success when used either alone or in combination with one another, the most positive outcomes were achieved when they were used in conjunction with conventional anti-cancer therapies. Epigenome modifying drugs have succeeded in sensitizing cancer cells to anti-cancer therapy via a variety of mechanisms: disrupting pro-survival/anti-apoptotic signaling, restoring cell cycle control and preventing DNA damage repair, suppressing immune system evasion, regulating altered metabolism, disengaging pro-survival microenvironmental interactions and increasing protein expression for targeted therapies. In this review, we explore different mechanisms by which epigenetic modifiers induce sensitivity to anti-cancer therapies and encourage the further identification of the specific genes involved with sensitization to facilitate development of clinical trials.
Collapse
Affiliation(s)
- Anthony Quagliano
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Anilkumar Gopalakrishnapillai
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Sonali P. Barwe
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
15
|
Yan B, Claxton D, Huang S, Qiu Y. AML chemoresistance: The role of mutant TP53 subclonal expansion and therapy strategy. Exp Hematol 2020; 87:13-19. [PMID: 32569759 DOI: 10.1016/j.exphem.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disease characterized by the proliferation and accumulation of myeloid blast cells in the bone marrow, which eventually lead to hematopoietic failure. Chemoresistance presents as a major burden for therapy of AML patients. p53 is the most important tumor suppressor protein that regulates cellular response to various stress. It is also important for hematopoietic stem cell development and hematopoiesis. Mutation or deletion of TP53 has been found to be linked to cancer progression, therapy-related resistance, and poor prognosis. TP53 mutation occurs in less than 10% of AML patients; however, it represents a subset of AML with therapy resistance and poor outcome. In addition, there is a subgroup of patients with low-frequency TP53 mutations. The percentage ranges from 1% to 3% of all AML patients. These patients have outcomes comparable to those of the high-frequency TP53 mutation patients. TP53-mutated clones isolated from the parental cells exhibit a survival advantage under drug treatment compared with cells with wild-type TP53, and have a higher population of leukemia stem cell (LSC) marker-positive cells, a characteristic of chemo-resistant cells. Therefore, low-frequency TP53 mutation, which is currently underappreciated, is an important prognosis factor for AML patients. Epigenetic drugs, such as hypomethylating agent and histone deacetylase inhibitors, have been found effective in targeting TP53-mutated AML. Histone deacetylase inhibitors can preferentially target the TP53-mutated subpopulation by reactivating p53-targeted genes and by eradicating LSC marker-positive cells. Therefore, combined treatment with epigenetic drugs may represent a new therapeutic strategy for treatments of TP53-mutated AML.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA
| | - David Claxton
- Department of Medicine, Pennsylvania State University College of Medicine Hershey, PA; Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA
| | - Suming Huang
- Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA; Department of Pediatrics, Pennsylvania State University College of Medicine Hershey, PA
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA; Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA.
| |
Collapse
|
16
|
Gooding AJ, Schiemann WP. Epithelial-Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol Cancer Res 2020; 18:1257-1270. [PMID: 32503922 DOI: 10.1158/1541-7786.mcr-20-0067] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSC). Importantly, the net effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their "stemness" and acquisition of chemoresistant phenotypes.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
17
|
Cho Y, Kim YK. Cancer Stem Cells as a Potential Target to Overcome Multidrug Resistance. Front Oncol 2020; 10:764. [PMID: 32582535 PMCID: PMC7280434 DOI: 10.3389/fonc.2020.00764] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance (MDR), which is a significant impediment to the success of cancer chemotherapy, is attributable to various defensive mechanisms in cancer. Initially, overexpression of ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp) was considered the most important mechanism for drug resistance; hence, many investigators for a long time focused on the development of specific ABC transporter inhibitors. However, to date their efforts have failed to develop a clinically applicable drug, leaving only a number of problems. The concept of cancer stem cells (CSCs) has provided new directions for both cancer and MDR research. MDR is known to be one of the most important features of CSCs and thus plays a crucial role in cancer recurrence and exacerbation. Therefore, in recent years, research targeting CSCs has been increasing rapidly in search of an effective cancer treatment. Here, we review the drugs that have been studied and developed to overcome MDR and CSCs, and discuss the limitations and future perspectives.
Collapse
Affiliation(s)
| | - Yong Kee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
18
|
Mani C, Jonnalagadda S, Lingareddy J, Awasthi S, Gmeiner WH, Palle K. Prexasertib treatment induces homologous recombination deficiency and synergizes with olaparib in triple-negative breast cancer cells. Breast Cancer Res 2019; 21:104. [PMID: 31492187 PMCID: PMC6729044 DOI: 10.1186/s13058-019-1192-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer remains as one of the most lethal types of cancer in women. Among various subtypes, triple-negative breast cancer (TNBC) is the most aggressive and hard to treat type of breast cancer. Mechanistically, increased DNA repair and cell cycle checkpoint activation remain as the foremost reasons behind TNBC tumor resistance to chemotherapy and disease recurrence. Methods We evaluated the mechanism of prexasertib-induced regulation of homologous recombination (HR) proteins using 20S proteasome inhibitors and RT-PCR. HR efficiency and DNA damages were evaluated using Dr-GFP and comet assays. DNA morphology and DNA repair focus studies were analyzed using immunofluorescence. UALCAN portal was used to evaluate the expression of RAD51 and survival probability based on tumor stage, subtype, and race in breast cancer patients. Results Our results show that prexasertib treatment promotes both post-translational and transcriptional mediated regulation of BRCA1 and RAD51 proteins. Additionally, prexasertib-treated TNBC cells revealed over 55% reduction in HR efficiency compared to control cells. Based on these results, we hypothesized that prexasertib treatment induced homologous recombination deficiency (HRD) and thus should synergize with PARP inhibitors (PARPi) in TNBC cells. As predicted, combined treatment of prexasertib and PARPi olaparib increased DNA strand breaks, γH2AX foci, and nuclear disintegration relative to single-agent treatment. Further, the prexasertib and olaparib combination was synergistic in multiple TNBC cell lines, as indicated by combination index (CI) values. Analysis of TCGA data revealed elevated RAD51 expression in breast tumors compared to normal breast tissues, especially in TNBC subtype. Interestingly, there was a discrepancy in RAD51 expression in racial groups, with African-American and Asian breast cancer patients showing elevated RAD51 expression compared to Caucasian breast cancer patients. Consistent with these observations, African-American and Asian TNBC patients show decreased survival. Conclusions Based on these data, RAD51 could be a biomarker for aggressive TNBC and for racial disparity in breast cancer. As positive correlation exists between RAD51 and CHEK1 expression in breast cancer, the in vitro preclinical data presented here provides additional mechanistic insights for further evaluation of the rational combination of prexasertib and olaparib for improved outcomes and reduced racial disparity in TNBC.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - Shirisha Jonnalagadda
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - Jojireddy Lingareddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.,Present Address: Loyola Academic Degree PG College, Old Alwal, Secunderabad, Telangana, 500010, India
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.
| |
Collapse
|
19
|
Sun Y, Lai X, Yu Y, Li J, Cao L, Lin W, Huang C, Liao J, Chen W, Li C, Yang C, Ying M, Chen Q, Ye Y. Inhibitor of DNA binding 1 (Id1) mediates stemness of colorectal cancer cells through the Id1-c-Myc-PLAC8 axis via the Wnt/β-catenin and Shh signaling pathways. Cancer Manag Res 2019; 11:6855-6869. [PMID: 31440083 PMCID: PMC6664424 DOI: 10.2147/cmar.s207167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/15/2019] [Indexed: 01/14/2023] Open
Abstract
Background Inhibitor of DNA binding 1 (Id1) is upregulated in multiple cancers, and Id1overexpression correlates with cancer aggressiveness and poor clinical outcomes in cancer patients. However, its roles in cancer stem-like cells (CSCs) and epithelial-mesenchymal transition (EMT) are still elusive. Purpose This study aimed to examine the role of Id1 on the mediation of CRC stemness and explore the underlying mechanisms. Methods Id1 and CD133 expression was detected by qPCR assay and immunohistochemistry (IHC) in normal mucosal and primary colorectal cancer (CRC) specimens. Id1 was stably knocked down (KD) in human CRC cell lines. Spheres forming assay and tumorigenic assay were performed to evaluate self-renewal capacity and tumor initiation. Expression of CSC- and EMT-related markers and TCF/LEF activity were assessed in HCT116 cells after Id1 KD. Results qPCR assay showed higher Id1 and CD133 expression in CRC specimens than in normal mucosal specimens (P<0.05). IHC detected high cytoplasmic Id1 expression in 35 CRC specimens (46.7%), and high CD133 expression in 22 CRC specimens (29.3%) and negative expression in 18 normal mucosal specimens. High Id1 expression positively correlated with poor differentiation (P=0.034), and CD133 expression correlated with T category in CRC patients (P=0.002). Spearman correlation analysis revealed a positive correlation between Id1 and CD133 expression in CRC patients (P<0.05). Id1 KD resulted in suppression of proliferation, cell-colony formation, self-renewal capability and CSC-like features in HCT116 cells, and impaired the tumor-initiating capability in CRC cells. In addition, Id1 maintained the stemness of CRC cells via the Id1-c-Myc-PLAC8 axis through activating the Wnt/β-catenin and Shh signaling pathways. Conclusions Id1 expression significantly correlates with CD133 expression in CRC patients, and Id1 KD impairs CSC-like capacity and reverses EMT traits, partially via the Wnt/β-catenin signaling. Id1 may be a promising therapeutic target against colon CSCs.
Collapse
Affiliation(s)
- Yanxia Sun
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Xiaolan Lai
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yue Yu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Lei Cao
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Jinrong Liao
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Wei Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chao Li
- Department of Pathology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chunkang Yang
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Mingang Ying
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Qiang Chen
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| |
Collapse
|
20
|
Gooding AJ, Parker KA, Valadkhan S, Schiemann WP. The IncRNA BORG: A novel inducer of TNBC metastasis, chemoresistance, and disease recurrence. ACTA ACUST UNITED AC 2019; 5. [PMID: 31435529 DOI: 10.20517/2394-4722.2019.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the molecular mechanisms underpinning the dissemination of primary breast tumor cells and their ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), which interact both directly and indirectly with key components of gene regulatory networks to alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BORG whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via survival and viability pathways, as well as decreased activation of cell death pathways. As such, BORG expression acts as a (i) marker capable of predicting which breast cancer patients are predisposed to develop secondary metastatic lesions, and (ii) unique therapeutic target to maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that contribute to the pathophysiological activities of BORG during its regulation of breast cancer metastasis, chemoresistance, and disease recurrence.
Collapse
Affiliation(s)
- Alex J Gooding
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kimberly A Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
21
|
Han SH, Kim JW, Kim M, Kim JH, Lee KW, Kim BH, Oh HK, Kim DW, Kang SB, Kim H, Shin E. Prognostic implication of ABC transporters and cancer stem cell markers in patients with stage III colon cancer receiving adjuvant FOLFOX-4 chemotherapy. Oncol Lett 2019; 17:5572-5580. [PMID: 31186779 PMCID: PMC6507487 DOI: 10.3892/ol.2019.10234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/20/2019] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cell (CSC) and ATP-binding cassette (ABC) transporters are associated with treatment resistance and outcomes of patients with cancer. The present study investigated the prognostic implications of pre-therapeutic expression of ABC transporters and CSC markers in patients with colon cancer (CC) who received adjuvant 5-fluorouracil, leucovorin and oxaliplatin combination therapy (FOLFOX-4). The immunohistochemical expression of 3 ABC transporters, including ABC subfamily C member 2 (ABCC2), ABCC3 and ABC subfamily G member 2 (ABCG2), and 3 CSC markers, including sex determining region Y-box 2 (SOX2), leucine-rich repeat-containing G protein-coupled receptor 5 and aldehyde dehydrogenase 1, were determined in 164 CC tissues from patients with stage III CC, who underwent postoperative FOLFOX-4 chemotherapy. The association between the protein expression and patients' prognoses was statistically analyzed. ABCG2 was associated with favorable overall survival rate (OS; P=0.001), and ABCC2, ABCG2 and SOX2 were associated with increased disease-free survival rate (DFS; P=0.001, 0.002 and 0.013, respectively). In multivariate analyses, ABCG2 was an independent prognostic factor for OS [hazard ratio (HR)=2.877; P=0.046], and ABCC2 and SOX2 were independent prognostic factors for DFS (HR=2.831; P=0.014; HR=2.558, P=0.020, respectively). ABCC2, ABCG2 and SOX2 may be promising prognostic markers for patients with CC receiving FOLFOX-4 therapy.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of Pathology, Dong-A University School of Medicine, Busan, South Gyeongsang 49201, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Milim Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine and Hospital, Seoul 02447, Republic of Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Hyunchul Kim
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| | - Eun Shin
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea.,Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| |
Collapse
|
22
|
Lin HW, Chiang YC, Sun NY, Chen YL, Chang CF, Tai YJ, Chen CA, Cheng WF. CHI3L1 results in poor outcome of ovarian cancer by promoting properties of stem-like cells. Endocr Relat Cancer 2019; 26:73-88. [PMID: 30121622 DOI: 10.1530/erc-18-0300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
The role of chitinase-3-like protein 1 (CHI3L1) in ovarian cancer and the possible mechanisms were elucidated. CHI3L1 is a secreted glycoprotein and associated with inflammation, fibrosis, asthma, extracellular tissue remodeling and solid tumors. Our previous study showed CHI3L1 could be a potential prognostic biomarker for epithelial ovarian cancer and could protect cancer cells from apoptosis. Therefore, clinical data and quantitation of CHI3L1 of ovarian cancer patients, tumor spheroid formation, side-population assays, Aldefluor and apoptotic assays, ELISA, RT-PCR, immunoblotting and animal experiments were performed in two ovarian cancer cells lines, OVCAR3 and CA5171, and their CHI3L1-overexpressing and -knockdown transfectants. High expression of CHI3L1 was associated with poor outcome and chemoresistance in ovarian cancer patients. The mRNA expression of CHI3L1 in CA5171 ovarian cancer stem-like cells was 3-fold higher than in CA5171 parental cells. CHI3L1 promoted the properties of ovarian cancer stem-like cells including generating more and larger tumor spheroids and a higher percentage of ALDH+ in tumor cells and promoting resistance to cytotoxic drug-induced apoptosis. CHI3L1 could induce both the Akt (essential) and Erk signaling pathways, and then enhance expression of β-catenin followed by SOX2, and finally promote tumor spheroid formation and other properties of ovarian cancer stem-like cells. OVCAR3 CHI3L1-overexpressing transfectants were more tumorigenic in vivo, whereas CA5171 CHI3L1-knockdown transfectants were not tumorigenic in vivo. CHI3L1 critically enhances the properties of ovarian cancer stem-like cells. CHI3L1 or CHI3L1-regulated signaling pathways and molecules could be potential therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Han-Wei Lin
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Nai-Yun Sun
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Chi-Fang Chang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Yi-Jou Tai
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia. Leukemia 2018; 33:931-944. [PMID: 30291336 DOI: 10.1038/s41375-018-0279-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance may be due to the survival of leukemia stem cells (LSCs) that are quiescent and not responsive to chemotherapy or lie on the intrinsic or acquired resistance of the specific pool of AML cells. Here, we found, among well-established LSC markers, only CD123 and CD47 are correlated with AML cell chemosensitivities across cell lines and patient samples. Further study reveals that percentages of CD123+CD47+ cells significantly increased in chemoresistant lines compared to parental cell lines. However, stemness signature genes are not significantly increased in resistant cells. Instead, gene changes are enriched in cell cycle and cell survival pathways. This suggests CD123 may serve as a biomarker for chemoresistance, but not stemness of AML cells. We further investigated the role of epigenetic factors in regulating the survival of chemoresistant leukemia cells. Epigenetic drugs, especially histone deacetylase inhibitors (HDACis), effectively induced apoptosis of chemoresistant cells. Furthermore, HDACi Romidepsin largely reversed gene expression profile of resistant cells and efficiently targeted and removed chemoresistant leukemia blasts in xenograft AML mouse model. More interestingly, Romidepsin preferentially targets CD123+ cells, while chemotherapy drug Ara-C mainly targeted fast-growing, CD123- cells. Therefore, Romidepsin alone or in combination with Ara-C may be a potential treatment strategy for chemoresistant patients.
Collapse
|
24
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int 2018; 2018:5416923. [PMID: 29681949 PMCID: PMC5850899 DOI: 10.1155/2018/5416923] [Citation(s) in RCA: 618] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Sang-Hyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
25
|
Hou GX, Liu PP, Zhang S, Yang M, Liao J, Yang J, Hu Y, Jiang WQ, Wen S, Huang P. Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis 2018; 9:89. [PMID: 29367724 PMCID: PMC5833411 DOI: 10.1038/s41419-017-0159-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Cancer side-population (SP) represents a sub-population of stem-like cancer cells that have an important role in drug resistance due to their high expression of the ATP-binding cassette transporter ABCG2 involved in drug export. Auranofin (AF), a clinical drug of gold complex that is used in treatment of rheumatoid arthritis, has been reported inducing tumor antiproliferation. However, whether AF can impact SP cells remains unclear. Our study showed that AF caused a depletion of SP cells and a downregulation of stem cell markers, and impaired their ability to form tumor colonies in vitro and incidence to develop tumors in vivo of lung cancer cells. Reactive oxygen species (ROS) had an important role in mediating AF-induced depletion of SP cells, which could be reversed by antioxidant NAC. Further study revealed that AF could also cause ATP depletion by inhibition of glycolysis. The depletion of cellular ATP might impair the function of ABCG2 pump, leading to increased drug accumulation within the cells and thus enhancing anticancer activity of chemotherapeutic agents such as adriamycin. Synergistic effect of AF and adriamycin was demonstrated both in vitro and in vivo. Simultaneous increase of ROS and inhibition of glycolysis is a novel strategy to eliminate stem-like cancer cells. Combination of AF with adriamycin seems to be promising to enhance therapeutic effectiveness.
Collapse
Affiliation(s)
- Guo-Xin Hou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Pan-Pan Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Shengyi Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Mengqi Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Jianwei Liao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Yumin Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Wen-Qi Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Wai huan East Road, Guangzhou, 510006, Guangdong, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Zhang XF, Weng DS, Pan K, Zhou ZQ, Pan QZ, Zhao JJ, Tang Y, Jiang SS, Chen CL, Li YQ, Zhang HX, Chang AE, Wicha MS, Zeng YX, Li Q, Xia JC. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells. Mol Carcinog 2017; 56:2499-2511. [DOI: 10.1002/mc.22697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Xiao-Fei Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - De-sheng Weng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Ke Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Qiu-zhong Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Jing-Jing Zhao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Yan Tang
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Shan-Shan Jiang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Chang-Long Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Yong-Qiang Li
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Hong-Xia Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Alfred E. Chang
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | - Max S. Wicha
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | | | - Qiao Li
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| |
Collapse
|
27
|
miR-221 Mediates Chemoresistance of Esophageal Adenocarcinoma by Direct Targeting of DKK2 Expression. Ann Surg 2017; 264:804-814. [PMID: 27501171 DOI: 10.1097/sla.0000000000001928] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chemoresistance is a main obstacle to effective esophageal cancer (EC) therapy. We hypothesize that altered expression of microRNAs (miRNAs) play a role in EC cancer progression and resistance to 5-fluorouracil (5-FU) based chemotherapeutic strategies. METHODS Four pairs of esophageal adenocarcinoma (EAC) cell lines and corresponding 5-FU resistant variants were established. The expression levels of miRNAs previously shown to be involved in the general regulation of stem cell pathways were analyzed by qRT-PCR. The effects of selected miRNAs on proliferation, apoptosis, and chemosensitivity were evaluated both in vitro and in vivo. We identified a particular miRNA and analyzed its putative target genes in 14 pairs of human EC tumor specimens with surrounding normal tissue by qRT-PCR as well as Wnt pathway associated genes by immunohistochemistry in another 45 EAC tumor samples. RESULTS MiR-221 was overexpressed in 5-FU resistant EC cell lines as well as in human EAC tissue. DKK2 was identified as a target gene for miR-221. Knockdown of miR-221 in 5-FU resistant cells resulted in reduced cell proliferation, increased apoptosis, restored chemosensitivity, and led to inactivation of the Wnt/β-catenin pathway mediated by alteration in DKK2 expression. Moreover, miR-221 reduction resulted in alteration of EMT-associated genes such as E-cadherin and vimentin as well as significantly slower xenograft tumor growth in nude mice. RT profiler analysis identified a substantial dysregulation of 4 Wnt/β-catenin signaling and chemoresistance target genes as a result of miR-221 modulation: CDH1, CD44, MYC, and ABCG2. CONCLUSION MiR-221 controls 5-FU resistance of EC partly via modulation of Wnt/β-catenin-EMT pathways by direct targeting of DKK2 expression. MiR-221 may serve as a prognostic marker and therapeutic target for patients with 5-FU resistant EAC.
Collapse
|
28
|
G9a/RelB regulates self-renewal and function of colon-cancer-initiating cells by silencing Let-7b and activating the K-RAS/β-catenin pathway. Nat Cell Biol 2016; 18:993-1005. [PMID: 27525719 DOI: 10.1038/ncb3395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
Epigenetic reprogramming has been associated with the functional plasticity of cancer-initiating cells (CICs); however, the regulatory pathway has yet to be elucidated. A siRNA screen targeting known epigenetic genes revealed that G9a profoundly impairs the chemo-resistance, self-renewal and metastasis of CICs obtained from patients with colorectal cancer (CRC). Patients with elevated G9a were shown to face a high risk of relapse and poor survival rates. From a mechanistic perspective, G9a binds with and stabilizes RelB, thereby recruiting DNA methyltransferase 3 on the Let-7b promoter and repressing its expression. This leads to the activation of the K-RAS/β-catenin pathway and regulates self-renewal and function of CICs. These findings indicate that the G9a/RelB/Let-7b axis acts as a critical regulator in the maintenance of CIC phenotypes and is strongly associated with negative clinical outcomes. Thus, these findings may have diagnostic as well as therapeutic implications for the treatment of chemotherapy-resistant or metastatic CRC.
Collapse
|
29
|
Liu Y, Lu R, Gu J, Chen Y, Zhang X, Zhang L, Wu H, Hua W, Zeng J. Aldehyde dehydrogenase 1A1 up-regulates stem cell markers in benzo[a]pyrene-induced malignant transformation of BEAS-2B cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:241-250. [PMID: 27331345 DOI: 10.1016/j.etap.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
Recently, Aldehyde dehydrogenase 1A1 (ALDH1A1) has been proposed to be a common marker of cancer stem cells and can be induced by benzo[a]pyrene (B[a]P) exposure. However, the underlying mechanism of how ALDH1A1 contributes to B[a]P-induced carcinogenesis in human bronchial epithelial cells remains unclear. Here, we found that B[a]P up-regulated expression levels of stem cell markers (ABCG2, SOX2, c-Myc and Klf4), epithelial-mesenchymal transition (EMT) associated genes (SNAIL1, ZEB1, TWIST and β-CATENIN) and cancer-related long non-coding RNAs (lncRNAs; HOTAIR and MALAT-1) in malignant B[a]P-transformed human bronchial epithelial cells (BEAS-2B-T cells), and these up-regulations were dependent on increased expression of ALDH1A1. The inhibition of endogenous ALDH1A1 expression down-regulated expression levels of stem cell markers and reversed the malignant phenotype as well as reduced the chemoresistance of BEAS-2B-T cells. In contrast, the overexpression of ALDH1A1 in BEAS-2B cells increased the expression of stem cell markers, facilitated cell transformation, promoted migratory ability and enhanced the drug resistance of BEAS-2B cells. Overall, our data indicates that ALDH1A1 promotes a stemness phenotype and plays a critical role in the BEAS-2B cell malignant transformation induced by B[a]P.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511400, PR China
| | - Ruitao Lu
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511400, PR China
| | - Junlian Gu
- Department of pathology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Yanxuan Chen
- Center of Medical Functional Experiments, Guangzhou Medical University, Guangzhou 511400, PR China
| | - Xueyan Zhang
- Department of Pathogenic Biology, Guangzhou Medical University, Guangzhou 511400, PR China
| | - Lan Zhang
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511400, PR China
| | - Hao Wu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wenfeng Hua
- Biological Experiment Center, the Second People's Hospital of Guangdong Province, Guangzhou 510317, PR China.
| | - Jun Zeng
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511400, PR China.
| |
Collapse
|
30
|
Crea F, Venalainen E, Ci X, Cheng H, Pikor L, Parolia A, Xue H, Nur Saidy NR, Lin D, Lam W, Collins C, Wang Y. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics 2016; 8:721-31. [PMID: 27096814 DOI: 10.2217/epi.16.6] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most lethal prostatic neoplasm. NEPC is thought to originate from the transdifferentiation of AR-positive adenocarcinoma cells. We have previously shown that an epigenetic/noncoding interactome (ENI) orchestrates cancer cells' plasticity, thereby allowing the emergence of metastatic, drug-resistant neoplasms. The primary objective of this manuscript is to discuss evidence indicating that some components of the ENI (Polycomb genes, miRNAs) play a key role in NEPC initiation and progression. Long noncoding RNAs represent vast and largely unexplored component of the ENI. Their role in NEPC has not been investigated. We show preliminary evidence indicating that a lncRNA (MIAT) is selectively upregulated in NEPCs and might interact with Polycomb genes. Our results indicate that long noncoding RNAs can be exploited as new biomarkers and therapeutic targets for NEPC.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Department of Life Health & Chemical Sciences, The Open University, Milton Keynes, UK
| | - Erik Venalainen
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Xinpei Ci
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hongwei Cheng
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Larissa Pikor
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Abhijit Parolia
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Hui Xue
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Nur Ridzwan Nur Saidy
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Dong Lin
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wan Lam
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
WU XUEFANG, LUO FENG, LI JINBANG, ZHONG XUEYUN, LIU KUNPING. Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol 2016; 48:1333-40. [PMID: 26820603 PMCID: PMC4777596 DOI: 10.3892/ijo.2016.3360] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/01/2016] [Indexed: 12/27/2022] Open
Abstract
Aberrant Wnt signaling pathway is associated with a wide array of tumor types and plays an important role in the drug resistance of cancer stem cells (CSCs). To explore the effects and mechanism of WNT signaling pathway inhibitor XAV939 on drug resistance in colon cancer cells, the colon cancer cells SW480 and SW620 were treated with 5-fluorouracil (5-FU)/cisplatin (DDP) alone or combined with XAV939. Cell cycle distribution, apoptosis level and the percentage of CD133+ cells were detected by flow cytometry. The protein expression of Axin, β-catenin, EpCAM, TERT and DCAMKL-1 was detected by western blotting. XAV939 upregulated Axin , decreased the total and nuclei of β-catenin in SW480 and SW620 cells. Furthermore, XAV939 significantly downregulated the CSC markers EpCAM, TERT and DCAMKL-1 in SW480 cells, as well as EpCAM in SW620 cells. No significant difference was found in the apoptosis of SW480 and SW620 cells with XAV939 treatment, but XAV939 significantly increased apoptosis induced by 5-FU/DDP in SW480 cells, whereas, the effects were slight in SW620 cells. Collectively, we show for the first time that the WNT signaling pathway inhibitor XAV939 was able to significantly increase the apoptosis induced by 5-FU/DDP, accompanied by the protein expression level alternation of β-catenin, Axin and CSC markers in colon cancer cells. Axin, an important component of Wnt/β-catenin signaling pathway could be a potential molecular target for reversing multidrug resistance in colon cancer.
Collapse
Affiliation(s)
- XUEFANG WU
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| | - FENG LUO
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| | - JINBANG LI
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| | - XUEYUN ZHONG
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - KUNPING LIU
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| |
Collapse
|
32
|
Lemma S, Avnet S, Salerno M, Chano T, Baldini N. Identification and Validation of Housekeeping Genes for Gene Expression Analysis of Cancer Stem Cells. PLoS One 2016; 11:e0149481. [PMID: 26894994 PMCID: PMC4760967 DOI: 10.1371/journal.pone.0149481] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022] Open
Abstract
The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting.
Collapse
Affiliation(s)
- Silvia Lemma
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- * E-mail:
| | - Sofia Avnet
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Salerno
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Chiu WT, Huang YF, Tsai HY, Chen CC, Chang CH, Huang SC, Hsu KF, Chou CY. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget 2016; 6:2349-65. [PMID: 25537512 PMCID: PMC4385856 DOI: 10.18632/oncotarget.2957] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022] Open
Abstract
Chemoresistance to anti-cancer drugs substantially reduces survival in epithelial ovarian cancer. In this study, we showed that chemoresistance to cisplatin and paclitaxel induced the epithelial-mesenchymal transition (EMT) and a stem cell phenotype in ovarian cancer cells. Chemoresistance was associated with the downregulation of epithelial markers and the upregulation of mesenchymal markers, EMT-related transcription factors, and cancer stem cell markers, which enhanced invasion and sphere formation ability. Overexpression of FOXM1 increased cisplatin-resistance and sphere formation in cisplatin-sensitive and low FOXM1-expressing ovarian cancer cells. Conversely, depletion of FOXM1 via RNA interference reduced cisplatin resistance and sphere formation in cisplatin-resistant and high FOXM1-expressing cells. Overexpression of FOXM1 also increased the expression, nuclear accumulation, and activity of β-CATENIN in chemoresistant cells, whereas downregulation of FOXM1 suppressed these events. The combination of cisplatin and the FOXM1 inhibitor thiostrepton inhibited the expression of stem cell markers in chemoresistant cells and subcutaneous ovarian tumor growth in mouse xenografts. In an analysis of 106 ovarian cancer patients, high FOXM1 levels in tumors were associated with cancer progression and short progression-free intervals. Collectively, our findings highlight the importance of FOXM1 in chemoresistance and suggest that FOXM1 inhibitors may be useful for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Yu Tsai
- Cancer Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chang-Hwa Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying Campus, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Cancer Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Cancer Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Crea F, Di Paolo A, Liu HH, Polillo M, Clermont PL, Guerrini F, Ciabatti E, Ricci F, Baratè C, Fontanelli G, Barsotti S, Morganti R, Danesi R, Wang Y, Petrini M, Galimberti S, Helgason CD. Polycomb genes are associated with response to imatinib in chronic myeloid leukemia. Epigenomics 2015; 7:757-65. [PMID: 26343356 DOI: 10.2217/epi.15.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Imatinib is a tyrosine kinase inhibitor that has revolutionized the treatment of chronic myeloid leukemia (CML). Despite its efficacy, about a third of patients discontinue the treatment due to therapy failure or intolerance. The rational identification of patients less likely to respond to imatinib would be of paramount clinical relevance. We have shown that transmembrane transporter hOCT1 genotyping predicts imatinib activity. In parallel, Polycomb group genes (PcGs) are epigenetic repressors implicated in CML progression and in therapy resistance. PATIENTS & METHODS We measured the expression of eight PcGs in paired pre- and post-imatinib bone marrow samples from 30 CML patients. RESULTS BMI1, PHC3, CBX6 and CBX7 expression was significantly increased during imatinib treatment. Post-treatment levels of CBX6 and CBX7 predicted 3-month response rate. Measurement of post-treatment BMI1 levels improved the predictive power of hOCT1 genotyping. CONCLUSION These results suggest that the expression levels of PcGs might be useful for a more accurate risk stratification of CML patients.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BCCA Research Centre, 675 W 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.,Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Life Health & Chemical Sciences, The Open University, UK
| | - Antonello Di Paolo
- Department of Clinical & Experimental Medicine, Section of Pharmacology, University of Pisa, Pisa, Italy
| | - Hui Hsuan Liu
- Experimental Therapeutics, BCCA Research Centre, 675 W 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Marialuisa Polillo
- Department of Clinical & Experimental Medicine, Section of Pharmacology, University of Pisa, Pisa, Italy
| | - Pier-Luc Clermont
- Experimental Therapeutics, BCCA Research Centre, 675 W 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Francesca Guerrini
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Elena Ciabatti
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Federica Ricci
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Claudia Baratè
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Giulia Fontanelli
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Sara Barsotti
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Riccardo Morganti
- Department of Clinical & Experimental Medicine, Section of Statistics, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Department of Clinical & Experimental Medicine, Section of Pharmacology, University of Pisa, Pisa, Italy
| | - Yuzhuo Wang
- Experimental Therapeutics, BCCA Research Centre, 675 W 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.,Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Mario Petrini
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Sara Galimberti
- Department of Clinical & Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Cheryl D Helgason
- Experimental Therapeutics, BCCA Research Centre, 675 W 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|
35
|
Li Q, Li Q, Nuccio J, Liu C, Duan P, Wang R, Jones LW, Chung LWK, Zhau HE. Metastasis initiating cells in primary prostate cancer tissues from transurethral resection of the prostate (TURP) predicts castration-resistant progression and survival of prostate cancer patients. Prostate 2015; 75:1312-21. [PMID: 25990623 PMCID: PMC4736544 DOI: 10.1002/pros.23011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/10/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND We previously reported that the activation of RANK and c-Met signaling components in both experimental mouse models and human prostate cancer (PC) specimens predicts bone metastatic potential and PC patient survival. This study addresses whether a population of metastasis-initiating cells (MICs) known to express a stronger RANKL, phosphorylated c-Met (p-c-Met), and neuropilin-1 (NRP1) signaling network than bystander or dormant cells (BDCs) can be detected in PC tissues from patients subjected to transurethral resection of the prostate (TURP) for urinary obstruction prior to the diagnosis of PC with or without prior hormonal manipulation, and whether the relative abundance of MICs over BDCs could predict castration-resistant progression and PC patient survival. METHODS We employed a multiplexed quantum-dot labeling (mQDL) protocol to detect and quantify MICs and BDCs at the single cell level in TURP tissues obtained from 44 PC patients with documented overall survival and castration resistance status. RESULTS PC tissues with a higher number of MICs and an activated RANK signaling network, including increased expression of RANKL, p-c-Met, and NRP1 compared to BDCs, were found to correlate with the development of castration resistance and overall survival. CONCLUSIONS The assessment of PC cells with MIC and BDC phenotypes in primary PC tissues from hormone-naïve patients can predict the progression to castration resistance and the overall survival of PC patients.
Collapse
Affiliation(s)
- Qinlong Li
- Department of Medicine, Uro-Oncology Research Program, Los Angeles, California
| | - Quanlin Li
- Biostatistics and Bioinformatics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jill Nuccio
- Urological Research, Huntington Medical Research Institutes, Huntington Memorial Hospital, Pasadena, California
| | - Chunyan Liu
- Department of Medicine, Uro-Oncology Research Program, Los Angeles, California
| | - Peng Duan
- Department of Medicine, Uro-Oncology Research Program, Los Angeles, California
| | - Ruoxiang Wang
- Department of Medicine, Uro-Oncology Research Program, Los Angeles, California
| | - Lawrence W. Jones
- Urological Research, Huntington Medical Research Institutes, Huntington Memorial Hospital, Pasadena, California
- Correspondence to: Lawrence W. Jones, MD, Urological Research, Huntington Medical Research Institutes, Huntington Memorial Hospital, 99 North El Molino Avenue, Pasadena, CA 91101.
| | - Leland W. K. Chung
- Department of Medicine, Uro-Oncology Research Program, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Correspondence to: Haiyen E. Zhau, PhD, and Leland W. K. Chung, PhD, Department of Medicine, Uro-Oncology Program, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 103, Los Angeles, CA 90048. (HEZ); (LWKC)
| | - Haiyen E. Zhau
- Department of Medicine, Uro-Oncology Research Program, Los Angeles, California
- Correspondence to: Haiyen E. Zhau, PhD, and Leland W. K. Chung, PhD, Department of Medicine, Uro-Oncology Program, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 103, Los Angeles, CA 90048. (HEZ); (LWKC)
| |
Collapse
|
36
|
Oh JH, Deasy JO. A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer. Brief Bioinform 2015. [PMID: 26220932 DOI: 10.1093/bib/bbv053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to the successful treatment of many human cancer types. Increasing evidence has revealed that chemoresistance involves many genes and multiple complex biological mechanisms including cancer stem cells, drug efflux mechanism, autophagy and epithelial-mesenchymal transition. Many studies have been conducted to investigate the possible molecular mechanisms of chemoresistance. However, understanding of the biological mechanisms in chemoresistance still remains limited. We surveyed the literature on chemoresistance-related genes and pathways of multiple cancer types. We then used a curated pathway database to investigate significant chemoresistance-related biological pathways. In addition, to investigate the importance of chemoresistance-related markers in protein-protein interaction networks identified using the curated database, we used a gene-ranking algorithm designed based on a graph-based scoring function in our previous study. Our comprehensive survey and analysis provide a systems biology-based overview of the underlying mechanisms of chemoresistance.
Collapse
|
37
|
Vellinga TT, Borovski T, de Boer VCJ, Fatrai S, van Schelven S, Trumpi K, Verheem A, Snoeren N, Emmink BL, Koster J, Rinkes IHMB, Kranenburg O. SIRT1/PGC1α-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer. Clin Cancer Res 2015; 21:2870-9. [PMID: 25779952 DOI: 10.1158/1078-0432.ccr-14-2290] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/27/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemotherapy treatment of metastatic colon cancer ultimately fails due to development of drug resistance. Identification of chemotherapy-induced changes in tumor biology may provide insight into drug resistance mechanisms. EXPERIMENTAL DESIGN We studied gene expression differences between groups of liver metastases that were exposed to preoperative chemotherapy or not. Multiple patient-derived colonosphere cultures were used to assess how chemotherapy alters energy metabolism by measuring mitochondrial biomass, oxygen consumption, and lactate production. Genetically manipulated colonosphere-initiated tumors were used to assess how altered energy metabolism affects chemotherapy efficacy. RESULTS Gene ontology and pathway enrichment analysis revealed significant upregulation of genes involved in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in metastases that were exposed to chemotherapy. This suggested chemotherapy induces a shift in tumor metabolism from glycolysis towards OXPHOS. Indeed, chemotreatment of patient-derived colonosphere cultures resulted in an increase of mitochondrial biomass, increased expression of respiratory chain enzymes, and higher rates of oxygen consumption. This was mediated by the histone deacetylase sirtuin-1 (SIRT1) and its substrate, the transcriptional coactivator PGC1α. Knockdown of SIRT1 or PGC1α prevented chemotherapy-induced OXPHOS and significantly sensitized patient-derived colonospheres as well as tumor xenografts to chemotherapy. CONCLUSIONS Chemotherapy of colorectal tumors induces a SIRT1/PGC1α-dependent increase in OXPHOS that promotes tumor survival during treatment. This phenomenon is also observed in chemotherapy-exposed resected liver metastases, strongly suggesting that chemotherapy induces long-lasting changes in tumor metabolism that potentially interfere with drug efficacy. In conclusion, we propose a novel mechanism of chemotherapy resistance that may be clinically relevant and therapeutically exploitable.
Collapse
Affiliation(s)
- Thomas T Vellinga
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tijana Borovski
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vincent C J de Boer
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Szabolcs Fatrai
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Susanne van Schelven
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kari Trumpi
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andre Verheem
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nikol Snoeren
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Benjamin L Emmink
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
38
|
Zhao M, Zhang Y, Zhang H, Wang S, Zhang M, Chen X, Wang H, Zeng G, Chen X, Liu G, Zhou C. Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma. Lung Cancer 2014; 87:98-106. [PMID: 25512094 DOI: 10.1016/j.lungcan.2014.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/25/2014] [Accepted: 11/26/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Since cancer stem cells exhibit embryonic-like self-renewal characteristics and malignant behavior, including drug resistance and metastasis, they may be the origin of tumorigenesis and cancer recurrence. Cancer cell stemness is also highly relevant to cancer in hypoxic environments. METHODS In our study, we used cobalt dichloride (CoCl2) to create a hypoxic environment for lung adenocarcinoma A549 cells and the cisplatine-resistant cell line A549/DDP. The cancer stem-like CD166 positive population and the cells' stemness were detected by flowcytometry and quantitative real-time PCR after separation using magnetic antibodies. Drug resistance to cisplatine, docetaxel and pemetrexed was also measured. Finally, a tissue array was used to analyze the relationship between hypoxia-induced stemness and overall survival after radical surgery. RESULTS Data showed that chemical-induced hypoxia changed cell stemness by enhancing stem cell transcription factors and markers of chemotherapeutic drug resistance. The CD166-positive cancer stem cell-like population showed greater drug resistance than the CD166-negative cells. Tissue array studies also suggested a poorer prognosis for patients whose tissue expressed higher CD166 levels. CONCLUSION Our findings indicate that chemical hypoxia may augment cancer cell stemness and drug resistance in CD166-positive stem cells. Therefore, targeting the stem-like cell population, especially CD166-positive cells, may represent a novel therapeutic strategy to treat lung cancer.
Collapse
Affiliation(s)
- Mingchuan Zhao
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yishi Zhang
- Department of Oncology, Fuda Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Huijun Zhang
- Department of Thoracic Surgery, Huashan Hospital, School of Medicine, Fudan University, Shanghai, China
| | - Shaohua Wang
- Department of Thoracic Surgery, Huashan Hospital, School of Medicine, Fudan University, Shanghai, China
| | - Mengmeng Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xi Chen
- Center for Translational Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Heyong Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Zeng
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, School of Medicine, Fudan University, Shanghai, China.
| | - Gentao Liu
- Center for Translational Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
39
|
He S, Pham MH, Pease M, Zada G, Giannotta SL, Wang K, Mack WJ. A review of epigenetic and gene expression alterations associated with intracranial meningiomas. Neurosurg Focus 2014; 35:E5. [PMID: 24289130 DOI: 10.3171/2013.10.focus13360] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT A more comprehensive understanding of the epigenetic abnormalities associated with meningioma tumorigenesis, growth, and invasion may provide useful targets for molecular classification and development of targeted therapies for meningiomas. METHODS The authors performed a review of the current literature to identify the epigenetic modifications associated with the formation and/or progression of meningiomas. RESULTS Several epigenomic alterations, mainly pertaining to DNA methylation, have been associated with meningiomas. Hypermethylation of TIMP3 inactivates its tumor suppression activity while CDKN2 (p14[ARF]) and TP73 gene hypermethylation and HIST1H1c upregulation interact with the p53 regulation of cell cycle control. Other factors such as HOX, IGF, WNK2, and TGF-β epigenetic modifications allow either upregulation or downregulation of critical pathways for meningioma development, progression, and recurrence. CONCLUSIONS Genome-wide methylation profiling demonstrated that global hypomethylation correlates with tumor grades and severity. Identification of additional epigenetic changes, such as histone modification and higher-order chromosomal structure, may allow for a more thorough understanding of tumorigenesis and enable future individualized treatment strategies for meningiomas.
Collapse
|
40
|
Wang XK, He JH, Xu JH, Ye S, Wang F, Zhang H, Huang ZC, To KKW, Fu LW. Afatinib enhances the efficacy of conventional chemotherapeutic agents by eradicating cancer stem-like cells. Cancer Res 2014; 74:4431-45. [PMID: 24972892 DOI: 10.1158/0008-5472.can-13-3553] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer stem cells (CSC) have garnered significant attention as a therapeutic focus, based on evidence that they may represent an etiologic root of treatment-resistant cells. Indeed, expression of the multidrug resistance protein ATP-binding cassette subfamily G member 2 (ABCG2) confers chemoresistance to CSCs, where it serves as a potential biomarker and therapeutic target. Here, we show that afatinib, a small-molecule inhibitor of the tyrosine kinases EGFR, HER2, and HER4, preferentially eliminated side population cells with CSC character, in both cell lines and patient-derived leukemia cells, by decreasing ABCG2 expression. In these cells, afatinib also acted in parallel to suppress self-renewal capacity and tumorigenicity. Combining afatinib with the DNA-damaging drug topotecan enhanced the antitumor effect of topotecan in vitro and in vivo. Mechanistic investigations suggested that ABCG2 suppression by afatinib did not proceed by proteolysis through the ubiquitin-dependent proteosome, lysosome, or calpain. Instead, we found that afatinib increased DNA methyltransferase activity, thereby leading to methylation of the ABCG2 promoter and to a decrease in ABCG2 message level. Taken together, our results advocate the use of afatinib in combination with conventional chemotherapeutic drugs to improve efficacy by improving CSC eradication.
Collapse
Affiliation(s)
- Xiao-kun Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Jie-hua He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Jing-hong Xu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Ye
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Zhen-cong Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Li-wu Fu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Lin SJ, Zhang Y, Liu NC, Yang DR, Li G, Chang C. Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4. Mol Endocrinol 2014; 28:805-21. [PMID: 24702179 DOI: 10.1210/me.2013-1422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus. It has been shown to play important roles in cerebellar development, forebrain myelination, folliculogenesis, gluconeogenesis, lipogenesis, muscle development, bone development, and prostate cancer progression. Here we provide a comprehensive summary of TR4 signaling including its upstream ligands/activators/suppressors, transcriptional coactivators/repressors, downstream targets, and their in vivo functions with potential impacts on TR4-related diseases. Importantly, TR4 shares similar ligands/activators with another key nuclear receptor, peroxisome proliferator-activated receptor γ, which raised several interesting questions about how these 2 nuclear receptors may collaborate with or counteract each other's function in their related diseases. Clear dissection of such molecular mechanisms and their differential roles in various diseases may help researchers to design new potential drugs with better efficacy and fewer side effects to battle TR4 and peroxisome proliferator-activated receptor γ involved diseases.
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Laboratory for Cancer Research (S.-J.L., Y.Z., N.-C.L., C.C.), Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14646; Department of Urology (D.-R.Y.), the Second Affiliated Hospital of Suzhou University, Suzhou, 215004 China; Chawnshang Chang Liver Cancer Center and Department of Urology (G.L.), Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China; and Sex Hormone Research Center (C.C.), China Medical University/Hospital, Taichung, 404 Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Yang Y, Hou J, Lin Z, Zhuo H, Chen D, Zhang X, Chen Y, Sun B. Attenuated Listeria monocytogenes as a cancer vaccine vector for the delivery of CD24, a biomarker for hepatic cancer stem cells. Cell Mol Immunol 2014; 11:184-96. [PMID: 24488178 DOI: 10.1038/cmi.2013.64] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 01/14/2023] Open
Abstract
Attenuated Listeria monocytogenes (LM) is a promising candidate vector for the delivery of cancer vaccines. After phagocytosis by antigen-presenting cells, this bacterium stimulates the major histocompatibility complex (MHC)-I and MHC-II pathways and induces the proliferation of antigen-specific T lymphocytes. A new strategy involving genetic modification of the replication-deficient LM strain ΔdalΔdat (Lmdd) to express and secrete human CD24 protein has been developed. CD24 is a hepatic cancer stem cell biomarker that is closely associated with apoptosis, metastasis and recurrence of hepatocellular carcinoma (HCC). After intravenous administration in mice, Lmdd-CD24 was distributed primarily in the spleen and liver and did not cause severe organ injury. Lmdd-CD24 effectively increased the number of interferon (IFN)-γ-producing CD8(+) T cells and IFN-γ secretion. Lmdd-CD24 also enhanced the number of IL-4- and IL-10-producing T helper 2 cells. The efficacy of the Lmdd-CD24 vaccine was further investigated against Hepa1-6-CD24 tumors, which were inguinally inoculated into mice. Lmdd-CD24 significantly reduced the tumor size in mice and increased their survival. Notably, a reduction of T regulatory cell (Treg) numbers and an enhancement of specific CD8(+) T-cell activity were observed in the tumor-infiltrating lymphocytes (TILs). These results suggest a potential application of the Lmdd-CD24 vaccine against HCC.
Collapse
Affiliation(s)
- Yu Yang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiajie Hou
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhe Lin
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Han Zhuo
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianyu Chen
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xudong Zhang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies. Cell Death Dis 2013; 4:e828. [PMID: 24091671 PMCID: PMC3824647 DOI: 10.1038/cddis.2013.337] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 07/21/2013] [Accepted: 08/12/2013] [Indexed: 02/05/2023]
Abstract
Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial–mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients.
Collapse
|
44
|
Jiang Y, Dai J, Zhang H, Sottnik JL, Keller JM, Escott KJ, Sanganee HJ, Yao Z, McCauley LK, Keller ET. Activation of the Wnt pathway through AR79, a GSK3β inhibitor, promotes prostate cancer growth in soft tissue and bone. Mol Cancer Res 2013; 11:1597-610. [PMID: 24088787 DOI: 10.1158/1541-7786.mcr-13-0332-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Due to its bone anabolic activity, methods to increase Wnt activity, such as inhibitors of dickkopf-1 and sclerostin, are being clinically explored. Glycogen synthase kinase (GSK3β) inhibits Wnt signaling by inducing β-catenin degradation, and a GSK3β inhibitor, AR79, is being evaluated as an osteoanabolic agent. However, Wnt activation has the potential to promote tumor growth; therefore, the goal of this study was to determine if AR79 has an impact on the progression of prostate cancer. Prostate cancer tumors were established in subcutaneous and bone sites of mice followed by AR79 administration, and tumor growth, β-catenin activation, proliferation, and apoptosis were assessed. Additionally, prostate cancer and osteoblast cell lines were treated with AR79, and β-catenin status, proliferation (with β-catenin knockdown in some cases), and proportion of ALDH(+)CD133(+) stem-like cells were determined. AR79 promoted prostate cancer tumor growth, decreased phospho-β-catenin, increased total and nuclear β-catenin, and increased tumor-induced bone remodeling. Additionally, AR79 treatment decreased caspase-3 and increased Ki67 expression in tumors and increased bone formation in normal mouse tibiae. Similarly, AR79 inhibited β-catenin phosphorylation, increased nuclear β-catenin accumulation in prostate cancer and osteoblast cell lines, and increased proliferation of prostate cancer cells in vitro through β-catenin. Furthermore, AR79 increased the ALDH(+)CD133(+) cancer stem cell-like proportion of the prostate cancer cell lines. In conclusion, AR79, while being bone anabolic, promotes prostate cancer cell growth through Wnt pathway activation. IMPLICATIONS These data suggest that clinical application of pharmaceuticals that promote Wnt pathway activation should be used with caution as they may enhance tumor growth.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Urology, University of Michigan, 5308 CCGC, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-8940.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jovčevska I, Kočevar N, Komel R. Glioma and glioblastoma - how much do we (not) know? Mol Clin Oncol 2013; 1:935-941. [PMID: 24649273 DOI: 10.3892/mco.2013.172] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer is a heterogeneous disease, which provides a broad field for investigation, while simultaneously reducing the chances for a universal treatment. Malignant gliomas are the most common type of primary brain tumors. The heterogeneity of gliomas regarding clinical presentation, pathology and response to treatment makes this type of tumor a challenging area of research. As the clinical symptoms may be unspecific (e.g., seizures and headaches) it is often difficult to diagnose a patient in the early stages of the disease. Thus far, there are no known genetic patterns of inheritance of this disease. Currently, the treatment of glioblastoma involves surgery, whenever possible, followed by radiation and chemotherapy. Experimental procedures, such as passive and active immunotherapy, use of angiogenesis inhibitors in combination with chemotherapeutics and gene/antibody therapy, are additional treatment options. However, as the brain is difficult to access due to the presence of the blood-brain barrier (BBB), none of the above-mentioned therapies have been successful in curing this disease. The lack of knowledge regarding the mechanisms underlying the development and progression of gliomas further adds to the difficulties. Currently, investigations are focused on the development of novel methods for improving the outcome of this disease. However, despite the extensive investigations, 88% of all glioblastoma multiforme (GBM) patients succumb to the disease within 3 years. GBM remains one of the most challenging malignancies worldwide.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Nina Kočevar
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Radovan Komel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
46
|
Bonito MD, Cantile M, Malzone G, Liguori G, Botti G. The prognostic role of cancer stem cells in breast tumors. J Clin Med Res 2013; 5:325-6. [PMID: 23976904 PMCID: PMC3748655 DOI: 10.4021/jocmr1302w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/15/2022] Open
Affiliation(s)
- Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori Fondazione "G. Pascale", via Mariano Semmola 80131, Napoli, Italy
| | | | | | | | | |
Collapse
|
47
|
Jeffery DCB, Wyse BA, Rehman MA, Brown GW, You Z, Oshidari R, Masai H, Yankulov KY. Analysis of epigenetic stability and conversions in Saccharomyces cerevisiae reveals a novel role of CAF-I in position-effect variegation. Nucleic Acids Res 2013; 41:8475-88. [PMID: 23863839 PMCID: PMC3794585 DOI: 10.1093/nar/gkt623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Position-effect variegation (PEV) phenotypes are characterized by the robust multigenerational repression of a gene located at a certain locus (often called gene silencing) and occasional conversions to fully active state. Consequently, the active state then persists with occasional conversions to the repressed state. These effects are mediated by the establishment and maintenance of heterochromatin or euchromatin structures, respectively. In this study, we have addressed an important but often neglected aspect of PEV: the frequency of conversions at such loci. We have developed a model and have projected various PEV scenarios based on various rates of conversions. We have also enhanced two existing assays for gene silencing in Saccharomyces cerevisiae to measure the rate of switches from repressed to active state and vice versa. We tested the validity of our methodology in Δsir1 cells and in several mutants with defects in gene silencing. The assays have revealed that the histone chaperone Chromatin Assembly Factor I is involved in the control of epigenetic conversions. Together, our model and assays provide a comprehensive methodology for further investigation of epigenetic stability and position effects.
Collapse
Affiliation(s)
- Daniel C B Jeffery
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada and Department of Genome Medicine, Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang DR, Ding XF, Luo J, Shan YX, Wang R, Lin SJ, Li G, Huang CK, Zhu J, Chen Y, Lee SO, Chang C. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. J Biol Chem 2013; 288:16476-16483. [PMID: 23609451 DOI: 10.1074/jbc.m112.448142] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) stem/progenitor cells are known to have higher chemoresistance than non-stem/progenitor cells, but the underlying molecular mechanism remains unclear. We found the expression of testicular nuclear receptor 4 (TR4) is significantly higher in PCa CD133(+) stem/progenitor cells compared with CD133(-) non-stem/progenitor cells. Knockdown of TR4 levels in the established PCa stem/progenitor cells and the CD133(+) population of the C4-2 PCa cell line with lentiviral TR4 siRNA led to increased drug sensitivity to the two commonly used chemotherapeutic drugs, docetaxel and etoposide, judging from significantly reduced IC50 values and increased apoptosis in the TR4 knockdown cells. Mechanism dissection studies found that suppression of TR4 in these stem/progenitor cells led to down-regulation of Oct4 expression, which, in turn, down-regulated the IL-1 receptor antagonist (IL1Ra) expression. Neutralization experiments via adding these molecules into the TR4 knockdown PCa stem/progenitor cells reversed the chemoresistance, suggesting that the TR4-Oct4-IL1Ra axis may play a critical role in the development of chemoresistance in the PCa stem/progenitor cells. Together, these studies suggest that targeting TR4 may alter chemoresistance of PCa stem/progenitor cells, and this finding provides the possibility of targeting TR4 as a new and better approach to overcome the chemoresistance problem in PCa therapeutics.
Collapse
Affiliation(s)
- Dong-Rong Yang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Xian-Fan Ding
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Department of Urology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310016 China
| | - Jie Luo
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Yu-Xi Shan
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Ronghao Wang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Shin-Jen Lin
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310016 China
| | - Chiung-Kuei Huang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Jin Zhu
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Yuhchyau Chen
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Soo Ok Lee
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China.
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan.
| |
Collapse
|
49
|
Yankulov K. Dynamics and stability: epigenetic conversions in position effect variegation. Biochem Cell Biol 2013; 91:6-13. [DOI: 10.1139/bcb-2012-0048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Position effect variegation (PEV) refers to quasi-stable patterns of gene expression that are observed at specific loci throughout the genomes of eukaryotes. The genes subjected to PEV can be completely silenced or fully active. Stochastic conversions between these 2 states are responsible for the variegated phenotypes. Positional variegation is used by human pathogens (Trypanosoma, Plasmodium, and Candida) to evade the immune system or adapt to the host environment. In the yeasts Saccharomyces cerevisiae and S accharomyces pombe, telomeric PEV aids the adaptation to a changing environment. In metazoans, similar epigenetic conversions are likely to accompany cell differentiation and the setting of tissue-specific gene expression programs. Surprisingly, we know very little about the mechanisms of epigenetic conversions. In this article, earlier models on the nature of PEV are revisited and recent advances on the dynamic nature of chromatin are reviewed. The normal dynamic histone turnover during transcription and DNA replication and its perturbation at transcription and replication pause sites are discussed. It is proposed that such perturbations play key roles in epigenetic conversions and in PEV.
Collapse
Affiliation(s)
- Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
50
|
Paolicchi E, Crea F, Farrar WL, Green JE, Danesi R. Histone lysine demethylases in breast cancer. Crit Rev Oncol Hematol 2012; 86:97-103. [PMID: 23266085 DOI: 10.1016/j.critrevonc.2012.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 01/01/2023] Open
Abstract
Histone lysine demethylases (KDMs) have been recently discovered in mammals and have been nicknamed "erasers" for their ability to remove methyl groups from histone substrates. In cancer cells, KDMs can activate or repress gene transcription, behaving as oncogenes or tumor suppressors depending upon the cellular context. In order to investigate the potential role of KDMs in Breast Cancer (BC), we queried the Oncomine database and determined that the expression of KDMs correlates with BC prognosis. High expression of KDM3B and KDM5A is associated with a better prognosis (no recurrence after mastectomy p=0.005 and response to docetaxel p=0.005); conversely, KDM6A is overexpressed in BC patients with an unfavorable prognosis (mortality at 1 year, p=8.65E-7). Our findings suggest that KDMs could be potential targets for BC therapy. Further, altering the interactions between KDMs and Polycomb Group genes (PcG) may provide novel avenues for therapy that specifically targets these genes in BC.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|