1
|
Li W, Luo X, Zheng XQ, Li QL, Li Z, Meng QQ, Zeng YL, Lin Y, Yang TC. Treponema pallidum protein Tp0136 promotes angiogenesis to facilitate the dissemination of Treponema pallidum. Emerg Microbes Infect 2024; 13:2382236. [PMID: 39017656 PMCID: PMC11299452 DOI: 10.1080/22221751.2024.2382236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
The incompletely eliminated Treponema pallidum (T. pallidum) during primary syphilis chancre infection can result in the progression of secondary, tertiary, or latent syphilis in individuals, suggesting that T. pallidum has successfully evaded the immune response and spread to distant sites. The mechanism underlying the dissemination of T. pallidum is unclear. Here, a syphilitic rabbit model dorsal-injected with recombinant Tp0136 protein or Tp0136 antibody subcutaneously was used to demonstrate the role of Tp0136 protein in promoting the dissemination of T. pallidum to the testis and angiogenesis in vivo; vascular endothelial cell line HMEC-1 was employed to display that Tp0136 protein enhances the angiogenesis. Furthermore, the three-dimensional microfluidic angiogenesis system showed that the angiogenesis would heighten vascular permeability. Then transcriptome sequencing analysis, in conjunction with cell-level validation, elucidated the critical role of the PI3K-AKT signaling pathway in the promotion of angiogenesis by Tp0136 protein, resulting in heightened permeability. These findings elucidate the strategy employed by T. pallidum in evading immune clearance.
Collapse
Affiliation(s)
- Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xin-Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Ze Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qing-Qi Meng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yan-Li Zeng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yu Lin
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen, People’s Republic of China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen, People’s Republic of China
| |
Collapse
|
2
|
Bush JC, Robveille C, Maggi RG, Breitschwerdt EB. Neurobartonelloses: emerging from obscurity! Parasit Vectors 2024; 17:416. [PMID: 39369199 PMCID: PMC11452993 DOI: 10.1186/s13071-024-06491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Bartonella species are fastidious, intracellular bacteria responsible for an expanding array of human pathologies. Most are considered to be transmitted by direct inoculation with infected bodily fluids from a mammalian reservoir species or vector-transmitted through a variety of arthropod species and their excrement. However, there are mounting reports of infection in the absence of documented animal or vector contact. A variety of Bartonella species have been documented in conditions affecting both the peripheral and central nervous systems. More common conditions, including neuroretinitis, are often associated with Bartonella henselae. However, Bartonella quintana, the agent of trench fever, as well as emerging pathogens related to rodent reservoir species, B. grahamii and B. elizabethae, have also been documented. Encephalitis and encephalopathy, also most often associated with B. henselae, have been reported with B. quintana, B. washoensis (ground squirrels) and B. vinsonii subsp. vinsonii (voles) infections. Bartonella infections have also been associated with peripheral neuropathies, such as cranial nerve paresis and neuropathic pain, including infection with less commonly encountered species such as Bartonella koehlerae. Recently, molecular diagnostic testing revealed that DNA from Bartonella spp. was found to be more prevalent in blood of patients with neuropsychiatric disorders such as schizophrenia and psychoses compared to healthy controls. METHODS A systematic literature search was conducted on PubMed, Google Scholar and Web of Science. Search terms included Bartonella and specific neurological conditions and focused on peer-reviewed case reports published after 2012 pursuant to a prior review, with limited exceptions for conditions not previously covered. Published diagnostic testing, serology, molecular testing or pathology, were necessary for inclusion, except for one case which had clinical and epidemiological evidence consistent with diagnosis along with follow-up. RESULTS Neurobartonelloses included neuralgic amyotrophy, complex regional pain syndrome, chronic inflammatory demyelinating polyneuropathy, cranial nerve paralysis, Guillain-Barré syndrome, peripheral vasculitic polyneuropathy, acute transverse myelopathy, neuroretinitis, encephalitis/encephalopathy, cerebral vasculitis/aneurysm and neuropsychiatric conditions. CONCLUSIONS The breadth of reported symptoms and clinical syndromes associated with an increasing number of Bartonella species continues to expand. Increased clinical awareness of this important zoonotic pathogen is necessary to advance One Health among the medical and veterinary communities.
Collapse
Affiliation(s)
- Janice C Bush
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Cynthia Robveille
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ricardo G Maggi
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Edward B Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Liedig C, Neupane P, Lashnits E, Breitschwerdt EB, Maggi RG. Blood Supplementation Enhances Bartonella henselae Growth and Molecular Detection of Bacterial DNA in Liquid Culture. Microbiol Spectr 2023; 11:e0512622. [PMID: 37227273 PMCID: PMC10269525 DOI: 10.1128/spectrum.05126-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
Bacteria of the genus Bartonella, a member of the Alphaproteobacteria, are fastidious, Gram-negative, aerobic bacilli that comprise numerous species, subspecies, and genotypes. Bartonella henselae, with a worldwide distribution, infects cats, dogs, horses, humans, and other mammals. Diagnostically, direct detection of Bartonella henselae in patient blood specimens by culture or molecular methods is required to confirm infection with this bacterium. Enrichment blood culture combined with quantitative PCR (qPCR) or ddPCR enhances the sensitivity of direct detection. The addition of sheep blood to liquid culture media increased the Bartonella henselae DNA concentration compared to controls, additionally improving PCR direct detection sensitivity. IMPORTANCE This study aims to improve diagnostic detection of Bartonella henselae. Patient samples are combined with enriched bacterial cultures aimed at growing Bartonella henselae for the best possible chance at detection. However, current Bartonella growth methods could be improved. The DNA extraction method used by most laboratories should also be optimized. Sheep blood was added to increase the growth of Bartonella henselae and multiple DNA extraction methods were to be compared to each other.
Collapse
Affiliation(s)
- Chance Liedig
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Pradeep Neupane
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erin Lashnits
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Ricardo G. Maggi
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Limitations of Serological Diagnosis of Typical Cat Scratch Disease and Recommendations for the Diagnostic Procedure. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:4222511. [PMID: 36915870 PMCID: PMC10008113 DOI: 10.1155/2023/4222511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/22/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023]
Abstract
Introduction Cat scratch disease (CSD) is the most common cause of bacterial infectious lymphadenopathy, especially in children, but its diagnosis still remains challenging. Serological assays are widely applied due to their simplicity and the non-invasive sampling. However, these techniques present several limitations, including not well-defined antigen preparation, assay conditions and cutoff titers, severe cross-reactions with other species and organisms, and the notably ranging seroprevalence in the normal population. The objective of this study is to review the literature in order to determine the best diagnostic procedure for the diagnosis of CSD. Methods Databases including PubMed, Medline, Google Scholar, and Google were searched to determine the best diagnostic procedure for the diagnosis of CSD. A total of 437 papers were identified and screened, and after exclusion of papers that did not fulfill the including criteria, 63 papers were used. Results It was revealed that sensitivities of serological assays varied from 10% to 100%. Indeed, more than half of the studies reported a sensitivity lower than 70%, while 71% of them had a sensitivity lower than 80%. Moreover, specificities of serological assays ranged from 15% to 100%, with 25 assays reporting a specificity lower than 90%. Conclusion It is considered that molecular assays should be the gold standard technique for CSD confirmation, and physicians are reinforced to proceed to lymph node biopsy in suspicious CSD cases.
Collapse
|
5
|
Identification of the Bartonella autotransporter CFA as a protective antigen and hypervariable target of neutralizing antibodies in mice. Proc Natl Acad Sci U S A 2022; 119:e2202059119. [PMID: 35714289 PMCID: PMC9231624 DOI: 10.1073/pnas.2202059119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bartonella infections represent a significant burden to human health and are difficult to cure. Protective Bartonella vaccines are not available. Acquired immunity to Bartonella infection could provide a blueprint for vaccine design but remains incompletely defined. Moreover, bacterial immune evasion mechanisms have the potential to thwart vaccination efforts. Our study in a model of a natural Bartonella–host relationship revealed that antibody-mediated prevention of bacterial attachment to erythrocytes is sufficient for protection. We identified the bacterial surface determinant CFA (CAMP-like factor autotransporter) as a target of protective antibodies. While immunization with CFA protected against challenge with the homologous Bartonella isolate, extensive variability of CFA already at the strain level revealed bacterial immune evasion mechanisms with implications for Bartonella vaccine design. The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.
Collapse
|
6
|
[Recurrent intracerebral haemorrhage in a 24-year-old female patient]. Internist (Berl) 2021; 63:103-109. [PMID: 34586426 DOI: 10.1007/s00108-021-01157-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
A 24-year-old female patient from Sierra Leone was referred to the authors' hospital after several unclear intracerebral bleeding events and an echogenic structure on the aortic valve. The patient was receiving oral anticoagulation therapy due to paroxysmal atrial fibrillation and left ventricular noncompaction. Fluorescence in situ hybridization in combination with polymerase chain reaction and sequencing revealed infective endocarditis of the mitral and aortic valve caused by Bartonella quintana. In retrospect, the intracerebral bleeding events could be identified as septic emboli with secondary haemorrhagic transformation under anticoagulation therapy. The patient showed significant clinical improvement and no further bleeding events occurred after receiving biological mitral and aortic valve replacement and several weeks of doxycycline and gentamicin antibiotic therapy.
Collapse
|
7
|
Mehrmal S, Mhlaba JM, Zhou XA. Cutaneous Bacillary Angiomatosis in a Renal Transplant Patient. Skinmed 2021; 19:150-154. [PMID: 33938441 PMCID: PMC8579760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A 37-year-old man with a history of renal transplantation in 2013 due to focal segmental glomerulosclerosis presented to the emergency room with a 2-week history of fever, chills, anorexia, weight loss, abdominal pain, diarrhea, and a new asymptomatic lesion on the right side of the neck. The patient worked as a truck driver and frequently traveled to Wisconsin; he had not traveled internationally in the past year. He lived with his brother who had a pet cat. He was compliant with his anti-rejection medication regimen, which included mycophenolate mofetil, tacrolimus, and prednisone. Physical examination of the neck revealed an 8-mm exophytic, friable, red papule with overlying blood crusts (Figure 1). The remainder of the mucocutaneous examination was unremarkable, and there was no palpable lymphadenopathy. The patient was started on empiric intravenous cefepime and metronidazole and admitted to the hospital for further management. A punch biopsy of the lesion was performed.
Collapse
Affiliation(s)
- Sino Mehrmal
- Department of Internal Medicine, Alameda Health System - Highland Hospital, Oakland, CA
| | - Julia M Mhlaba
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiaolong A Zhou
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL;
| |
Collapse
|
8
|
Wang C, Zhang H, Fu J, Wang M, Cai Y, Ding T, Jiang J, Koehler JE, Liu X, Yuan C. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog 2021; 17:e1009065. [PMID: 33508039 PMCID: PMC7842913 DOI: 10.1371/journal.ppat.1009065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Bartonella T4SS effector BepC was reported to mediate internalization of big Bartonella aggregates into host cells by modulating F-actin polymerization. After that, BepC was indicated to induce host cell fragmentation, an interesting cell phenotype that is characterized by failure of rear-end retraction during cell migration, and subsequent dragging and fragmentation of cells. Here, we found that expression of BepC resulted in significant stress fiber formation and contractile cell morphology, which depended on combination of the N-terminus FIC (filamentation induced by c-AMP) domain and C-terminus BID (Bartonellaintracellular delivery) domain of BepC. The FIC domain played a key role in BepC-induced stress fiber formation and cell fragmentation because deletion of FIC signature motif or mutation of two conserved amino acid residues abolished BepC-induced cell fragmentation. Immunoprecipitation confirmed the interaction of BepC with GEF-H1 (a microtubule-associated RhoA guanosine exchange factor), and siRNA-mediated depletion of GEF-H1 prevented BepC-induced stress fiber formation. Interaction with BepC caused the dissociation of GEF-H1 from microtubules and activation of RhoA to induce formation of stress fibers. The ROCK (Rho-associated protein kinase) inhibitor Y27632 completely blocked BepC effects on stress fiber formation and cell contractility. Moreover, stress fiber formation by BepC increased the stability of focal adhesions, which consequently impeded rear-edge detachment. Overall, our study revealed that BepC-induced stress fiber formation was achieved through the GEF-H1/RhoA/ROCK pathway. Intracellular pathogens modulate host cell actin cytoskeleton by secreting an array of effector molecules to ensure their cell invasion and intracellular survival. The zoonotic pathogen Bartonella spp trigger massive F-actin polymerization of host cells resulting the internalization of large bacterial aggregates (called “invasome” structure), which is dependent on a functional VirB/VirD4 type IV secretion system (T4SS) and its translocated Bep effector proteins. Here, we have used cell infection and ectopic expression assay to identify that Bartonella T4SS effector BepC induces stress fiber formation in infected host cells. However, BepC also disrupts the balance of stress fiber formation and focal adhesion maturation, and eventually causes cell fragmentation. Using immunoprecipitation and RNAi approaches, we identify GEF-H1 is the host factor targeted by BepC. Interaction with BepC induces the release of GEF-H1 from microtubules to plasma membrane and subsequently activates RhoA-ROCK to induce stress fiber formation. These findings shed light on our understanding of how Bartonella invade host cell and establish infection.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Haoran Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuhao Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Tianyun Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jane E. Koehler
- Department of Medicine, Division of Infectious Diseases, and the Microbial Pathogenesis and Host Defense Program, University of California, San Francisco, California, United States of America
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail: (XL); (CY)
| | - Congli Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
- * E-mail: (XL); (CY)
| |
Collapse
|
9
|
I. Horowitz R, R. Freeman P. Efficacy of Double-Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome (PTLDS) and Associated Co-infections: A Report of Three Cases and Retrospective Chart Review. Antibiotics (Basel) 2020; 9:E725. [PMID: 33105645 PMCID: PMC7690415 DOI: 10.3390/antibiotics9110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/03/2023] Open
Abstract
Three patients with multi-year histories of relapsing and remitting Lyme disease and associated co-infections despite extended antibiotic therapy were each given double-dose dapsone combination therapy (DDD CT) for a total of 7-8 weeks. At the completion of therapy, all three patients' major Lyme symptoms remained in remission for a period of 25-30 months. A retrospective chart review of 37 additional patients undergoing DDD CT therapy (40 patients in total) was also performed, which demonstrated tick-borne symptom improvements in 98% of patients, with 45% remaining in remission for 1 year or longer. In conclusion, double-dose dapsone therapy could represent a novel and effective anti-infective strategy in chronic Lyme disease/ post-treatment Lyme disease syndrome (PTLDS), especially in those individuals who have failed regular dose dapsone combination therapy (DDS CT) or standard antibiotic protocols. A randomized, blinded, placebo-controlled trial is warranted to evaluate the efficacy of DDD CT in those individuals with chronic Lyme disease/PTLDS.
Collapse
Affiliation(s)
- Richard I. Horowitz
- HHS Babesia and Tick-borne Pathogens Subcommittee, Washington, DC 20201, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA;
| | | |
Collapse
|
10
|
Investigation of Bartonella spp. in brazilian mammals with emphasis on rodents and bats from the Atlantic Forest. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:80-89. [PMID: 32904298 PMCID: PMC7452516 DOI: 10.1016/j.ijppaw.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
The Bartonella species are zoonotic agents that infect mammals and are transmitted by arthropod vectors. Approximately 18 distinct genotypes cause diseases in humans, and may be spread by both domestic and wild animals. In Brazil, Bartonella genotypes have been identified in several species of wild mammals, and in the present study, we analyzed samples from non-human primates (marmosets), marsupials, rodents, and bats, and compared them with the genotypes described in mammals from Brazil, to examine the distribution of Bartonella genotypes in two impacted areas of Rio de Janeiro state, in southeastern Brazil. We used polymerase chain reaction (PCR) methods to detect the Bartonella DNA using partial sequences of the gltA, ftsZ, and groEL genes. We generated Bayesian inference and maximum likelihood trees to characterize the positive PCR samples and infer the phylogenetic relationships of the genotypes. A total of 276 animals were captured, including 110 bats, 91 rodents, 38 marsupials, and 37 marmosets. The DNA of Bartonella was amplified from tissue samples collected from 12 (4.34%) of the animals, including eight rodents – Akodon cursor (5/44) and Nectomys squamipes (3/27) – and four bats, Artibeus lituratus (3/58) and Carollia perspicillata (1/15). We identified Bartonella genotypes closely related to those described in previous studies, as well as new genotypes in both the rodent and the bat samples. Considering the high diversity of the Bartonella genotypes and hosts identified in the present study, further research is needed to better understand the relationships between the different Bartonella genotypes and their vectors and host species. The presence of Bartonella in the wild rodents and bats from the study area indicates that the local human populations may be at risk of infection by Bartonella due to the spillover of these strains from the wild environment to domestic and peri-domestic environments. First record of wild mammals with Bartonella DNA at northwestern of Rio de Janeiro. The genotypes of Bartonella were characterized in two species of cricetid rodents and two species of phyllostomid bats from Rio de Janeiro. The genotype of Bartonella in Akodon cursor was identified closely related to B. rochalimae. This is the first report of Bartonella in C. perspicillata from Rio de Janeiro state, based on the analysis of tissue samples.
Collapse
|
11
|
Deng H, Wu S, Song Q, Zhang J, Sang F, Sun X, Xu T, Gao Y, Zhao B. Cloning and identification of Bartonella α-enolase as a plasminogen-binding protein. Microb Pathog 2019; 135:103651. [DOI: 10.1016/j.micpath.2019.103651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022]
|
12
|
Horowitz RI, Freeman PR. Precision medicine: retrospective chart review and data analysis of 200 patients on dapsone combination therapy for chronic Lyme disease/post-treatment Lyme disease syndrome: part 1. Int J Gen Med 2019; 12:101-119. [PMID: 30863136 PMCID: PMC6388746 DOI: 10.2147/ijgm.s193608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We collected data from an online survey of 200 of our patients, which evaluated the efficacy of dapsone (diaminodiphenyl sulfone, ie, DDS) combined with other antibiotics and agents that disrupt biofilms for the treatment of chronic Lyme disease/post-treatment Lyme disease syndrome (PTLDS). We also collected aggregate data from direct retrospective chart review, including laboratory testing for Lyme, other infections, and associated tick-borne coinfections. This helped us to determine the frequency of exposure to other infections/coinfections among a cohort of chronically ill Lyme patients, evaluate the efficacy of newer "persister" drug regimens like DDS, and determine how other infections and tick-borne coinfections may be contributing to the burden of chronic illness leading to resistant symptomatology. PATIENTS AND METHODS A total of 200 adult patients recruited from a specialized Lyme disease medical practice had been ill for at least 1 year. We regularly monitored laboratory values and participants' symptom severity, and the patients completed the online symptom questionnaire both before beginning treatment and after 6 months on DDS combination therapy (DDS CT). Paired-samples t-tests and Wilcoxon signed-rank nonparametric test were performed on each of eight major Lyme symptoms, both before DDS CT and after 6 months of therapy. RESULTS DDS CT statistically improved the eight major Lyme symptoms. We found multiple species of intracellular bacteria including rickettsia, Bartonella, Mycoplasma, Chlamydia, Tularemia, and Brucella contributing to the burden of illness and a high prevalence of Babesia complicating management with probable geographic spread of Babesia WA1/duncani to the Northeast. Borrelia, Bartonella, and Mycoplasma species, as well as Babesia microti had variable manifestations and diverse seroreactivity, with evidence of persistence despite commonly prescribed courses of anti-infective therapies. Occasional reactivation of viral infections including human herpes virus 6 was also seen in immunocompromised individuals. CONCLUSION DDS CT decreased eight major Lyme symptoms severity and improved treatment outcomes among patients with chronic Lyme disease/PTLDS and associated coinfections.
Collapse
Affiliation(s)
- Richard I Horowitz
- Health and Human Services, Tick-Borne Disease Working Group, Washington, DC 20201 USA,
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA,
| | | |
Collapse
|
13
|
Wang C, Fu J, Wang M, Cai Y, Hua X, Du Y, Yang Z, Li Y, Wang Z, Sheng H, Yin N, Liu X, Koehler JE, Yuan C. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol 2018; 21:e12984. [PMID: 30463105 DOI: 10.1111/cmi.12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
Bartonella effector proteins (named Beps) are substrates of VirB type IV secretion system for translocation into host cells evolved in Bartonella spp. Among these, BepE has been shown to protect cells from fragmentation effects triggered by other Beps and to promote in vivo dissemination of bacteria from the dermal site of inoculation to the bloodstream. Bacterial pathogens secreted effectors to modulate the interplay with host autophagy, either to combat autophagy to escape its bactericidal effect or to exploit autophagy to benefit intracellular replication. Here, we reported a distinct phenotype that selective autophagy in host cells is activated as a countermeasure, to attack BepE via conjugation with K63 polyubiquitin chain on BepE. We found that ectopic expression of Bartonella quintana BepE specifically induced punctate structures that colocalised with an autophagy marker (LC3-II) in host cells, in addition to filopodia and membrane ruffle formation. Two tandemly arranged Bartonella Intracellular Delivery (BID) domains in the BepE C-terminus, where ubiquitination of sister pairs of lysine residues was confirmed, were essential to activate host cell autophagy. Multiple polyubiquitin chain linkages of K27, K29, K33, and K63 were found to be conjugated at sites of K222 and K365 on BepE, of which K63 polyubiquitination on BepE K365 determined the selective autophagy (p62/SQSTM1 positive autophagy) independent of the PI3K pathway. Colocalisation of BepE with LAMP1 confirmed the maturation of BepE-induced autophagosomes in which BepE were targeted for degradation. Moreover, host cells employed selective autophagy to counter-attack BepE to rescue cells from BepE-induced endocytosis deficiency.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuguo Hua
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibiao Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenxia Wang
- Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Sheng
- Tongren hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Yin
- Xinhua hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jane E Koehler
- Department of Medicine, Division of Infectious Diseases, and the Microbial Pathogenesis and Host Defense Program, University of California, San Francisco, California, USA
| | - Congli Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Veterinary Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Deng H, Pang Q, Zhao B, Vayssier-Taussat M. Molecular Mechanisms of Bartonella and Mammalian Erythrocyte Interactions: A Review. Front Cell Infect Microbiol 2018; 8:431. [PMID: 30619777 PMCID: PMC6299047 DOI: 10.3389/fcimb.2018.00431] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Bartonellosis is an infectious disease caused by Bartonella species that are distributed worldwide with animal and public health impact varying according to Bartonella species, infection phase, immunological characteristics, and geographical region. Bartonella is widely present in various mammals including cats, rodents, ruminants, and humans. At least 13 Bartonella species or subspecies are zoonotic. Each species has few reservoir animals in which it is often asymptomatic. Bartonella infection may lead to various clinical symptoms in humans. As described in the B.tribocorum-rat model, when Bartonella was seeded into the blood stream, they could escape immunity, adhered to and invaded host erythrocytes. They then replicated and persisted in the infected erythrocytes for several weeks. This review summarizes the current knowledge of how Bartonella prevent phagocytosis and complement activation, what pathogenesis factors are involved in erythrocyte adhesion and invasion, and how Bartonella could replicate and persist in mammalian erythrocytes. Current advances in research will help us to decipher molecular mechanisms of interactions between Bartonella and mammalian erythrocytes and may help in the development of biological strategies for the prevention and control of bartonellosis.
Collapse
Affiliation(s)
- Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil Val-de-Marne, Maisons-Alfort, France
| |
Collapse
|
15
|
Neupane P, Hegarty BC, Marr HS, Maggi RG, Birkenheuer AJ, Breitschwerdt EB. Evaluation of cell culture-grown Bartonella antigens in immunofluorescent antibody assays for the serological diagnosis of bartonellosis in dogs. J Vet Intern Med 2018; 32:1958-1964. [PMID: 30307643 PMCID: PMC6271329 DOI: 10.1111/jvim.15301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Because of poor sensitivity and questionable specificity of immunofluorescent antibody assays (IFAs), serological diagnosis of Bartonella species infections in dogs remains challenging. Despite limitations, IFA testing is the historical "gold standard" for Bartonella serodiagnosis in animals and humans. Because most diagnostic laboratories test against only 1 or 2 Bartonella spp., testing against a broader panel of Bartonella antigens may enhance diagnostic sensitivity and specificity. OBJECTIVE To evaluate the sensitivity and specificity of Bartonella IFA using 8 cell culture-grown Bartonella spp. isolates. ANIMALS Archived serum samples from 34 Bartonella spp. naturally exposed, polymerase chain reaction (PCR)-positive dogs and from 26 PCR-negative and IFA-negative dogs. METHODS Bartonella IFA sensitivity and specificity were assessed using cell culture-grown whole cell antigens derived from 3 Bartonella henselae (Bh) strains (Bh Houston 1, Bh San Antonio Type 2, Bh California 1), 3 Bartonella vinsonii subsp. berkhoffii genotypes (Bvb I, II, and III), Bartonella koehlerae (Bk), and Bartonella quintana (Bq). RESULTS Only 62% of 34 Bartonella spp. PCR-positive dogs were seroreactive to any of the 8 Bartonella IFA antigens, indicating low IFA sensitivity. PCR-positive dogs were most often IFA seroreactive to Bq (n = 15), to Bvb II (n = 13), or to both (n = 9) antigens. Of the 26 previously IFA-negative/PCR-negative dogs, 4 (15%) were seroreactive using the expanded antigen panel. CONCLUSION AND CLINICAL IMPORTANCE Despite IFA testing of dogs against 8 different Bartonella isolates, IFA sensitivity remained poor, and specificity was only 85%. Development of a reliable serological assay is needed to facilitate the diagnosis of Bartonella infection in dogs.
Collapse
Affiliation(s)
- Pradeep Neupane
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Barbara C Hegarty
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Henry S Marr
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Ricardo G Maggi
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Adam J Birkenheuer
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Edward B Breitschwerdt
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
16
|
Del Valle-Mendoza J, Rojas-Jaimes J, Vásquez-Achaya F, Aguilar-Luis MA, Correa-Nuñez G, Silva-Caso W, Lescano AG, Song X, Liu Q, Li D. Molecular identification of Bartonella bacilliformis in ticks collected from two species of wild mammals in Madre de Dios: Peru. BMC Res Notes 2018; 11:405. [PMID: 29941013 PMCID: PMC6019227 DOI: 10.1186/s13104-018-3518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/19/2018] [Indexed: 01/21/2023] Open
Abstract
Objective To study the presence of Bartonella bacilliformis in ticks collected from two wild mammals in Madre de Dios, Peru. Results A total of 110 ticks were collected. Among the 43 Amblyomma spp. extracted from the 3 Tapirus terrestris only 3 were positive for B. bacilliformis. In addition, 12 out of the 67 Rhipicephalus (Boophilus) microplus obtained from the 3 Pecari tajacu were positive for B. bacilliformis. For the first time B. bacilliformis have been detected in arthropods other than Lutzomyia spp. Further studies are required to elucidate the possible role of ticks in the spread of South American Bartonellosis.
Collapse
Affiliation(s)
- Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| | - Jesús Rojas-Jaimes
- Laboratorio de Biología Molecular y Celular, Escuela de Medicina Humana, Universidad Científica del Sur, Lima, Peru
| | - Fernando Vásquez-Achaya
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.,Instituto de Investigación de Enfermedades Infecciosas, Lima, Peru
| | - Germán Correa-Nuñez
- Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Xiuping Song
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), P.O. Box5, Changping District, Beijing, 102206, People's Republic of China
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), P.O. Box5, Changping District, Beijing, 102206, People's Republic of China
| | - Dongmei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), P.O. Box5, Changping District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
17
|
Mullins KE, Hang J, Clifford RJ, Onmus-Leone F, Yang Y, Jiang J, Leguia M, Kasper MR, Maguina C, Lesho EP, Jarman RG, Richards A, Blazes D. Whole-Genome Analysis of Bartonella ancashensis, a Novel Pathogen Causing Verruga Peruana, Rural Ancash Region, Peru. Emerg Infect Dis 2018; 23:430-438. [PMID: 28221130 PMCID: PMC5382735 DOI: 10.3201/eid2303.161476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genus Bartonella contains >40 species, and an increasing number of these Bartonella species are being implicated in human disease. One such pathogen is Bartonella ancashensis, which was isolated in blood samples from 2 patients living in Caraz, Peru, during a clinical trial of treatment for bartonellosis. Three B. ancashensis strains were analyzed by using whole-genome restriction mapping and high-throughput pyrosequencing. Genome-wide comparative analysis of Bartonella species showed that B. ancashensis has features seen in modern and ancient lineages of Bartonella species and is more related to B. bacilliformis. The divergence between B. ancashensis and B. bacilliformis is much greater than what is seen between known Bartonella genetic lineages. In addition, B. ancashensis contains type IV secretion system proteins, which are not present in B. bacilliformis. Whole-genome analysis indicates that B. ancashensis might represent a distinct Bartonella lineage phylogenetically related to B. bacilliformis.
Collapse
|
18
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
19
|
Trefois Q, Marot JC, Yildiz H, Wieers G. Fever, bone pain and erectile dysfunction. Where is the cat? BMJ Case Rep 2017; 2017:bcr-2017-221397. [PMID: 28899872 DOI: 10.1136/bcr-2017-221397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cat-scratch disease is due to Bartonella henselae and commonly presents as a localised papular lesion with regional lymphadenopathy. We report the case of a young man suffering general symptoms and dysautonomy characterised by an erectile dysfunction due to an invasive cat-scratch disease. He was successfully treated by tetracyclines during 3 weeks.
Collapse
Affiliation(s)
- Quentin Trefois
- Department of internal medicine, Clinique Saint-Pierre Ottignies, Ottignies, Belgium
| | - Jean-Christophe Marot
- Department of internal medicine, Clinique Saint-Pierre Ottignies, Ottignies, Belgium
| | - Halil Yildiz
- Department of internal medicine, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Gregoire Wieers
- Department of internal medicine, Clinique Saint-Pierre Ottignies, Ottignies, Belgium
| |
Collapse
|
20
|
Rickettsia and Rickettsia-Like Organisms. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Identification and functional analysis of invasion associated locus B (IalB) in Bartonella species. Microb Pathog 2016; 98:171-7. [DOI: 10.1016/j.micpath.2016.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 11/19/2022]
|
22
|
The Distribution and Diversity of Bartonella Species in Rodents and Their Ectoparasites across Thailand. PLoS One 2015; 10:e0140856. [PMID: 26484537 PMCID: PMC4617648 DOI: 10.1371/journal.pone.0140856] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Our study highlights the surveillance of Bartonella species among rodents and their associated ectoparasites (ticks, fleas, lice, and mites) in several regions across Thailand. A total of 619 rodents and 554 pooled ectoparasites (287 mite pools, 62 flea pools, 35 louse pools, and 170 tick pools) were collected from 8 provinces within 4 regions of Thailand. Bandicota indica (279), Rattus rattus (163), and R. exulans (96) were the most prevalent species of rats collected in this study. Real-time PCR assay targeting Bartonella-specific ssrA gene was used for screening and each positive sample was confirmed by PCR using nuoG gene. The prevalence of Bartonella DNA in rodent (around 17%) was recorded in all regions. The highest prevalence of Bartonella species was found in B. savilei and R. rattus with the rate of 35.7% (5/14) and 32.5% (53/163), respectively. High prevalence of Bartonella-positive rodent was also found in B. indica (15.1%, 42/279), and R. norvegicus (12.5%, 5/40). In contrast, the prevalence of Bartonella species in ectoparasites collected from the rats varied significantly according to types of ectoparasites. A high prevalence of Bartonella DNA was found in louse pools (Polyplax spp. and Hoplopleura spp., 57.1%) and flea pools (Xenopsylla cheopis, 25.8%), while a low prevalence was found in pools of mites (Leptotrombidium spp. and Ascoschoengastia spp., 1.7%) and ticks (Haemaphysalis spp., 3.5%). Prevalence of Bartonella DNA in ectoparasites collected from Bartonella-positive rodents (19.4%) was significantly higher comparing to ectoparasites from Bartonella-negative rodents (8.7%). The phylogenetic analysis of 41 gltA sequences of 16 Bartonella isolates from rodent blood and 25 Bartonella-positive ectoparasites revealed a wide range of diversity among Bartonella species with a majority of sequences (61.0%) belonging to Bartonella elizabethae complex (11 rodents, 1 mite pool, and 5 louse pools), while the remaining sequences were identical to B. phoceensis (17.1%, 1 mite pool, 5 louse pools, and 1 tick pool), B. coopersplainensis (19.5%, 5 rodents, 1 louse pool, and 2 tick pools), and one previously unidentified Bartonella species (2.4%, 1 louse pool).
Collapse
|
23
|
|
24
|
Infection with Bartonella henselae in a Danish family. J Clin Microbiol 2015; 53:1556-61. [PMID: 25740763 DOI: 10.1128/jcm.02974-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/20/2015] [Indexed: 01/22/2023] Open
Abstract
Bartonella species constitute emerging, vector-borne, intravascular pathogens that produce long-lasting bacteremia in reservoir-adapted (natural host or passive carrier of a microorganism) and opportunistic hosts. With the advent of more sensitive and specific diagnostic tests, there is evolving microbiological evidence supporting concurrent infection with one or more Bartonella spp. in more than one family member; however, the mode(s) of transmission to or among family members remains unclear. In this study, we provide molecular microbiological evidence of Bartonella henselae genotype San Antonio 2 (SA2) infection in four of six Danish family members, including a child who died of unknown causes at 14 months of age.
Collapse
|
25
|
Georgievskaya Z, Nowalk AJ, Randhawa P, Picarsic J. Bartonella henselae endocarditis and glomerulonephritis with dominant C3 deposition in a 21-year-old male with a Melody transcatheter pulmonary valve: case report and review of the literature. Pediatr Dev Pathol 2014; 17:312-20. [PMID: 24896298 DOI: 10.2350/14-04-1462-cr.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a case of a 21-year-old young man with underlying congenital heart disease who developed Bartonella henselae endocarditis of the right ventricular outflow tract (RVOT) conduit of his Melody transcatheter (percutaneous) pulmonary valve (TPV), with an initial presentation of glomerulonephritis with a dominant C3 pattern, with renal failure and circulating cryoglobulins. There are few reports of a glomerulonephritis with a dominant C3 pattern presenting as a manifestation of B. henselae endocarditis. While most cases of B. henselae endocarditis affect the aortic valve, in this case the valve damage was to the RVOT of the Melody TPV, a percutaneous transcatheter valve delivery system that had previously replaced his pulmonary homograft, which had become dysfunctional as a result of prior Streptococcus viridans endocarditis. The pulmonary homograft had been in place since childhood as a result of a Ross procedure to repair his congenital aortic stenosis. The patient's renal failure significantly improved after surgical resection of the infected RVOT and institution of appropriate antibiotic therapy.
Collapse
Affiliation(s)
- Zhanna Georgievskaya
- 1 Department of Pathology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
26
|
Angelakis E, Raoult D. Pathogenicity and treatment of Bartonella infections. Int J Antimicrob Agents 2014; 44:16-25. [DOI: 10.1016/j.ijantimicag.2014.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
27
|
Breitschwerdt EB. Bartonellosis: One Health Perspectives for an Emerging Infectious Disease. ILAR J 2014; 55:46-58. [DOI: 10.1093/ilar/ilu015] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
González I, Sarriá C, López J, Vilacosta I, San Román A, Olmos C, Sáez C, Revilla A, Hernández M, Caniego JL, Fernández C. Symptomatic peripheral mycotic aneurysms due to infective endocarditis: a contemporary profile. Medicine (Baltimore) 2014; 93:42-52. [PMID: 24378742 PMCID: PMC4616324 DOI: 10.1097/md.0000000000000014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Peripheral mycotic aneurysms (PMAs) are a relatively rare but serious complication of infective endocarditis (IE). We conducted the current study to describe and compare the current epidemiologic, microbiologic, clinical, diagnostic, therapeutic, and prognostic characteristics of patients with symptomatic PMAs (SPMAs). A descriptive, comparative, retrospective observational study was performed in 3 tertiary hospitals, which are reference centers for cardiac surgery. From 922 definite IE episodes collected from 1996 to 2011, 18 patients (1.9%) had SPMAs. Because all SPMAs developed in left-sided IE, we performed a comparative study between 719 episodes of left-sided IE without SPMAs and 18 episodes with SPMAs. We found a higher frequency of intravenous drug abuse, native valve IE, intracranial bleeding, septic emboli, multiple embolisms, and IE diagnostic delay >30 days in patients with SPMAs than in patients without SPMAs. The causal microorganisms were gram-positive cocci (n =10), gram-negative bacilli (n = 2), gram-positive bacilli (n = 3), Bartonella henselae (n = 1), Candida albicans (n = 1), and negative culture (n = 1). The median IE diagnosis delay was 15 days (interquartile range [IQR], 13-33 d) in the case of high-virulence microorganisms versus 45 days (IQR, 30-240 d) in the case of low- to medium-virulence microorganisms. Twelve SPMAs were intracranial and 6 were extracranial. In 10 cases (8 intracranial and 2 extracranial), SPMAs were the initial presentation of IE; the remaining cases developed symptoms during or after finishing parenteral antibiotic treatment. The initial diagnosis of intracranial SPMAs was made by computed tomography (CT) or magnetic resonance imaging in 6 unruptured aneurysms and by angiography in 6 ruptured aneurysms. The initial test in extracranial SPMAs was Doppler ultrasonography in limbs, CT in liver, and coronary angiography in heart. Four (3 intracranial, 1 extracranial) of 7 (6 intracranial, 1 extracranial) patients treated only with antibiotics died. Surgical resection was performed in 7 (3 intracranial, 4 extracranial) and endovascular repair in 4 (3 intracranial, 1 extracranial) patients; all of them survived. In conclusion, we found that SPMAs were a rare complication of IE that developed only in left-sided IE, and especially in native valves. Intracranial hemorrhage, embolism, multiple embolisms, and diagnostic delay of IE were more common in patients with SPMAs. The microbiologic profile was diverse, but microorganisms of low-medium virulence were predominant, and had a greater delayed diagnosis of IE than those caused by microorganisms of high virulence. SPMAs were often the initial presentation of IE. The most common location of SPMAs was intracranial. Noninvasive radiologic imaging techniques were the initial imaging test in intracranial unruptured SPMAs and in most extracranial SPMAs. Surgical and endovascular treatments were safe and effective. Endovascular treatment could be the first line of treatment in selected cases. Mortality was high in those cases treated only with antibiotics.
Collapse
Affiliation(s)
- Isabel González
- From the Department of Internal Medicine-Infectious Diseases (IG, C Sarriá, C Sáez, MH) and Radiology (JLC), Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid; Instituto de Ciencias del Corazón (ICICOR) (JL, ASR, AR), Hospital Clínico Universitario. Valladolid; and Instituto Cardiovascular (IV, CO, CF), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IDISSC), Universidad Complutense de Madrid, Madrid; Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Im JH, Baek JH, Lee HJ, Lee JS, Chung MH, Kim M, Lee SM, Kang JS. First Case of Bartonella henselae Bacteremia in Korea. Infect Chemother 2013; 45:446-50. [PMID: 24475360 PMCID: PMC3902810 DOI: 10.3947/ic.2013.45.4.446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 11/24/2022] Open
Abstract
Bartonella henselae causes cat-scratch disease, bacteremia, and various focal infections. Despite the worldwide occurrence of B. henselae infections, reports in humans are rare in Korea. The clinical manifestation of all 5 previously reported cases was lymphadenopathy. Herein, we report a case of bacteremia in a woman who presented with prolonged fever. B. henselae was isolated from a blood specimen by cell culture. Conventional polymerase chain reaction amplification and sequencing of the 16S-23S rRNA intergenic space region confirmed the isolate to be B. henselae. The patient had no underlying immunocompromising conditions and no recent exposure to animals. She was successfully managed with a combination of doxycycline and hydroxychloroquine.
Collapse
Affiliation(s)
- Jae-Hyoung Im
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Ji Hyeon Baek
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Hyun-Jung Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Jin-Soo Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Moon-Hyun Chung
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Mijeong Kim
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Sun Myoung Lee
- Translation Research Center, Inha University School of Medicine, Incheon, Korea
| | - Jae-Seung Kang
- Department of Microbiology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
30
|
Liu M, Biville F. Managing iron supply during the infection cycle of a flea borne pathogen, Bartonella henselae. Front Cell Infect Microbiol 2013; 3:60. [PMID: 24151576 PMCID: PMC3799009 DOI: 10.3389/fcimb.2013.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. Most Bartonella species appear to share a natural cycle that involves an arthropod transmission, followed by exploitation of a mammalian host in which they cause long-lasting intra-erythrocytic bacteremia. Persistence in erythrocytes is considered an adaptation to transmission by bloodsucking arthropod vectors and a strategy to obtain heme required for Bartonella growth. Bartonella genomes do not encode for siderophore biosynthesis or a complete iron Fe3+ transport system. Only genes, sharing strong homology with all components of a Fe2+ transport system, are present in Bartonella genomes. Also, Bartonella genomes encode for a complete heme transport system. Bartonella must face various environments in their hosts and vectors. In mammals, free heme and iron are rare and oxygen concentration is low. In arthropod vectors, toxic heme levels are found in the gut where oxygen concentration is high. Bartonella genomes encode for 3–5 heme-binding proteins. In Bartonella henselae heme-binding proteins were shown to be involved in heme uptake process, oxidative stress response, and survival inside endothelial cells and in the flea. In this report, we discuss the use of the heme uptake and storage system of B. henselae during its infection cycle. Also, we establish a comparison with the iron and heme uptake systems of Yersinia pestis used during its infection cycle.
Collapse
Affiliation(s)
- Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu/Ya'an , Sichuan, China
| | | |
Collapse
|
31
|
A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLoS Genet 2013; 9:e1003393. [PMID: 23555299 PMCID: PMC3610622 DOI: 10.1371/journal.pgen.1003393] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022] Open
Abstract
Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes. Viruses are selfish genetic elements that replicate and transfer their own DNA, often killing the host cell in the process. Unlike viruses, gene transfer agents (GTAs) transfer random pieces of the bacterial genome rather than their own DNA. GTAs are widespread in bacterial genomes, but it is not known whether they are beneficial to the bacterium. In this study, we have used the emerging pathogen Bartonella as our model to study the evolution of GTAs. We sequenced the genomes of six isolates of Bartonella, including two new strains isolated from wild moose in Sweden. Using a comparative genomics approach, we searched for innovations in the last common ancestor that could help explain the explosive radiation of the genus. Surprisingly, we found that a gene cluster for a GTA and a phage-derived origin of replication was the most conserved innovation, indicative of strong selective constraints. We argue that the reason for the remarkable stability of the GTA is that it provides a mechanism to duplicate and recombine genes for secretion systems. This leads to adaptability to a broad range of hosts.
Collapse
|
32
|
Bouhsira E, Ferrandez Y, Liu M, Franc M, Boulouis HJ, Biville F. Ctenocephalides felis an in vitro potential vector for five Bartonella species. Comp Immunol Microbiol Infect Dis 2013. [DOI: 10.1016/j.cimid.2012.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Liu M, Ferrandez Y, Bouhsira E, Monteil M, Franc M, Boulouis HJ, Biville F. Heme binding proteins of Bartonella henselae are required when undergoing oxidative stress during cell and flea invasion. PLoS One 2012; 7:e48408. [PMID: 23144761 PMCID: PMC3483173 DOI: 10.1371/journal.pone.0048408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/24/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. These heme auxotroph alphaproteobacteria must import heme for their growth, since they cannot synthesize it. To import exogenous heme, Bartonella genomes encode for a complete heme uptake system enabling transportation of this compound into the cytoplasm and degrading it to release iron. In addition, these bacteria encode for four or five outer membrane heme binding proteins (Hbps). The structural genes of these highly homologous proteins are expressed differently depending on oxygen, temperature and heme concentrations. These proteins were hypothesized as being involved in various cellular processes according to their ability to bind heme and their regulation profile. In this report, we investigated the roles of the four Hbps of Bartonella henselae, responsible for cat scratch disease. We show that Hbps can bind heme in vitro. They are able to enhance the efficiency of heme uptake when co-expressed with a heme transporter in Escherichia coli. Using B. henselae Hbp knockdown mutants, we show that these proteins are involved in defense against the oxidative stress, colonization of human endothelial cell and survival in the flea.
Collapse
Affiliation(s)
- MaFeng Liu
- UMR BIPAR Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, INRA-Anses-UPEC-ENVA, Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Experimental infection of laboratory mice with two Bartonella tribocorum strains from wild Mus species: a homologous host-bacteria model system at the genus level. Parasitology 2012; 140:61-8. [PMID: 22938938 DOI: 10.1017/s0031182012001333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To date no experimental infection studies have been conducted in laboratory mice using Mus spp. bartonella strains. Therefore we designed a study to evaluate the in vivo infection characteristics of 2 Bartonella tribocorum strains from wild Mus spp. in laboratory mice with the aim of developing a mouse model that reproduces characteristics of naturally acquired bartonella infections in rodents. Groups of outbred CD1 female mice were subcutaneously inoculated with low doses of 2 mouse bartonella strains (10, 100, and 1000 bacteria/mouse). Blood was collected weekly for 27 weeks to evaluate bacteraemia kinetics in infected mice. Mouse urine collected during weeks 3-6 post-inoculation was also tested for viable bacteria to determine whether urine might serve as a source of bacterial transmission. Mice were susceptible to infection with both strains. Bacteraemias in mice lasted up to 25 weeks, sometimes with abacteraemic intervals, and achieved levels up to 107 cfu/ml of blood. Temporal lags in bacteraemia onset of up to 19 weeks in length were noted at different inoculum doses. No viable bacteria were detected in mouse urine. Bacteraemic mice displayed characteristics of infection similar to those observed in natural rodent hosts during longitudinal field studies. This mouse model of persistent bacteraemia should be suitable for a variety of experimental uses.
Collapse
|
35
|
|
36
|
The bhuQ gene encodes a heme oxygenase that contributes to the ability of Brucella abortus 2308 to use heme as an iron source and is regulated by Irr. J Bacteriol 2012; 194:4052-8. [PMID: 22636783 DOI: 10.1128/jb.00367-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Brucella BhuQ protein is a homolog of the Bradyrhizobium japonicum heme oxygenases HmuD and HmuQ. To determine if this protein plays a role in the ability of Brucella abortus 2308 to use heme as an iron source, an isogenic bhuQ mutant was constructed and its phenotype evaluated. Although the Brucella abortus bhuQ mutant DCO1 did not exhibit a defect in its capacity to use heme as an iron source or evidence of increased heme toxicity in vitro, this mutant produced increased levels of siderophore in response to iron deprivation compared to 2308. Introduction of a bhuQ mutation into the B. abortus dhbC mutant BHB2 (which cannot produce siderophores) resulted in a severe growth defect in the dhbC bhuQ double mutant JFO1 during cultivation under iron-restricted conditions, which could be rescued by the addition of FeCl(3), but not heme, to the growth medium. The bhuQ gene is cotranscribed with the gene encoding the iron-responsive regulator RirA, and both of these genes are repressed by the other major iron-responsive regulator in the alphaproteobacteria, Irr. The results of these studies suggest that B. abortus 2308 has at least one other heme oxygenase that works in concert with BhuQ to allow this strain to efficiently use heme as an iron source. The genetic organization of the rirA-bhuQ operon also provides the basis for the proposition that BhuQ may perform a previously unrecognized function by allowing the transcriptional regulator RirA to recognize heme as an iron source.
Collapse
|
37
|
Beerlage C, Varanat M, Linder K, Maggi RG, Cooley J, Kempf VAJ, Breitschwerdt EB. Bartonella vinsonii subsp. berkhoffii and Bartonella henselae as potential causes of proliferative vascular diseases in animals. Med Microbiol Immunol 2012; 201:319-26. [DOI: 10.1007/s00430-012-0234-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/29/2012] [Indexed: 01/02/2023]
|
38
|
Deng H, Le Rhun D, Buffet JPR, Cotté V, Read A, Birtles RJ, Vayssier-Taussat M. Strategies of exploitation of mammalian reservoirs by Bartonella species. Vet Res 2012; 43:15. [PMID: 22369683 PMCID: PMC3430587 DOI: 10.1186/1297-9716-43-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/17/2012] [Indexed: 11/16/2022] Open
Abstract
Numerous mammal species, including domestic and wild animals such as ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts for various Bartonella species. Some of those species that exploit non-human mammals as reservoir hosts have zoonotic potential. Our understanding of interactions between bartonellae and reservoir hosts has been greatly improved by the development of animal models for infection and the use of molecular tools allowing large scale mutagenesis of Bartonella species. By reviewing and combining the results of these and other approaches we can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes.
Collapse
Affiliation(s)
- Hongkuan Deng
- USC INRA Bartonella et Tiques, ANSES, 23 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu MF, Cescau S, Mechold U, Wang J, Cohen D, Danchin A, Boulouis HJ, Biville F. Identification of a novel nanoRNase in Bartonella. MICROBIOLOGY-SGM 2012; 158:886-895. [PMID: 22262096 DOI: 10.1099/mic.0.054619-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli, only one essential oligoribonuclease (Orn) can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). In Bacillus subtilis, NrnA and NrnB, which do not show any sequence similarity to Orn, have been identified as functional analogues of Orn. Sequence comparisons did not identify orn, nrnA or nrnB homologues in the genomes of the Chlamydia/Cyanobacteria and Alphaproteobacteria family members. Screening a genomic library from Bartonella birtlesii, a member of the Alphaproteobacteria, for genes that can complement a conditional orn mutant in E. coli, we identified BA0969 (NrnC) as a functional analogue of Orn. NrnC is highly conserved (more than 80 % identity) in the Bartonella genomes sequenced to date. Biochemical characterization showed that this protein exhibits oligo RNA degradation activity (nanoRNase activity). Like Orn from E. coli, NrnC is inhibited by micromolar amounts of 3'-phosphoadenosine 5'-phosphate in vitro. NrnC homologues are widely present in genomes of Alphaproteobacteria. Knock down of nrnC decreases the growth ability of Bartonella henselae, demonstrating the importance of nanoRNase activity in this bacterium.
Collapse
Affiliation(s)
- Ma Feng Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, 5333 Xi an Road, Changchun 130062, PR China
- UMR BIPAR INRA-AFSSA-ENVA, 23 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - Sandra Cescau
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Undine Mechold
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Jing Wang
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dorit Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Antoine Danchin
- AMAbiotics SAS, Bldg G1, 2 rue Gaston Crémieux, 91000 Evry, France
| | - Henri-Jean Boulouis
- UMR BIPAR INRA-AFSSA-ENVA, 23 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - Francis Biville
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
- UMR BIPAR INRA-AFSSA-ENVA, 23 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| |
Collapse
|
40
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
41
|
Bartonella infection in immunocompromised hosts: immunology of vascular infection and vasoproliferation. Clin Dev Immunol 2011; 2012:612809. [PMID: 22162717 PMCID: PMC3227422 DOI: 10.1155/2012/612809] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 01/07/2023]
Abstract
Most infections by genus Bartonella in immunocompromised patients are caused by B. henselae and B. quintana. Unlike immunocompetent hosts who usually develop milder diseases such as cat scratch disease and trench fever, immunocompromised patients, including those living with HIV/AIDS and posttransplant patients, are more likely to develop different and severe life-threatening disease. This paper will discuss Bartonella's manifestations in immunosuppressed patients and will examine Bartonella's interaction with the immune system including its mechanisms of establishing infection and immune escape. Gaps in current understanding of the immunology of Bartonella infection in immunocompromised hosts will be highlighted.
Collapse
|
42
|
Cherry NA, Maggi RG, Rossmeisl JH, Hegarty BC, Breitschwerdt EB. Ecological diversity of Bartonella species infection among dogs and their owner in Virginia. Vector Borne Zoonotic Dis 2011; 11:1425-32. [PMID: 21736485 DOI: 10.1089/vbz.2010.0201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bartonella species comprise a genus of gram-negative, fastidious, intracellular bacteria that have been implicated in association with an increasing spectrum of disease manifestations in dogs and human patients. In this study, chronic canine and human disease, for which causation was not diagnostically defined, were reported by the breeder of a kennel of Doberman pinschers. In addition to other diagnostic tests, serology, polymerase chain reaction, and enrichment blood culture were used to assess the prevalence of Bartonella sp. infection in the dogs and their owner. From five dogs, Bartonella vinsonii subsp. berkhoffii genotype I, multiple Bartonella henselae strains, and a species most similar to Candidatus B. volans, a rodent-associated Bartonella sp., were amplified and sequenced from biopsy tissues, cerebrospinal fluid, or blood enrichment cultures. The owner was bacteremic with B. vinsonii subsp. berkhoffii genotype I, the same subsp. and genotype detected in one of her dogs. These results further emphasize the ecological complexity of Bartonella sp. transmission in nature.
Collapse
Affiliation(s)
- Natalie A Cherry
- Intracellular Pathogens Research Laboratory and the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
43
|
Molecular Detection of Bartonella henselae for the Diagnosis of Cat Scratch Disease and Bacillary Angiomatosis of the Conjunctiva. Cornea 2011; 30:807-14. [DOI: 10.1097/ico.0b013e318201440c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
MARTINSON VINCENTG, DANFORTH BRYANN, MINCKLEY ROBERTL, RUEPPELL OLAV, TINGEK SALIM, MORAN NANCYA. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2010; 20:619-28. [DOI: 10.1111/j.1365-294x.2010.04959.x] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Guptill L. Bartonellosis. Vet Microbiol 2010; 140:347-59. [DOI: 10.1016/j.vetmic.2009.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022]
|