1
|
LaRocca CJ, Jacobsen KL, Inoko K, Zakharkin SO, Yamamoto M, Davydova J. Viral Shedding in Mice following Intravenous Adenovirus Injection: Impact on Biosafety Classification. Viruses 2023; 15:1495. [PMID: 37515182 PMCID: PMC10385405 DOI: 10.3390/v15071495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
There have been numerous advances in gene therapy and oncolytic virotherapy in recent years, especially with respect to cutting-edge animal models to test these novel therapeutics. With all of these advances, it is important to understand the biosafety risks of testing these vectors in animals. We performed adenovirus-based viral shedding studies in murine models to ascertain when it is appropriate to downgrade the animals from Biosafety Level (BSL) 2 to BSL 1 for experimental handling and transport. We utilized intravenous injections of a replication-competent adenovirus and analyzed viral shedding via the collection of buccal and dermal swabs from each animal, in addition to obtaining urine and stool samples. The adenovirus hexon copy number was determined by qPCR, and plaque formation was analyzed to assess the biologic activity of viral particles. Our results demonstrate that after 72 h following viral inoculation, there is no significant quantity of biologically active virus shedding from the animals. This observation suggests that on day 4 following adenovirus injection, mice can be safely downgraded to BSL 1 for the remainder of the experiment with no concern for hazardous exposure to laboratory personnel.
Collapse
Affiliation(s)
- Christopher J LaRocca
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kari L Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kazuho Inoko
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Recent Advances and Challenges in Uveal Melanoma Immunotherapy. Cancers (Basel) 2022; 14:cancers14133094. [PMID: 35804863 PMCID: PMC9264803 DOI: 10.3390/cancers14133094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Uveal melanoma is the most common primary intraocular malignancy in adults. Although it can be controlled locally, half of the patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Existing therapies, such as chemotherapy and targeted therapies, induce only minimal responses. This review focuses on newly published research on immunotherapy. We highlight expanding treatments and their clinical outcomes, as well as propose promising new treatments and feasible checkpoints. Based on these findings, we provide innovative insights into feasible strategies for the treatment of patients with uveal melanoma. Abstract Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Compared to cutaneous melanoma (CM), which mainly harbors BRAF or NRAS mutations, UM predominantly harbors GNAQ or GNA11 mutations. Although primary UM can be controlled locally, approximately 50% of patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Unfortunately, chemotherapy and targeted therapies only induce minimal responses in patients with metastatic UM, with a median survival time of only 4–5 months after metastasis detection. Immunotherapy agents, such as immune checkpoint inhibitors, have achieved pioneering outcomes in CM but have shown limited effects in UM. Researchers have explored several feasible checkpoints to identify options for future therapies. Cancer vaccines have shown little in the way of therapeutic benefit in patients with UM, and there are few ongoing trials providing favorable evidence, but adoptive cell transfer-related therapies seem promising and deserve further investigation. More recently, the immune-mobilizing monoclonal T-cell receptor against the cancer molecule tebentafusp showed impressive antitumor effects. Meanwhile, oncolytic viruses and small molecule inhibitors have also gained ground. This review highlights recent progress in burgeoning treatments and provides innovative insights on feasible strategies for the treatment of UM.
Collapse
|
3
|
AuYeung AWK, Mould RC, Stegelmeier AA, van Vloten JP, Karimi K, Woods JP, Petrik JJ, Wood GA, Bridle BW. Mechanisms that allow vaccination against an oncolytic vesicular stomatitis virus-encoded transgene to enhance safety without abrogating oncolysis. Sci Rep 2021; 11:15290. [PMID: 34315959 PMCID: PMC8316323 DOI: 10.1038/s41598-021-94483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Vaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.
Collapse
Affiliation(s)
- Amanda W K AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Rm. 4834, Bldg. 89, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Liu Y, Cai J, Liu W, Lin Y, Guo L, Liu X, Qin Z, Xu C, Zhang Y, Su X, Deng K, Yan G, Liang J. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade. Cell Death Dis 2020; 11:1062. [PMID: 33311488 PMCID: PMC7733593 DOI: 10.1038/s41419-020-03285-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Guo
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xincheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen Qin
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cuiying Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanming Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kai Deng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Rodriguez-Vidal C, Fernandez-Diaz D, Fernandez-Marta B, Lago-Baameiro N, Pardo M, Silva P, Paniagua L, Blanco-Teijeiro MJ, Piñeiro A, Bande M. Treatment of Metastatic Uveal Melanoma: Systematic Review. Cancers (Basel) 2020; 12:E2557. [PMID: 32911759 PMCID: PMC7565536 DOI: 10.3390/cancers12092557] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION More than 50% of patients with uveal melanoma end up developing metastases. Currently, there is no standard first-line treatment that facilitates proper management of the metastatic disease. METHODS A systematic review of the last 40 years in PubMed with an exhaustive and strict selection of studies was conducted, in which the unit of measurement was overall survival (OS) expressed in Kaplan-Meier curves or numerically. RESULTS After the selection process, 110 articles were included. Regional therapies, such as intra-arterial liver chemotherapy (OS: 2, 9-22 months), isolated liver perfusion (OS: 9, 6-27, 4 months), or selective internal radiation therapy (OS: 18 months in monotherapy and 26 months in combination with other therapies) showed some superiority when compared to systemic therapies, such as chemotherapy (OS: 4, 6-17 months), immunotherapy (OS: 5-19, 1 month), immunosuppression (OS: 11 months), or targeted therapy (OS: 6-12 months), without being significant. CONCLUSIONS The results of this review suggest that there are no important differences in OS when comparing the different current treatment modalities. Most of the differences found seem to be explained by the heterogenicity of the different studies and the presence of biases in their design, rather than actual extensions of patient survival.
Collapse
Affiliation(s)
- Cristina Rodriguez-Vidal
- Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza S/N, 48903 Barakaldo-Vizcaya, Spain;
| | - Daniel Fernandez-Diaz
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Beatriz Fernandez-Marta
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
| | - Nerea Lago-Baameiro
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Pardo
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - Paula Silva
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15705 Santiago de Compostela, Spain
| | - Laura Paniagua
- Department of Ophthalmology, University Hospital of Coruña, Praza Parrote s/n, 15006 A Coruña, Spain;
| | - María José Blanco-Teijeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Antonio Piñeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Manuel Bande
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| |
Collapse
|
6
|
Investigating Macrophages Plasticity Following Tumour-Immune Interactions During Oncolytic Therapies. Acta Biotheor 2019; 67:321-359. [PMID: 31410657 PMCID: PMC6825040 DOI: 10.1007/s10441-019-09357-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 08/02/2019] [Indexed: 12/22/2022]
Abstract
Over the last few years, oncolytic virus therapy has been recognised as a promising approach in cancer treatment, due to the potential of these viruses to induce systemic anti-tumour immunity and selectively killing tumour cells. However, the effectiveness of these viruses depends significantly on their interactions with the host immune responses, both innate (e.g., macrophages, which accumulate in high numbers inside solid tumours) and adaptive (e.g., \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ T cells). In this article, we consider a mathematical approach to investigate the possible outcomes of the complex interactions between two extreme types of macrophages (M1 and M2 cells), effector \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ T cells and an oncolytic Vesicular Stomatitis Virus (VSV), on the growth/elimination of B16F10 melanoma. We discuss, in terms of VSV, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ and macrophages levels, two different types of immune responses which could ensure tumour control and eventual elimination. We show that both innate and adaptive anti-tumour immune responses, as well as the oncolytic virus, could be very important in delaying tumour relapse and eventually eliminating the tumour. Overall this study supports the use mathematical modelling to increase our understanding of the complex immune interaction following oncolytic virotherapies. However, the complexity of the model combined with a lack of sufficient data for model parametrisation has an impact on the possibility of making quantitative predictions.
Collapse
|
7
|
García M, Moreno R, Gil-Martin M, Cascallò M, de Olza MO, Cuadra C, Piulats JM, Navarro V, Domenech M, Alemany R, Salazar R. A Phase 1 Trial of Oncolytic Adenovirus ICOVIR-5 Administered Intravenously to Cutaneous and Uveal Melanoma Patients. Hum Gene Ther 2018; 30:352-364. [PMID: 30234393 DOI: 10.1089/hum.2018.107] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses represent a unique type of agents that combine self-amplification, lytic, and immunostimulatory properties against tumors. A local and locoregional clinical benefit has been demonstrated upon intratumoral injections of an oncolytic herpes virus in melanoma patients, leading to its approval in the United States and Europe for patients without visceral disease (up to stage IVM1a). However, in order to debulk and change the local immunosuppressive environment of tumors that cannot be injected directly, oncolyitc viruses need to be administered systemically. Among different viruses, adenovirus has been extensively used in clinical trials but with few evidences of activity upon systemic administration. Preclinical efficacy of a single intravenous administration of our oncolytic adenovirus ICOVIR5, an adenovirus type 5 responsive to the retinoblastoma pathway commonly deregulated in tumors, led us to use this virus in a dose-escalation phase 1 trial in metastatic melanoma patients. The results in 12 patients treated with a single infusion of a dose up to 1 × 1013 viral particles show that ICOVIR5 can reach melanoma metastases upon a single intravenous administration but fails to induce tumor regressions. These results support the systemic administration of armed oncolytic viruses to treat disseminated cancer.
Collapse
Affiliation(s)
- Margarita García
- 1 Clinical Research Unit, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Rafael Moreno
- 2 ProCure and Oncobell Programs, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Marta Gil-Martin
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Manel Cascallò
- 2 ProCure and Oncobell Programs, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain.,4 VCN Biosciences, Sant Cugat del Valles, Barcelona, Spain
| | - Maria Ochoa de Olza
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Carmen Cuadra
- 1 Clinical Research Unit, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Josep Maria Piulats
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Valentin Navarro
- 1 Clinical Research Unit, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Marta Domenech
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Ramon Alemany
- 2 ProCure and Oncobell Programs, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Ramon Salazar
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| |
Collapse
|
8
|
Feola S, Capasso C, Fusciello M, Martins B, Tähtinen S, Medeot M, Carpi S, Frascaro F, Ylosmäki E, Peltonen K, Pastore L, Cerullo V. Oncolytic vaccines increase the response to PD-L1 blockade in immunogenic and poorly immunogenic tumors. Oncoimmunology 2018; 7:e1457596. [PMID: 30221051 DOI: 10.1080/2162402x.2018.1457596] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Activation of immune checkpoint pathways and limited T- cell infiltration result in immunological escape of tumors. Although immune checkpoint inhibitors are currently approved for several types of cancers, the response rate is often limited by the lack of tumor specific T-cells within the malignant tissue. Therefore, new combinatorial strategies are needed to enhance the clinical benefit of immune checkpoint inhibitors. We have previously developed PeptiCRAd, an oncolytic vaccine platform capable of directing the immune response toward tumor epitopes. In this study, we evaluated whether the platform could be used to increase the response rate to checkpoint inhibitors in both highly immunogenic and poorly immunogenic tumors, such as melanoma and triple negative breast cancer (TNBC). We report here that anti-PD-L1 therapy in combination with PeptiCRAd significantly reduced the growth of melanomas and increased the response rate to checkpoint inhibition. In fact, we registered a higher rate of complete responses among mice treated with the combination. This approach promoted the presence of non-exhausted antigen-specific T-cells within the tumor in comparison to anti-PD-L1 monotherapy. Furthermore, we found that targeting both MHC-I and II restricted tumor epitopes was necessary to decrease the growth of the poorly immunogenic TNBC model 4T1 and that combination with PD-L1 blockade increased the number of responders to checkpoint inhibition. Finally, the described strategy was validated in a translational in vitro model using HLA matched human PBMCs and tumor cell lines. Consistent to our previous results, improved cytotoxicity was observed with combination of PeptiCRAd and anti-PD-L1. These results demonstrate that oncolytic virus based cancer vaccine can significantly improve the response rate to checkpoint blocking antibodies in the context of immunogenic and non-immunogenic tumors.
Collapse
Affiliation(s)
- S Feola
- Dipartimento di medicina Molecolare e Biotecnologie Mediche, Universitá di Napoli Federico II, Via Pansini 5, Naples, Italy
| | - C Capasso
- Laboratory of Immunovirotherapy, Drug Research Doctoral Program, University of Helsinki, Helsinki, Finland
| | - M Fusciello
- Laboratory of Immunovirotherapy, Drug Research Doctoral Program, University of Helsinki, Helsinki, Finland
| | - B Martins
- Laboratory of Immunovirotherapy, Drug Research Doctoral Program, University of Helsinki, Helsinki, Finland
| | - S Tähtinen
- Laboratory of Immunovirotherapy, Drug Research Doctoral Program, University of Helsinki, Helsinki, Finland
| | - M Medeot
- Department of pharmaceutical and pharmacological sciences, University of Padova, Via F. Marzolo 5, Padova, Italy
| | - S Carpi
- Department of Pharmacy, University of Pisa, Lungarno Antonio Pacinotti, Pisa, Italy
| | - F Frascaro
- University of Siena, via Aldo Moro 2, Siena, Italy
| | - E Ylosmäki
- Laboratory of Immunovirotherapy, Drug Research Doctoral Program, University of Helsinki, Helsinki, Finland
| | - K Peltonen
- Laboratory of Immunovirotherapy, Drug Research Doctoral Program, University of Helsinki, Helsinki, Finland
| | - L Pastore
- Dipartimento di medicina Molecolare e Biotecnologie Mediche, Universitá di Napoli Federico II, Via Pansini 5, Naples, Italy.,Helsinki Institute of Life Science, HILIFE, University of Helsinki, Helsinki, Finland
| | - V Cerullo
- Laboratory of Immunovirotherapy, Drug Research Doctoral Program, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, HILIFE, University of Helsinki, Helsinki, Finland.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
9
|
Abstract
The clinical effectiveness of immunotherapies for prostate cancer remains subpar compared with that for other cancers. The goal of most immunotherapies is the activation of immune effectors, such as T cells and natural killer cells, as the presence of these activated mediators positively correlates with patient outcomes. Clinical evidence shows that prostate cancer is immunogenic, accessible to the immune system, and can be targeted by antitumour immune responses. However, owing to the detrimental effects of prostate-cancer-associated immunosuppression, even the newest immunotherapeutic approaches fail to initiate the clinically desired antitumour immune reaction. Oncolytic viruses, originally used for their preferential cancer-killing activity, are now being recognized for their ability to overturn cancer-associated immune evasion and promote otherwise absent antitumour immunity. This oncolytic-virus-induced subversion of tumour-associated immunosuppression can potentiate the effectiveness of current immunotherapeutics, including immune checkpoint inhibitors (for example, antibodies against programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1), and cytotoxic T lymphocyte antigen 4 (CTLA4)) and chemotherapeutics that induce immunogenic cell death (for example, doxorubicin and oxaliplatin). Importantly, oncolytic-virus-induced antitumour immunity targets existing prostate cancer cells and also establishes long-term protection against future relapse. Hence, the strategic use of oncolytic viruses as monotherapies or in combination with current immunotherapies might result in the next breakthrough in prostate cancer immunotherapy.
Collapse
|
10
|
Replication and Oncolytic Activity of an Avian Orthoreovirus in Human Hepatocellular Carcinoma Cells. Viruses 2017; 9:v9040090. [PMID: 28441762 PMCID: PMC5408696 DOI: 10.3390/v9040090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses are cancer therapeutics with promising outcomes in pre-clinical and clinical settings. Animal viruses have the possibility to avoid pre-existing immunity in humans, while being safe and immunostimulatory. We isolated an avian orthoreovirus (ARV-PB1), and tested it against a panel of hepatocellular carcinoma cells. We found that ARV-PB1 replicated well and induced strong cytopathic effects. It was determined that one mechanism of cell death was through syncytia formation, resulting in apoptosis and induction of interferon stimulated genes (ISGs). As hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma worldwide, we investigated the effect of ARV-PB1 against cells already infected with this virus. Both HCV replicon-containing and infected cells supported ARV-PB1 replication and underwent cytolysis. Finally, we generated in silico models to compare the structures of human reovirus- and ARV-PB1-derived S1 proteins, which are the primary targets of neutralizing antibodies. Tertiary alignments confirmed that ARV-PB1 differs from its human homolog, suggesting that immunity to human reoviruses would not be a barrier to its use. Therefore, ARV-PB1 can potentially expand the repertoire of oncolytic viruses for treatment of human hepatocellular carcinoma and other malignancies.
Collapse
|
11
|
Lal S, Peng KW, Steele MB, Jenks N, Ma H, Kohanbash G, Phillips JJ, Raffel C. Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice. HUM GENE THER CL DEV 2016; 27:145-151. [PMID: 27604429 DOI: 10.1089/humc.2016.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The modified Edmonston vaccine strain of measles virus (MV) has shown potent oncolytic efficacy against various tumor types and is being investigated in clinical trials. Our laboratory showed that MV effectively kills medulloblastoma tumor cells in both localized disease and when tumor cells are disseminated through cerebrospinal fluid (CSF). Although the safety of repeated intracerebral injection of modified MV in rhesus macaques has been established, the safety of administering MV into CSF has not been adequately investigated. In this study, we assessed the safety of MV-NIS (MV modified to express the human sodium iodide symporter protein) injected into the CSF of measles-immunized and measles virus-susceptible transgenic (CD46, IFNαRko) mice. Treated animals were administered a single intraventricular injection of 1 × 105 or 1 × 106 TCID50 (50% tissue culture infective dose) of MV-NIS. Detailed clinical observation was performed over a 90-day period. Clinically, we did not observe any measles-related toxic effects or behavioral abnormality in animals of any treated cohort. The complete blood count and blood chemistry analysis results were found to be within normal range for all the cohorts. Histologic examination of brains and spinal cords revealed inflammatory changes, mostly related to the needle track; these resolved by day 21 postinjection. To assess viral biodistribution, quantitative RT-PCR to detect the measles virus N-protein was performed on blood and brain samples. Viral RNA was not detectable in the blood as soon as 2 days after injection, and virus cleared from the brain by 45 days postadministration in all treatment cohorts. In conclusion, our data suggest that a single injection of modified MV into the CSF is safe and can be used in future therapeutic applications.
Collapse
Affiliation(s)
- Sangeet Lal
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Kah-Whye Peng
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael B Steele
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Nathan Jenks
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Hong Ma
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Gary Kohanbash
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Joanna J Phillips
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Corey Raffel
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| |
Collapse
|
12
|
Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Curiel DT. Combinatorial strategies based on CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis treatment for ovarian cancer. J Ovarian Res 2016; 9:38. [PMID: 27349517 PMCID: PMC4924320 DOI: 10.1186/s13048-016-0248-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Background A major hurdle incurrent to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy agents is their limited therapeutic efficacy. In this study we evaluated whether arming our previously reported Ad5/3Δ24 CRAd vector containing a 24-base pair deletion in the E1A conserved region 2, which allows selective replication within Rb-p16-deficient tumor cells, to express therapeutic genes could improve oncolytic virus potency in ovarian cancer cells. We choose to assess the therapeutic benefits achieved by virus-mediated expression of interleukin 24 (IL-24), a cytokine-like protein of the IL-10 family, and the inhibitor of growth 4 (ING4) tumor suppressor protein. Results The generated CRAd-IL24 and CRAd-ING4 vectors were tested in ovarian cancer cell lines in vitro to compare their replication, yield, and cytotoxic effects with control CRAd Ad5/3∆24 lacking the therapeutic gene. These studies showed that CRAd-IL24 infection resulted in significantly increased yield of infectious particles, which translated to a marked enhancement of virus-induced cytotoxic effects as compared to CRAd-ING4 and non-armed CRAd. Testing CRAd-IL24 and CRAd-ING4 vectors combined together did not revealed synergistic effects exceeding oncolytic potency of single CRAD-IL24 vector. Both CRAds were also tested along with anti-VEGF monoclonal antibody Avastin and showed no significant augmentation of viral cytolysis by anti-angiogenesis treatment in vitro. Conclusions Our studies validated that arming with these key immunomodulatory genes was not deleterious to virus-mediated oncolysis. These findings thus, warrant further preclinical studies of CRAd-IL24 tumoricidal efficacy in murine ovarian cancer models to establish its potential utility for the virotherapy of primary and advanced neoplastic diseases.
Collapse
Affiliation(s)
- Ahmad Mohammad Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Igor P Dmitriev
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Elena A Kashentseva
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - David T Curiel
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Nistal-Villan E, Bunuales M, Poutou J, Gonzalez-Aparicio M, Bravo-Perez C, Quetglas JI, Carte B, Gonzalez-Aseguinolaza G, Prieto J, Larrea E, Hernandez-Alcoceba R. Enhanced therapeutic effect using sequential administration of antigenically distinct oncolytic viruses expressing oncostatin M in a Syrian hamster orthotopic pancreatic cancer model. Mol Cancer 2015; 14:210. [PMID: 26671477 PMCID: PMC4681018 DOI: 10.1186/s12943-015-0479-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The limited efficacy of current treatments against pancreatic cancer has prompted the search of new alternatives such as virotherapy. Activation of the immune response against cancer cells is emerging as one of the main mechanisms of action of oncolytic viruses (OV). Direct oncolysis releases tumor antigens, and viral replication within the tumor microenvironment is a potent danger signal. Arming OV with immunostimulatory transgenes further enhances their therapeutic effect. However, standard virotherapy protocols do not take full advantage of OV as cancer vaccines because repeated viral administrations may polarize immune responses against strong viral antigens, and the rapid onset of neutralizing antibodies limits the efficacy of redosing. An alternative paradigm based on sequential combination of antigenically distinct OV has been recently proposed. METHODS We have developed a protocol consisting of sequential intratumor administrations of new Adenovirus (Ad) and Newcastle Disease Virus (NDV)-based OV encoding the immunostimulatory cytokine oncostatin M (OSM). Transgene expression, toxicity and antitumor effect were evaluated using an aggressive orthotopic pancreatic cancer model in Syrian hamsters, which are sensitive to OSM and permissive for replication of both OVs. RESULTS NDV-OSM was more cytolytic, whereas Ad-OSM caused higher OSM expression in vivo. Both viruses achieved only a marginal antitumor effect in monotherapy. In addition, strong secretion of OSM in serum limited the maximal tolerated dose of Ad-OSM. In contrast, moderate doses of Ad-OSM followed one week later by NDV-OSM were safe, showed a significant antitumor effect and stimulated immune responses against cancer cells. Similar efficacy was observed when the order of virus administrations was reversed. CONCLUSION Sequential administration of oncolytic Ad and NDV encoding OSM is a promising approach against pancreatic cancer.
Collapse
Affiliation(s)
- Estanislao Nistal-Villan
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| | - Maria Bunuales
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| | - Joanna Poutou
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| | - Manuela Gonzalez-Aparicio
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| | - Carlos Bravo-Perez
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain.
| | - Jose I Quetglas
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| | - Beatriz Carte
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| | - Jesus Prieto
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,CIBERehd, University Clinic of Navarra, Pamplona, Spain.
| | - Esther Larrea
- IdiSNA, Navarra health research institute, Pamplona, Spain. .,Instituto de Salud Tropical, University of Navarra, Pamplona, Spain.
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. CIMA Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra health research institute, Pamplona, Spain.
| |
Collapse
|
14
|
Rodríguez-García A, Svensson E, Gil-Hoyos R, Fajardo CA, Rojas LA, Arias-Badia M, Loskog ASI, Alemany R. Insertion of exogenous epitopes in the E3-19K of oncolytic adenoviruses to enhance TAP-independent presentation and immunogenicity. Gene Ther 2015; 22:596-601. [PMID: 25994521 DOI: 10.1038/gt.2015.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/18/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022]
Abstract
Oncolytic adenoviruses can promote immune responses against tumors by expressing and/or displaying tumor-associated antigens. However, the strong immunodominance of viral antigens mask responses against tumor epitopes. In addition, defects in major histocompatibility complex class I antigen presentation pathway such as the downregulation of the transporter-associated with antigen processing (TAP) are frequently associated with immune evasion of tumor cells. To promote the immunogenicity of exogenous epitopes in the context of an oncolytic adenovirus, we have taken advantage of the ER localization of the viral protein E3-19K. We have inserted tumor-associated epitopes after the N-terminal signal sequence for membrane insertion of this protein and flanked them with linkers cleavable by the protease furin to facilitate their TAP-independent presentation. This strategy allowed an enhanced presentation of the exogenous epitopes in TAP-deficient tumor cells in vitro and the generation of higher specific immune responses in vivo that were able to significantly control tumor growth.
Collapse
Affiliation(s)
- A Rodríguez-García
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - E Svensson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - R Gil-Hoyos
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - C A Fajardo
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - L A Rojas
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Arias-Badia
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - A S I Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - R Alemany
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Abstract
Oncolytic virus (OV) therapy currently represents one of the most promising approaches to cancer treatment for their dual anticancer mechanisms: direct lysis of cancer cells (oncolytic feature) and activation of the immunosystem (cancer vaccine aspect). The latter demonstrates the advantage of a multi-target approach against multiple tumor-associated antigens. Since the 2005 SFDA (the Chinese FDA) approval for the clinical use of Oncorine™, the first human OV-based cancer treatment, more than 200 patents have been filed worldwide and several Phase I/II studies have been conducted. This patent review analyzes patents and clinical studies of the most promising OV products to highlight the pros and cons of this innovative anticancer approach, which is currently being tested in several cancers (i.e., hepatocellular carcinoma, melanoma and glioblastoma) by systemic as well as intratumoral injection. Clinical results, although effective only for a limited period of time, are encouraging. Combined treatments with radio or chemotherapeutic protocols are also in progress.
Collapse
|
16
|
Abstract
Oncolytic virotherapy is an emerging technology that uses engineered viruses to treat malignancies. Viruses can be designed with biological specificity to infect cancerous cells preferentially, and to replicate in these cells exclusively. Malignant cells may be killed directly by overwhelming viral infection and lysis, which releases additional viral particles to infect neighboring cells and distant metastases. Viral infections may also activate the immune system, unmask stealthy tumor antigens, and aid the immune system to recognize and attack neoplasms. Delivery of live virus particles is potentially complex, and may require the expertise of the interventional community.
Collapse
|
17
|
Oncolytic Adenoviruses in Cancer Treatment. Biomedicines 2014; 2:36-49. [PMID: 28548059 PMCID: PMC5423481 DOI: 10.3390/biomedicines2010036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/01/2023] Open
Abstract
The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.
Collapse
|
18
|
Puig-Saus C, Laborda E, Rodríguez-García A, Cascalló M, Moreno R, Alemany R. The combination of i-leader truncation and gemcitabine improves oncolytic adenovirus efficacy in an immunocompetent model. Cancer Gene Ther 2014; 21:68-73. [PMID: 24434571 DOI: 10.1038/cgt.2013.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/06/2023]
Abstract
Adenovirus (Ad) i-leader protein is a small protein of unknown function. The C-terminus truncation of the i-leader protein increases Ad release from infected cells and cytotoxicity. In the current study, we use the i-leader truncation to enhance the potency of an oncolytic Ad. In vitro, an i-leader truncated oncolytic Ad is released faster to the supernatant of infected cells, generates larger plaques, and is more cytotoxic in both human and Syrian hamster cell lines. In mice bearing human tumor xenografts, the i-leader truncation enhances oncolytic efficacy. However, in a Syrian hamster pancreatic tumor model, which is immunocompetent and less permissive to human Ad, antitumor efficacy is only observed when the i-leader truncated oncolytic Ad, but not the non-truncated version, is combined with gemcitabine. This synergistic effect observed in the Syrian hamster model was not seen in vitro or in immunodeficient mice bearing the same pancreatic hamster tumors, suggesting a role of the immune system in this synergism. These results highlight the interest of the i-leader C-terminus truncation because it enhances the antitumor potency of an oncolytic Ad and provides synergistic effects with gemcitabine in the presence of an immune competent system.
Collapse
Affiliation(s)
- C Puig-Saus
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia (IDIBELL-ICO), Barcelona, Spain
| | - E Laborda
- 1] Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia (IDIBELL-ICO), Barcelona, Spain [2] Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Rodríguez-García
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia (IDIBELL-ICO), Barcelona, Spain
| | - M Cascalló
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia (IDIBELL-ICO), Barcelona, Spain
| | - R Moreno
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia (IDIBELL-ICO), Barcelona, Spain
| | - R Alemany
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia (IDIBELL-ICO), Barcelona, Spain
| |
Collapse
|
19
|
Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 2013; 12:103. [PMID: 24020520 PMCID: PMC3847443 DOI: 10.1186/1476-4598-12-103] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/06/2013] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) are tumor-selective, multi-mechanistic antitumor agents. They kill infected cancer and associated endothelial cells via direct oncolysis, and uninfected cells via tumor vasculature targeting and bystander effect. Multimodal immunogenic cell death (ICD) together with autophagy often induced by OVs not only presents potent danger signals to dendritic cells but also efficiently cross-present tumor-associated antigens from cancer cells to dendritic cells to T cells to induce adaptive antitumor immunity. With this favorable immune backdrop, genetic engineering of OVs and rational combinations further potentiate OVs as cancer vaccines. OVs armed with GM-CSF (such as T-VEC and Pexa-Vec) or other immunostimulatory genes, induce potent anti-tumor immunity in both animal models and human patients. Combination with other immunotherapy regimens improve overall therapeutic efficacy. Coadministration with a HDAC inhibitor inhibits innate immunity transiently to promote infection and spread of OVs, and significantly enhances anti-tumor immunity and improves the therapeutic index. Local administration or OV mediated-expression of ligands for Toll-like receptors can rescue the function of tumor-infiltrating CD8+ T cells inhibited by the immunosuppressive tumor microenvironment and thus enhances the antitumor effect. Combination with cyclophosphamide further induces ICD, depletes Treg, and thus potentiates antitumor immunity. In summary, OVs properly armed or in rational combinations are potent therapeutic cancer vaccines.
Collapse
Affiliation(s)
- David L Bartlett
- University of Pittsburgh Cancer Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hirvinen M, Heiskanen R, Oksanen M, Pesonen S, Liikanen I, Joensuu T, Kanerva A, Cerullo V, Hemminki A. Fc-gamma receptor polymorphisms as predictive and prognostic factors in patients receiving oncolytic adenovirus treatment. J Transl Med 2013; 11:193. [PMID: 23965133 PMCID: PMC3765225 DOI: 10.1186/1479-5876-11-193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Oncolytic viruses have shown potential as cancer therapeutics, but not all patients seem to benefit from therapy. Polymorphisms in Fc gamma receptors (FcgRs) lead to altered binding affinity of IgG between the receptor allotypes and therefore contribute to differences in immune defense mechanisms. Associations have been identified between FcgR polymorphisms and responsiveness to different immunotherapies. Taken together with the increasing understanding that immunological factors might determine the efficacy of oncolytic virotherapy we studied whether FcgR polymorphisms would have prognostic and/or predictive significance in the context of oncolytic adenovirus treatments. METHODS 235 patients with advanced solid tumors were genotyped for two FcgR polymorphisms, FcgRIIa-H131R (rs1801274) and FcgRIIIa-V158F (rs396991), using TaqMan based qPCR. The genotypes were correlated with patient survival and tumor imaging data. RESULTS In patients treated with oncolytic adenoviruses, overall survival was significantly shorter if the patient had an FcgRIIIa-VV/ FcgRIIa-HR (VVHR) genotype combination (P = 0,032). In contrast, patients with FFHR and FFRR genotypes had significantly longer overall survival (P = 0,004 and P = 0,006, respectively) if they were treated with GM-CSF-armed adenovirus in comparison to other viruses. Treatment of these patients with unarmed virus correlated with shorter survival (P < 0,0005 and P = 0,016, respectively). Treating FFHH individuals with CD40L-armed virus resulted in longer survival than treatment with other viruses (P = 0,047). CONCLUSIONS Our data are compatible with the hypothesis that individual differences in effector cell functions, such as NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and tumor antigen presentation by APCs caused by polymorphisms in FcgRs could play role in the effectiveness of oncolytic virotherapies. If confirmed in larger populations, FcgR polymorphisms could have potential as prognostic and predictive biomarkers for oncolytic adenovirus therapies to enable better selection of patients for clinical trials. Also, putative associations between genotypes, different viruses and survival implicate potentially important mechanistic issues.
Collapse
Affiliation(s)
- Mari Hirvinen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, Helsinki 00290, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med 2013; 11:79. [PMID: 23531320 PMCID: PMC3621142 DOI: 10.1186/1479-5876-11-79] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/20/2013] [Indexed: 12/18/2022] Open
Abstract
Background Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers. Methods Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models. Results In this study we demonstrated for the first time that the replication-competent recombinant VACV GLV-1h68 efficiently infected, replicated in, and subsequently lysed various human colorectal cancer lines (Colo 205, HCT-15, HCT-116, HT-29, and SW-620) derived from patients at all four stages of disease. Additionally, in tumor xenograft models in athymic nude mice, a single injection of intravenously administered GLV-1h68 significantly inhibited tumor growth of two different human colorectal cell line tumors (Duke’s type A-stage HCT-116 and Duke’s type C-stage SW-620), significantly improving survival compared to untreated mice. Expression of the viral marker gene ruc-gfp allowed for real-time analysis of the virus infection in cell cultures and in mice. GLV-1h68 treatment was well-tolerated in all animals and viral replication was confined to the tumor. GLV-1h68 treatment elicited a significant up-regulation of murine immune-related antigens like IFN-γ, IP-10, MCP-1, MCP-3, MCP-5, RANTES and TNF-γ and a greater infiltration of macrophages and NK cells in tumors as compared to untreated controls. Conclusion The anti-tumor activity observed against colorectal cancer cells in these studies was a result of direct viral oncolysis by GLV-1h68 and inflammation-mediated innate immune responses. The therapeutic effects occurred in tumors regardless of the stage of disease from which the cells were derived. Thus, the recombinant vaccinia virus GLV-1h68 has the potential to treat colorectal cancers independently of the stage of progression.
Collapse
|
22
|
Abstract
During the last decade adenovirus has lost its appeal in gene therapy due to a high immunogenicity that leads to a transient gene expression. However, adenovirus has gained attention as replication-competent vector to treat cancer. Designed for virotherapy, adenovirus has been successfully modified to replicate selectively in tumor cells. After the initial clinical trials with tumor-selective adenoviruses, it has become clear that further improvements on tumor targeting, intratumoral dissemination, and modulation of antiviral and antitumor immune responses are needed to effectively treat cancer. The non-viral delivery of infectious DNA encoding an oncolytic adenovirus armed with extracellular matrix-degrading genes and with genes that regulate the immune system to favor antitumor instead of antiviral immunity are key in the design oncolytic adenovirus.
Collapse
Affiliation(s)
- Ramon Alemany
- Translational Research Laboratory, Institut Català d'Oncologia-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
23
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
24
|
Alemany R. Viruses in cancer treatment. Clin Transl Oncol 2012; 15:182-8. [DOI: 10.1007/s12094-012-0951-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 01/21/2023]
|
25
|
Bunuales M, Garcia-Aragoncillo E, Casado R, Quetglas JI, Hervas-Stubbs S, Bortolanza S, Benavides-Vallve C, Ortiz-de-Solorzano C, Prieto J, Hernandez-Alcoceba R. Evaluation of monocytes as carriers for armed oncolytic adenoviruses in murine and Syrian hamster models of cancer. Hum Gene Ther 2012; 23:1258-68. [PMID: 22985305 DOI: 10.1089/hum.2012.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Replication-competent (oncolytic) adenoviruses (OAV) can be adapted as vectors for the delivery of therapeutic genes, with the aim of extending the antitumor effect beyond direct cytolysis. Transgene expression using these vectors is usually intense but short-lived, and repeated administrations are hampered by the rapid appearance of neutralizing antibodies (NAbs). We have studied the performance of monocytes as cell carriers to improve transgene expression in cancer models established in athymic mice and immunocompetent Syrian hamsters. Human and hamster monocytic cell lines (MonoMac6 and HM-1, respectively) were loaded with replication-competent adenovirus-expressing luciferase. Intravenous administration of these cells caused a modest increase in transgene expression in tumor xenografts, but this effect was virtually lost in hamsters. In contrast, intratumoral administration of HM-1 cells allowed repeated cycles of expression and achieved partial protection from NAbs in preimmunized hamsters bearing pancreatic tumors. To explore the therapeutic potential of this approach, HM-1 cells were loaded with a hypoxia-inducible OAV expressing the immunostimulatory cytokine interleukin-12 (IL-12). Three cycles of treatment achieved a significant antitumor effect in the hamster model, and transgene expression was detected following each administration, in contrast with the rapid neutralization of the free virus. We propose monocytes as carriers for multiple intratumoral administrations of armed OAVs.
Collapse
Affiliation(s)
- Maria Bunuales
- Division of Hepatology and Gene Therapy, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hiss DC, Fielding BC. Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Expert Opin Biol Ther 2012; 12:1427-47. [PMID: 22788715 DOI: 10.1517/14712598.2012.707183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) occupy a strategic niche in the dynamic era of biological and gene therapy of human cancers. However, the use of OVs is the subject of close scrutiny due to impediments such as the insufficiency of patient generalizations posed by heterogeneous tumor responses to treatment, inherent or potentially lethal viral pathogenicities, unanticipated host- or immune-related adverse effects, and the emergence of virus-resistant cancer cells. These challenges can be overcome by the design and development of more definitive (optimized, targeted, and individualized) cancer virotherapeutics. AREAS COVERED The translation of current knowledge and recent innovations into rational treatment prospects hinges on an iterative loop of variables pertaining to genetically engineered viral oncolytic efficacy and safety profiles, mechanism-of-action data, potencies of synergistic oncolytic viral combinations with conventional tumor, immuno-, chemo-, and radiation treatment modalities, optimization of the probabilities of treatment successes in heterogeneous (virus-sensitive and -resistant) tumor cell populations by mathematical modeling, and lessons learned from preclinical studies and human clinical trials. EXPERT OPINION In recent years, it has become increasingly clear that proof-of-principle is critical for the preclinical optimization of oncolytic viruses to target heterogeneous forms of cancer and to prioritize current concerns related to the efficacy and safety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Donavon C Hiss
- University of the Western Cape, Department of Medical Biosciences, Molecular Oncology Research Laboratory, Bellville, 7535, South Africa.
| | | |
Collapse
|
27
|
Armstrong L, Arrington A, Han J, Gavrikova T, Brown E, Yamamoto M, Vickers SM, Davydova J. Generation of a novel, cyclooxygenase-2-targeted, interferon-expressing, conditionally replicative adenovirus for pancreatic cancer therapy. Am J Surg 2012; 204:741-50. [PMID: 22748294 DOI: 10.1016/j.amjsurg.2012.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oncolytic adenoviruses provide a promising alternative for cancer treatment. Recently, adjuvant interferon (IFN)-alfa has shown significant survival benefits for pancreatic cancer, yet was impeded by systemic toxicity. To circumvent these problems adenovirus with high-level targeted IFN-alfa expression can be generated. METHODS Conditionally replicative adenoviruses (CRAds) with improved virulence and selectivity for pancreatic cancer were generated. The vectors were tested in vitro, in vivo, and in human pancreatic cancer and normal tissue specimens. RESULTS Adenoviral death protein and fiber modifications significantly improved oncolysis. CRAds selectively replicated in vitro, in vivo and showed persistent spread in cancer xenografts. They showed high-level replication in human pancreatic cancer specimens, but not in normal tissues. Improved IFN-CRAd oncolytic efficiency was shown. CONCLUSIONS Optimized cyclooxygenase-2 CRAds show highly favorable effects in vitro and in vivo. We report a pancreatic cancer-specific, highly virulent, IFN-expressing CRAd, and we believe that adenovirus-based IFN therapy offers a new treatment opportunity for pancreatic cancer patients.
Collapse
Affiliation(s)
- Leonard Armstrong
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Verapamil results in increased blood levels of oncolytic adenovirus in treatment of patients with advanced cancer. Mol Ther 2011; 20:221-9. [PMID: 22044933 DOI: 10.1038/mt.2011.230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Calcium channel blockers including verapamil have been proposed to enhance release and antitumor efficacy of oncolytic adenoviruses in preclinical studies but this has not been studied in humans before. Here, we studied if verapamil leads to increased replication of oncolytic adenovirus in cancer patients, as measured by release of virions from tumor cells into the systemic circulation. The study was conducted as a matched case-control study of advanced cancer patients treated with oncolytic adenoviruses with or without verapamil. We observed that verapamil increased mean virus titers present in blood after treatment (P < 0.05). The frequency or severity of adverse events was not increased, nor were cytokine responses or neutralizing antibody levels different between groups. Signs of possible treatment-related clinical benefits were observed in both groups, but there was no significant difference in responses or survival. Thus, our data suggests that the combination of verapamil with oncolytic adenoviruses is safe and well tolerated. Moreover, verapamil treatment seems to result in higher virus titers in blood, indicating enhanced overall replication in tumors. A randomized trial is needed to confirm these findings and to study if enhanced replication results in benefits to patients.
Collapse
|
29
|
Adenovirus i-leader truncation bioselected against cancer-associated fibroblasts to overcome tumor stromal barriers. Mol Ther 2011; 20:54-62. [PMID: 21863000 DOI: 10.1038/mt.2011.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tumor-associated stromal cells constitute a major hurdle in the antitumor efficacy with oncolytic adenoviruses. To overcome this biological barrier, an in vitro bioselection of a mutagenized AdwtRGD stock in human cancer-associated fibroblasts (CAFs) was performed. Several rounds of harvest at early cytopathic effect (CPE) followed by plaque isolation led us to identify one mutant with large plaque phenotype, enhanced release in CAFs and enhanced cytotoxicity in CAF and several tumor cell lines. Whole genome sequencing and functional mapping identified the truncation of the last 17 amino acids in C-terminal end of the i-leader protein as the mutation responsible for this phenotype. Similar mutations have been previously isolated in two independent bioselection processes in tumor cell lines. Importantly, our results establish the enhanced antitumor activity in vivo of the i-leader C-terminal truncated mutants, especially in a desmotic fibroblast-embedded lung carcinoma model in mice. These results indicate that the i-leader truncation represents a promising trait to improve virotherapy with oncolytic adenoviruses.
Collapse
|
30
|
Pesonen S, Kangasniemi L, Hemminki A. Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data. Mol Pharm 2010; 8:12-28. [PMID: 21126047 DOI: 10.1021/mp100219n] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sari Pesonen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lotta Kangasniemi
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
31
|
Abstract
Cancer treatments have improved steadily, but still only few metastatic solid tumors can be cured. Apoptosis-resistant clones frequently develop following standard treatments. Resistance factors are shared between different treatment regimens and, therefore, loss of response can occur rapidly, despite changing the drug, and there is a tendency for crossresistance between modalities. Therefore, new agents with novel mechanisms of action are desperately needed. Oncolytic adenoviruses, featuring cancer-selective cell lysis and spread, constitute an interesting drug platform aimed towards the goals of tumor specificity, and have been engineered in a variety of ways to improve their selectivity and efficacy. They allow rational drug development by the genetic incorporation of targeting mechanisms that can exert their function at different stages of the viral replication cycle. Owing to their immunogenicity, adenoviruses are particularly attractive for immunostimulatory purposes.
Collapse
Affiliation(s)
| | - Akseli Hemminki
- HUSLAB, Helsinki University Central Hospital, Finland; Cancer Gene Therapy Group, Molecular Cancer Biology Program & Haartman Institute & Transplantation Laboratory & Finnish Institute for Molecular Medicine, University of Helsinki, PO Box 63, Biomedicum B506b, 00014 University of Helsinki, Finland
| |
Collapse
|
32
|
Abstract
Vaccinia virus (VACV) is arguably the most successful live biotherapeutic agent because of its critical role in the eradication of smallpox, one of the most deadly diseases in human history. VACV has been exploited as an oncolytic therapeutic agent for cancer since 1922. This virus selectively infects and destroys tumor cells, while sparing normal cells, both in cell cultures and in animal models. A certain degree of therapeutic efficacy also has been demonstrated in patients with different types of cancer. In recent years, several strategies have been successfully developed to further improve its tumor selectivity and antitumor efficacy. Oncolytic VACVs carrying imaging genes represent a new treatment strategy that combines tumor site-specific therapeutics with diagnostics (theranostics).
Collapse
Affiliation(s)
- Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA; Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, Suite 310, San Diego, CA 92109, USA
| | - Aladar A Szalay
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Biochemistry & Institute for Molecular Infection Biology, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
| |
Collapse
|
33
|
Nokisalmi P, Pesonen S, Escutenaire S, Särkioja M, Raki M, Cerullo V, Laasonen L, Alemany R, Rojas J, Cascallo M, Guse K, Rajecki M, Kangasniemi L, Haavisto E, Karioja-Kallio A, Hannuksela P, Oksanen M, Kanerva A, Joensuu T, Ahtiainen L, Hemminki A. Oncolytic Adenovirus ICOVIR-7 in Patients with Advanced and Refractory Solid Tumors. Clin Cancer Res 2010; 16:3035-43. [DOI: 10.1158/1078-0432.ccr-09-3167] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Pesonen S, Nokisalmi P, Escutenaire S, Särkioja M, Raki M, Cerullo V, Kangasniemi L, Laasonen L, Ribacka C, Guse K, Haavisto E, Oksanen M, Rajecki M, Helminen A, Ristimäki A, Karioja-Kallio A, Karli E, Kantola T, Bauerschmitz G, Kanerva A, Joensuu T, Hemminki A. Prolonged systemic circulation of chimeric oncolytic adenovirus Ad5/3-Cox2L-D24 in patients with metastatic and refractory solid tumors. Gene Ther 2010; 17:892-904. [PMID: 20237509 DOI: 10.1038/gt.2010.17] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eighteen patients with refractory and progressive solid tumors were treated with a single round of triple modified oncolytic adenovirus (Ad5/3-Cox2L-D24). Ad5/3-Cox2L-D24 is the first non-Coxsackie-adenovirus receptor-binding oncolytic adenovirus used in humans. Grades 1-2 flu-like symptoms, fever, and fatigue were seen in most patients, whereas transaminitis or thrombocytopenia were seen in some. Non-hematological grades 3-5 side effects were seen in one patient with grade 3 ileus. Treatment resulted in high neutralizing antibody titers within 3 weeks. Virus appeared in serum 2-4 days after treatment in 83% of patients and persisted for up to 5 weeks. One out of five radiologically evaluable patients had partial response (PR), one had minor response (MR), and three had progressive disease (PD). Two patients scored as PD had a decrease in tumor density. Tumor reductions not measurable with Response Evaluation Criteria In Solid Tumors (RECIST) were seen in a further four patients. PR, MR, stable disease, and PD were seen in 12, 23.5, 35, and 29.5% of tumor markers analyzed, respectively (N=17). Ad5/3-Cox2L-D24 appears safe for treatment of cancer in humans and extended virus circulation results from a single treatment. Objective evidence of anti-tumor activity was seen in 11/18 (61%) of patients. Clinical trials are needed to extend these findings.
Collapse
Affiliation(s)
- S Pesonen
- Cancer Gene Therapy Group, Transplantation Laboratory, Haartman Institute and Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|