1
|
Cao LL, Liu HR, Ji YJ, Zhang YT, Wang BQ, Xue XH, Wang P, Luo ZH, Wu HG. Research Progress of Vagal Nerve Regulation Mechanism in Acupuncture Treatment of Atrial Fibrillation. Chin J Integr Med 2025; 31:281-288. [PMID: 38990478 DOI: 10.1007/s11655-024-3660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 07/12/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It has a high prevalence and poor prognosis. The application of antiarrhythmic drugs and even surgery cannot completely treat the disease, and there are many sequelae. AF can be classified into the category of "palpitation" in Chinese medicine according to its symptoms. Acupuncture has a significant effect on AF. The authors find that an important mechanism of acupuncture in AF treatment is to regulate the cardiac vagus nerve. Therefore, this article intends to review the distribution and function of vagus nerve in the heart, the application and the regulatroy effect for the treatment of AF.
Collapse
Affiliation(s)
- Lu-Lu Cao
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China
| | - Hui-Rong Liu
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China
| | - Ya-Jie Ji
- Breast Disease Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yin-Tao Zhang
- Graduate College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bing-Quan Wang
- Department of Acupuncture and Moxibusion Tuina Traumatology, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Xiao-Hong Xue
- Breast Disease Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Pei Wang
- Graduate College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Hui Luo
- Graduate College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan-Gan Wu
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China.
| |
Collapse
|
2
|
Severyukhina MS, Ojomoko LO, Shelukhina IV, Kudryavtsev DS, Kryukova EV, Epifanova LA, Denisova DA, Averin AS, Ismailova AM, Shaykhutdinova ER, Dyachenko IA, Egorova NS, Murashev AN, Tsetlin VI, Utkin YN. Non-conventional toxin WTX and its disulfide-fixed synthetic fragments: Interaction with nicotinic acetylcholine receptors and reduction of blood pressure. Int J Biol Macromol 2025; 288:138626. [PMID: 39667465 DOI: 10.1016/j.ijbiomac.2024.138626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Non-conventional snake venom toxins, such as WTX from the cobra Naja kaouthia, are three-finger proteins containing a fifth disulfide bond in the N-terminal polypeptide loop I and inhibiting α7 and muscle-type nicotinic acetylcholine receptors (nAChRs). Because the central polypeptide loop II of non-conventional toxins plays an important role in their biological activity, we synthesized several WTX loop II fragments with two cysteine residues added at the N- and C-termini and oxidized to form a disulfide bond. The inhibition by peptides of several nAChRs subtypes was investigated using different methods and the effects of peptides on the rat arterial pressure and heart rate were analyzed. The synthetic fragments inhibited α7 and muscle-type nAChRs more potently than WTX. We showed for the first time that WTX and its fragments inhibited α9α10 as well as neuronal α3β2 and α4β2 nAChRs, again the synthetic fragments being more potent than WTX. The loop II fragments reduced blood pressure more potently than WTX in normotensive, awake rats. In connection with this, the WTX cardiovascular effects were analyzed and it was found that toxin very weakly affected parameters of papillary muscle contractions with no influence on aortic ring contractility. The observed effects were not so significant to explain the decrease in BP, the hemodynamic effects of WTX appearing not to result from direct influence on the myocardium and blood vessels. The synthetic fragments of the N- and C-terminal loops I and III were inactive in all tests. Thus, both in inhibition of all analyzed nAChR subtypes and in reduction of blood pressure, fragments of the central loop II were more active than WTX. This appears to be a first indication for three-finger proteins that the fragments of the central loop II are more active than the native toxin.
Collapse
Affiliation(s)
- Maria S Severyukhina
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Lucy O Ojomoko
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Irina V Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Denis S Kudryavtsev
- PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lybov A Epifanova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Daria A Denisova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Alexey S Averin
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elvira R Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Igor A Dyachenko
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Natalya S Egorova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia.
| |
Collapse
|
3
|
Nerve growth factor and post-infarction cardiac remodeling. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevalence of sudden death from chronic heart failure and cardiac arrhythmias caused by myocardial infarction is a complex problem in cardiology. Post-infarction cardiac remodeling occurs after myocardial infarction. This compensatory-adaptive reaction, regulated by mechanical, neurohumoral and genetic factors, includes the structural and functional changes of cardiomyocytes, stromal elements and extracellular matrix, geometry and architectonics of the left ventricular cavity. Adverse left ventricular remodeling is associated with heart failure and increased mortality. The concept of post-infarction cardiac remodeling is an urgent problem, since the mechanisms of development and progression of adverse post-infarction changes in the myocardium are completely unexplored. In recent years, the scientist attention has been focused on neurotrophic factors involved in the sympathetic nervous system and the vascular system remodeling after myocardial infarction. Nerve growth factor (NGF) is a protein from the neurotrophin family that is essential for the survival and development of sympathetic and sensory neurons, which also plays an important role in vasculogenesis. Acute myocardial infarction and heart failure are characterized by changes in the expression and activity of neurotrophic factors and their receptors, affecting the innervation of the heart muscle, as well as having a direct effect on cardiomyocytes, endothelial and smooth muscle vascular cells. The identification of the molecular mechanisms involved in the interactions between cardiomyocytes and neurons, as well as the study of the effects of NGF in the cardiovascular system, will improve understanding of the cardiac remodeling mechanism. This review summarizes the available scientific information (2019–2021) about mechanisms of the link between post-infarction cardiac remodeling and NGF functions.
Collapse
|
4
|
Adeoye RI, Joel EB, Igunnu A, Arise RO, Malomo SO. A review of some common African spices with antihypertensive potential. J Food Biochem 2021; 46:e14003. [PMID: 34820859 DOI: 10.1111/jfbc.14003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022]
Abstract
Hypertension is the most common non-communicable disease, with about 1.28 billion hypertensive people worldwide. It is more prevalent in men than women and more common in the elderly. Hereditary, age, obesity, lifestyle, diet, alcohol, and chronic metabolic diseases are the major risk factors of hypertension. Treating hypertension is a complex process as there are several mechanisms responsible for its pathogenesis; hence, a combination of several drugs is used for managing hypertension. Drugs used in managing hypertension are expensive and often come with associated side effects; thus, there is need for alternative means of managing this life-threatening disease. These drugs do not achieve the recommended blood pressure target in most people; more so majority of people with hypertension do not follow the treatment regimen religiously. Some Africans have been reported to become normotensive as a result of dietary consumption of spices. Several spices have been used over the years in Africa to manage hypertension. The aim of this review is to evaluate the ethnomedicinal use, bioactive phytochemical composition, bioactive compounds present, and pharmacological applications of spices commonly used in Africa for managing hypertension. Most of the plants used contained polyphenols, flavonoids, tannins, anthraquinone, flavonoids, cardiac glycosides, and saponins. Dietary supplementation of Xylopia aethiopica and other spices in diet have been proven to significantly reduced plasma angiotensin-I-converting enzyme (ACE) than simvastatin (the reference drug). Toxicological, histological, and hematological evaluation revealed that acute and chronic consumption of most of these spices are safe. Studies have also revealed that some of the spices can be used as alternative therapy alongside usual antihypertensive medications. PRACTICAL IMPLICATION: The prevalent rate of hypertension is on the increase in both the developed and developing countries. People often skip medication due to their busy schedule and anti-hypertensive potential side effects; however, this is not the case with food/spices as most people consumed them daily. Deliberate, right combinations and consistent incorporation of spices with proven anti-hypertensive potential into our diet may be of great benefit in normalizing blood pressure and mitigate other complications on the heart and vital organs.
Collapse
Affiliation(s)
- Raphael I Adeoye
- Enzymology and Drug Design Unit, Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.,Biochemistry Unit, Department of Chemistry and Biochemistry, College of Pure and Applied Sciences, Caleb University, Lagos, Nigeria
| | - Enoch B Joel
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Adedoyin Igunnu
- Enzymology and Drug Design Unit, Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Rotimi O Arise
- Enzymology and Drug Design Unit, Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Sylvia O Malomo
- Enzymology and Drug Design Unit, Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
5
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|