1
|
Bhakhar KA, Sureja DK, Dhameliya TM. Synthetic account of indoles in search of potential anti-mycobacterial agents: A review and future insights. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Grover S, Engelhart CA, Pérez-Herrán E, Li W, Abrahams KA, Papavinasasundaram K, Bean JM, Sassetti CM, Mendoza-Losana A, Besra GS, Jackson M, Schnappinger D. Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in Mycobacterium tuberculosis. ACS Infect Dis 2021; 7:141-152. [PMID: 33319550 PMCID: PMC7802072 DOI: 10.1021/acsinfecdis.0c00675] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
MmpL3,
an essential mycolate transporter in the inner membrane
of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse
antitubercular drugs. However, several of these molecules seem to
have secondary targets and inhibit bacterial growth by more than one
mechanism. Here, we describe a cell-based assay that utilizes two-way
regulation of MmpL3 expression to readily identify MmpL3-specific
inhibitors. We successfully used this assay to identify a novel guanidine-based
MmpL3 inhibitor from a library of 220 compounds that inhibit growth
of Mtb by largely unknown mechanisms. We furthermore
identified inhibitors of cytochrome bc1-aa3 oxidase as one class of off-target hits in whole-cell screens for
MmpL3 inhibitors and report a novel sulfanylacetamide as a potential
QcrB inhibitor.
Collapse
Affiliation(s)
- Shipra Grover
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Esther Pérez-Herrán
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine A. Abrahams
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - James M. Bean
- Sloan Kettering Institute, New York, New York 10065, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Alfonso Mendoza-Losana
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
3
|
Dhameliya TM, Patel KI, Tiwari R, Vagolu SK, Panda D, Sriram D, Chakraborti AK. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem 2020; 107:104538. [PMID: 33349456 DOI: 10.1016/j.bioorg.2020.104538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/17/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Tuberculosis is the leading cause of death globally among infectious diseases. Due to the development of resistance of Mycobacterium tuberculosis to currently used anti-TB medicines and the TB-HIV synergism the urgent need to develop novel anti-mycobacterial agents has been realized. The drug-to-target path has been the successful strategy for new anti-TB drug development. All the six drug candidates that have shown promise during the clinical trials and some of these being approved for treatment against MDR TB are the results of phenotype screening of small molecule compound libraries. In search of compounds belonging to novel pharmacophoric class that could be subjected to whole cell assay to generate new anti-TB leads the benzo[d]imidazole-2-carboxamide moiety has been designed as a novel anti-TB scaffold. The design was based on the identification of the benzimidazole ring as a prominent substructure of the FDA approved drugs, the structural analysis of reported anti-TB benzimidazoles, and the presence of the C-2 carboxamido functionality in novel bioisoteric anti-TB benzothiazoles. Twenty seven final compounds have been prepared via NH4Cl-catalyzed amidation of ethyl benzo[d]imidazole-2-carboxylates, as the required intermediates, obtained through a green "all water" one-pot synthetic route following a tandem N-arylation-reduction-cyclocondensation procedure. All of the synthesised target compounds were assessed for anti-TB potential using H37Rv ATCC27294 strain. Thirteen compounds were found with better MIC (0.78-6.25 µg/mL) than the standard drugs and being non-cytotoxic nature (<50% inhibition against RAW 264.7 cell lines at 50 µg/mL). The compound 8e exhibited best anti-TB activity (MIC: 2.15 µM and selectivity index: > 60) and a few others e.g., 8a, 8f, 8k and 8o are the next best anti-TB hits (MIC: 1.56 µg/mL). The determination and analysis of various physiochemical parameters revealed favorable druglike properties of the active compounds. The compounds 8a-l and 8o, with MIC values of ≤ 6.25 μg/mL, have high LipE values (10.66-11.77) that are higher than that of the suggested value of > 6 derived from empirical evidence for quality drug candidates and highlight their therapeutic potential. The highest LipE value of 11.77 of the best active compound 8e with the MIC of 0.78 μg/mL indicates its better absorption and clearance as a probable clinical candidate for anti-TB drug discovery. These findings highlight the discovery of benzimidazole-2-carboxamides for further development as new anti-TB agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Rishu Tiwari
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Siva Krishna Vagolu
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India; Department of Chemistry, Indian Institute of Technology - Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
4
|
Structure-Based Drug Design for Tuberculosis: Challenges Still Ahead. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based and computer-aided drug design approaches are commonly considered to have been successful in the fields of cancer and antiviral drug discovery but not as much for antibacterial drug development. The search for novel anti-tuberculosis agents is indeed an emblematic example of this trend. Although huge efforts, by consortiums and groups worldwide, dramatically increased the structural coverage of the Mycobacterium tuberculosis proteome, the vast majority of candidate drugs included in clinical trials during the last decade were issued from phenotypic screenings on whole mycobacterial cells. We developed here three selected case studies, i.e., the serine/threonine (Ser/Thr) kinases—protein kinase (Pkn) B and PknG, considered as very promising targets for a long time, and the DNA gyrase of M. tuberculosis, a well-known, pharmacologically validated target. We illustrated some of the challenges that rational, target-based drug discovery programs in tuberculosis (TB) still have to face, and, finally, discussed the perspectives opened by the recent, methodological developments in structural biology and integrative techniques.
Collapse
|
5
|
Biosynthesis of Galactan in Mycobacterium tuberculosis as a Viable TB Drug Target? Antibiotics (Basel) 2020; 9:antibiotics9010020. [PMID: 31935842 PMCID: PMC7168186 DOI: 10.3390/antibiotics9010020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.
Collapse
|
6
|
Chandramohan Y, Padmanaban V, Bethunaickan R, Tripathy S, Swaminathan S, Ranganathan UD. In vitro interaction profiles of the new antitubercular drugs bedaquiline and delamanid with moxifloxacin against clinical Mycobacterium tuberculosis isolates. J Glob Antimicrob Resist 2019; 19:348-353. [PMID: 31226332 DOI: 10.1016/j.jgar.2019.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/17/2019] [Accepted: 06/08/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The emergence of drug-resistant tuberculosis (TB) poses a serious challenge to existing anti-TB therapies. Hence, there is a direct need for identification of new drugs and effective combination regimens. METHODS In this study, minimum inhibitory concentrations (MICs) of the anti-TB drugs bedaquiline (BDQ), delamanid (DEL) and moxifloxacin (MFX) were evaluated using a resazurin microtiter assay (REMA) against five drug-resistant clinicalMycobacterium tuberculosis (MTB) isolates as well as the drug-susceptible reference strain H37Rv. In addition, their fractional inhibitory concentration indices (FICIs) were evaluated using a REMA-based calorimetric chequerboard assay to assess their interaction profiles against the MTB isolates. RESULTS The FICI indicated that BDQ acted synergistically with DEL against isoniazid (INH)-monoresistant, rifampicin (RIF)-monoresistant and extensively drug-resistant (XDR) clinical MTB isolates. In addition, the combination of DEL acted synergistically with MFX against INH-monoresistant, RIF-monoresistant and XDR clinical MTB isolates. Moreover, the combination of BDQ and MFX showed a synergistic effect against RIF-monoresistant and pre-XDR clinical MTB isolates. DEL at 0.125×MIC (i.e. 0.015μg/mL) used in combination with BDQ at 0.25×MIC (i.e. 0.015μg/mL) had a stronger bactericidal effect against the XDR-TB clinical isolate than DEL alone at 1×MIC (i.e. 0.125μg/mL). CONCLUSION Synergistic and additive effects between these two-drug combinations offer an attractive chemotherapeutic regimen against drug-resistant clinical MTB isolates.
Collapse
Affiliation(s)
- Yuvaraj Chandramohan
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Venkatesan Padmanaban
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Ramalingam Bethunaickan
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India; Pathology and Microbiology Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Srikanth Tripathy
- National Institute for Research in Tuberculosis, Chetpet, Chennai 600 031, India
| | - Soumya Swaminathan
- Indian Council of Medical Research, Ansari Nagar East, New Delhi 110029, India
| | - Uma Devi Ranganathan
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India.
| |
Collapse
|
7
|
Lee YV, Choi SB, Wahab HA, Lim TS, Choong YS. Applications of Ensemble Docking in Potential Inhibitor Screening for Mycobacterium tuberculosis Isocitrate Lyase Using a Local Plant Database. J Chem Inf Model 2019; 59:2487-2495. [PMID: 30840452 DOI: 10.1021/acs.jcim.8b00963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Isocitrate lyase (ICL) is a persistent factor for the survival of dormant stage Mycobacterium tuberculosis (MTB), thus a potential drug target for tuberculosis treatment. In this work, ensemble docking approach was used to screen for potential inhibitors of ICL. The ensemble conformations of ICL active site were obtained from molecular dynamics simulation on three dimer form systems, namely the apo ICL, ICL in complex with metabolites (glyoxylate and succinate), and ICL in complex with substrate (isocitrate). Together with the ensemble conformations and the X-ray crystal structures, 22 structures were used for the screening against Malaysian Natural Compound Database (NADI). The top 10 compounds for each ensemble conformation were selected. The number of compounds was then further narrowed down to 22 compounds that were within the Lipinski's Rule of Five for drug-likeliness and were also docked into more than one ensemble conformation. Theses 22 compounds were furthered evaluate using whole cell assay. Some compounds were not commercially available; therefore, plant crude extracts were used for the whole cell assay. Compared to itaconate (the known inhibitor of ICL), crude extracts from Manilkara zapota, Morinda citrifolia, Vitex negundo, and Momordica charantia showed some inhibition activity. The MIC/MBC value were 12.5/25, 12.5/25, 0.78/1.6, and 0.39/1.6 mg/mL, respectively. This work could serve as a preliminary study in order to narrow the scope for high throughput screening in the future.
Collapse
Affiliation(s)
- Yie-Vern Lee
- Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , 11800 Minden , Penang , Malaysia
| | - Sy Bing Choi
- School of Data Science , Perdana University , 43400 Sri Kembangan , Selangor , Malaysia
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , 11800 Minden , Penang , Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , 11800 Minden , Penang , Malaysia.,Analytical Biochemistry Research Centre , Universiti Sains Malaysia , 11800 Minden , Penang , Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , 11800 Minden , Penang , Malaysia
| |
Collapse
|
8
|
Development of new drug-regimens against multidrug-resistant tuberculosis. ACTA ACUST UNITED AC 2019; 66:12-19. [DOI: 10.1016/j.ijtb.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/02/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
|
9
|
Shukla R, Shukla H, Tripathi T. Activity loss by H46A mutation in Mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site. Tuberculosis (Edinb) 2017. [PMID: 29523315 DOI: 10.1016/j.tube.2017.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis isocitrate lyase (MtbICL) is a crucial enzyme of the glyoxylate cycle and is a validated anti-tuberculosis drug target. Structurally distant, non-active site mutation (H46A) in MtbICL has been found to cause loss of enzyme activity. The aim of the present work was to explore the structural alterations induced by H46A mutation that caused the loss of enzyme activity. The structural and dynamic consequences of H46A mutation were studied using multiple computational methods such as docking, molecular dynamics simulation and residue interaction network analysis (RIN). Principal component analysis and cross correlation analysis revealed the difference in conformational flexibility and collective modes of motions between the wild-type and mutant enzyme, particularly in the active site region. RIN analysis revealed that the active site geometry was disturbed in the mutant enzyme. Thus, the dynamic perturbation of the active site led to enzyme transition from its active form to inactive form upon mutation. The computational analyses elucidated the mutant-specific conformational alterations, differential dominant motions, and anomalous residue level interactions that contributed to the abrogated function of mutant MtbICL. An understanding of interactions of mutant enzymes may help in modifying the existing drugs and designing improved drugs for successful control of tuberculosis.
Collapse
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Satta G, Lipman M, Smith GP, Arnold C, Kon OM, McHugh TD. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential? Clin Microbiol Infect 2017; 24:604-609. [PMID: 29108952 DOI: 10.1016/j.cmi.2017.10.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Nearly two decades after completion of the genome sequence of Mycobacterium tuberculosis (MTB), and with the advent of next generation sequencing technologies (NGS), whole-genome sequencing (WGS) has been applied to a wide range of clinical scenarios. Starting in 2017, England is the first country in the world to pioneer its use on a national scale for the diagnosis of tuberculosis, detection of drug resistance, and typing of MTB. AIMS This narrative review critically analyses the current applications of WGS for MTB and explains how close we are to realizing its full potential as a diagnostic, epidemiologic, and research tool. SOURCES We searched for reports (both original articles and reviews) published in English up to 31 May 2017, with combinations of the following keywords: whole-genome sequencing, Mycobacterium, and tuberculosis. MEDLINE, Embase, and Scopus were used as search engines. We included articles that covered different aspects of whole-genome sequencing in relation to MTB. CONTENT This review focuses on three main themes: the role of WGS for the prediction of drug susceptibility, MTB outbreak investigation and genetic diversity, and research applications of NGS. IMPLICATIONS Many of the original expectations have been accomplished, and we believe that with its unprecedented sensitivity and power, WGS has the potential to address many unanswered questions in the near future. However, caution is still needed when interpreting WGS data as there are some important limitations to be aware of, from correct interpretation of drug susceptibilities to the bioinformatic support needed.
Collapse
Affiliation(s)
- G Satta
- UCL-TB and UCL Centre for Clinical Microbiology, Department of Infection, University College London, UK; Imperial College Healthcare NHS Trust, London, UK.
| | - M Lipman
- UCL-TB and UCL Respiratory, University College London, UK; Royal Free London NHS Foundation Trust, London, UK
| | - G P Smith
- National Mycobacterium Reference Laboratory, Public Health England, UK; Heart of England NHS Foundation Trust, Birmingham, UK
| | - C Arnold
- UCL-TB and UCL Centre for Clinical Microbiology, Department of Infection, University College London, UK; Genomic Services and Development Unit, Public Health England, UK
| | - O M Kon
- Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, UK
| | - T D McHugh
- UCL-TB and UCL Centre for Clinical Microbiology, Department of Infection, University College London, UK
| |
Collapse
|
11
|
Shukla H, Shukla R, Sonkar A, Pandey T, Tripathi T. Distant Phe345 mutation compromises the stability and activity of Mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Sci Rep 2017; 7:1058. [PMID: 28432345 PMCID: PMC5430663 DOI: 10.1038/s41598-017-01235-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Isocitrate lyase (ICL), a potential anti-tubercular drug target, catalyzes the first step of the glyoxylate shunt. In the present investigation, we studied the conformational flexibility of MtbICL to better understand its stability and catalytic activity. Our biochemical results showed that a point mutation at Phe345, which is topologically distant (>10 Å) to the active site signature sequence (189KKCGH193), completely abolishes the activity of the enzyme. In depth computational analyses were carried out for understanding the structural alterations using molecular dynamics, time-dependent secondary structure and principal component analysis. The results showed that the mutated residue increased the structural flexibility and induced conformational changes near the active site (residues 170–210) and in the C-terminal lid region (residues 411–428). Both these regions are involved in the catalytic activity of MtbICL. Upon mutation, the residual mobility of the enzyme increased, resulting in a decrease in the stability, which was confirmed by the lower free energy of stabilization in the mutant enzyme suggesting the destabilization in the structure. Our results have both biological importance and chemical novelty. It reveals internal dynamics of the enzyme structure and also suggests that regions other than the active site should be exploited for targeting MtbICL inhibition and development of novel anti-tuberculosis compounds.
Collapse
Affiliation(s)
- Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Amit Sonkar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
12
|
Mikušová K, Ekins S. Learning from the past for TB drug discovery in the future. Drug Discov Today 2016; 22:534-545. [PMID: 27717850 DOI: 10.1016/j.drudis.2016.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Tuberculosis drug discovery has shifted in recent years from a primarily target-based approach to one that uses phenotypic high-throughput screens. As examples of this, through our EU-funded FP7 collaborations, New Medicines for Tuberculosis was target-based and our more-recent More Medicines for Tuberculosis project predominantly used phenotypic screening. From these projects we have examples of success (DprE1) and failure (PimA) going from drug to target and from target to drug, respectively. It is clear that we still have much to learn about the drug targets and the complex effects of the drugs on Mycobacterium tuberculosis. We propose a more integrated approach that learns from earlier drug discovery efforts that could help to move drug discovery forward.
Collapse
Affiliation(s)
- Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Sean Ekins
- Collaborative Drug Discovery, Inc., 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay Varina, NC 27526, USA.
| |
Collapse
|
13
|
Singh V, Mizrahi V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov Today 2016; 22:503-509. [PMID: 27649943 DOI: 10.1016/j.drudis.2016.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/28/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is a global epidemic associated increasingly with resistance to first- and second-line antitubercular drugs. The magnitude of this global health threat underscores the urgent need to discover new antimycobacterial agents that have novel mechanisms of action (MOA). In this review, we highlight some of the key advances that have enabled the strengths of target-led and phenotypic approaches to TB drug discovery to be harnessed both independently and in combination. Critically, these promise to fuel the front-end of the TB drug pipeline with new, pharmacologically validated drug targets together with lead compounds that act on these targets.
Collapse
Affiliation(s)
- Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, South Africa.
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
14
|
Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3. Antimicrob Agents Chemother 2016; 60:5198-207. [PMID: 27297488 DOI: 10.1128/aac.00826-16] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
In recent years, whole-cell-based screens for novel small molecule inhibitors active against Mycobacterium tuberculosis in culture followed by the whole-genome sequencing of spontaneous resistant mutants have identified multiple chemical scaffolds thought to kill the bacterium through the inactivation of the mycolic acid transporter, MmpL3. Consistent with the fact that MmpL3 is required for the formation of the mycobacterial outer membrane, we have conclusively shown in this study, using conditionally regulated knockdown mutants, that mmpL3 is required for the replication and viability of M. tuberculosis, both under standard laboratory growth conditions and during the acute and chronic phases of infection in mice. Speaking for the vulnerability of this target, silencing mmpL3 had a rapid bactericidal effect on actively replicating cells in vitro and reduced by 3 to 5 logs in less than 4 weeks the bacterial loads of acutely and chronically infected mouse lungs, respectively. Depletion of MmpL3 further rendered M. tuberculosis hypersusceptible to MmpL3 inhibitors. The exquisite vulnerability of MmpL3 at all stages of the infection establishes this transporter as an attractive new target with the potential to improve and shorten current drug-susceptible and drug-resistant tuberculosis chemotherapies.
Collapse
|
15
|
Neres J, Hartkoorn RC, Chiarelli LR, Gadupudi R, Pasca MR, Mori G, Venturelli A, Savina S, Makarov V, Kolly GS, Molteni E, Binda C, Dhar N, Ferrari S, Brodin P, Delorme V, Landry V, de Jesus Lopes Ribeiro AL, Farina D, Saxena P, Pojer F, Carta A, Luciani R, Porta A, Zanoni G, De Rossi E, Costi MP, Riccardi G, Cole ST. 2-Carboxyquinoxalines kill mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chem Biol 2015; 10:705-14. [PMID: 25427196 DOI: 10.1021/cb5007163] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenotypic screening of a quinoxaline library against replicating Mycobacterium tuberculosis led to the identification of lead compound Ty38c (3-((4-methoxybenzyl)amino)-6-(trifluoromethyl)quinoxaline-2-carboxylic acid). With an MIC99 and MBC of 3.1 μM, Ty38c is bactericidal and active against intracellular bacteria. To investigate its mechanism of action, we isolated mutants resistant to Ty38c and sequenced their genomes. Mutations were found in rv3405c, coding for the transcriptional repressor of the divergently expressed rv3406 gene. Biochemical studies clearly showed that Rv3406 decarboxylates Ty38c into its inactive keto metabolite. The actual target was then identified by isolating Ty38c-resistant mutants of an M. tuberculosis strain lacking rv3406. Here, mutations were found in dprE1, encoding the decaprenylphosphoryl-d-ribose oxidase DprE1, essential for biogenesis of the mycobacterial cell wall. Genetics, biochemical validation, and X-ray crystallography revealed Ty38c to be a noncovalent, noncompetitive DprE1 inhibitor. Structure-activity relationship studies generated a family of DprE1 inhibitors with a range of IC50's and bactericidal activity. Co-crystal structures of DprE1 in complex with eight different quinoxaline analogs provided a high-resolution interaction map of the active site of this extremely vulnerable target in M. tuberculosis.
Collapse
Affiliation(s)
- João Neres
- More Medicines for Tuberculosis (MM4TB) Consortium
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ruben C. Hartkoorn
- More Medicines for Tuberculosis (MM4TB) Consortium
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laurent R. Chiarelli
- More Medicines for Tuberculosis (MM4TB) Consortium
- Department
of Biology and Biotecnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Ramakrishna Gadupudi
- Tydock Pharma, srl Via Campi
183, 41125 Modena, Italy
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
183, 41126 Modena, Italy
| | - Maria Rosalia Pasca
- More Medicines for Tuberculosis (MM4TB) Consortium
- Department
of Biology and Biotecnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Giorgia Mori
- More Medicines for Tuberculosis (MM4TB) Consortium
- Department
of Biology and Biotecnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | | | - Svetlana Savina
- More Medicines for Tuberculosis (MM4TB) Consortium
- A. N. Bakh
Institute of Biochemistry, Russian Academy of Science, 119071 Moscow, Russia
| | - Vadim Makarov
- More Medicines for Tuberculosis (MM4TB) Consortium
- A. N. Bakh
Institute of Biochemistry, Russian Academy of Science, 119071 Moscow, Russia
| | - Gaelle S. Kolly
- More Medicines for Tuberculosis (MM4TB) Consortium
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Elisabetta Molteni
- More Medicines for Tuberculosis (MM4TB) Consortium
- Department
of Biology and Biotecnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Claudia Binda
- More Medicines for Tuberculosis (MM4TB) Consortium
- Department
of Biology and Biotecnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Neeraj Dhar
- More Medicines for Tuberculosis (MM4TB) Consortium
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Stefania Ferrari
- Tydock Pharma, srl Via Campi
183, 41125 Modena, Italy
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
183, 41126 Modena, Italy
| | - Priscille Brodin
- More Medicines for Tuberculosis (MM4TB) Consortium
- Inserm
U1019 − CNRS UMR 8204, Institut Pasteur de Lille, Université de Lille, 1 rue du Professeur Calmette, 59019, Lille, France
| | - Vincent Delorme
- More Medicines for Tuberculosis (MM4TB) Consortium
- Inserm
U1019 − CNRS UMR 8204, Institut Pasteur de Lille, Université de Lille, 1 rue du Professeur Calmette, 59019, Lille, France
| | - Valérie Landry
- Inserm
U1019 − CNRS UMR 8204, Institut Pasteur de Lille, Université de Lille, 1 rue du Professeur Calmette, 59019, Lille, France
| | | | - Davide Farina
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
183, 41126 Modena, Italy
| | - Puneet Saxena
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
183, 41126 Modena, Italy
| | - Florence Pojer
- More Medicines for Tuberculosis (MM4TB) Consortium
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Antonio Carta
- Department
of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Rosaria Luciani
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
183, 41126 Modena, Italy
| | - Alessio Porta
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Zanoni
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Edda De Rossi
- More Medicines for Tuberculosis (MM4TB) Consortium
- Department
of Biology and Biotecnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Maria Paola Costi
- More Medicines for Tuberculosis (MM4TB) Consortium
- Tydock Pharma, srl Via Campi
183, 41125 Modena, Italy
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
183, 41126 Modena, Italy
| | - Giovanna Riccardi
- More Medicines for Tuberculosis (MM4TB) Consortium
- Department
of Biology and Biotecnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stewart T. Cole
- More Medicines for Tuberculosis (MM4TB) Consortium
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Fortuin S, Tomazella GG, Nagaraj N, Sampson SL, Gey van Pittius NC, Soares NC, Wiker HG, de Souza GA, Warren RM. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog. Front Microbiol 2015; 6:6. [PMID: 25713560 PMCID: PMC4322841 DOI: 10.3389/fmicb.2015.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/04/2015] [Indexed: 11/29/2022] Open
Abstract
Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.
Collapse
Affiliation(s)
- Suereta Fortuin
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Gisele G Tomazella
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway
| | | | - Samantha L Sampson
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Nicolaas C Gey van Pittius
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Nelson C Soares
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Harald G Wiker
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway
| | - Gustavo A de Souza
- Norway Proteomics Core Facility, Department of Immunology, Oslo University Oslo, Norway
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| |
Collapse
|
17
|
Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. BIOMED RESEARCH INTERNATIONAL 2015; 2015:895453. [PMID: 25649791 PMCID: PMC4306415 DOI: 10.1155/2015/895453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
Abstract
Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.
Collapse
|
18
|
Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58:6413-23. [PMID: 25136022 DOI: 10.1128/aac.03229-14] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MmpL3, a resistance-nodulation-division (RND) superfamily transporter, has been implicated in the formation of the outer membrane of Mycobacterium tuberculosis; specifically, MmpL3 is required for the export of mycolic acids in the form of trehalose monomycolates (TMM) to the periplasmic space or outer membrane of M. tuberculosis. Recently, seven series of inhibitors identified by whole-cell screening against M. tuberculosis, including the antituberculosis drug candidate SQ109, were shown to abolish MmpL3-mediated TMM export. However, this mode of action was brought into question by the broad-spectrum activities of some of these inhibitors against a variety of bacterial and fungal pathogens that do not synthesize mycolic acids. This observation, coupled with the ability of three of these classes of inhibitors to kill nonreplicating M. tuberculosis bacilli, led us to investigate alternative mechanisms of action. Our results indicate that the inhibitory effects of adamantyl ureas, indolecarboxamides, tetrahydropyrazolopyrimidines, and the 1,5-diarylpyrrole BM212 on the transport activity of MmpL3 in actively replicating M. tuberculosis bacilli are, like that of SQ109, most likely due to their ability to dissipate the transmembrane electrochemical proton gradient. In addition to providing novel insights into the modes of action of compounds reported to inhibit MmpL3, our results provide the first explanation for the large number of pharmacophores that apparently target this essential inner membrane transporter.
Collapse
|
19
|
Mechanism of action of 5-nitrothiophenes against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58:2944-7. [PMID: 24550336 DOI: 10.1128/aac.02693-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
On using the streptomycin-starved 18b strain as a model for nonreplicating Mycobacterium tuberculosis, we identified a 5-nitrothiophene compound as highly active but not cytotoxic. Mutants resistant to 5-nitrothiophenes were found be cross-resistant to the nitroimidazole PA-824 and unable to produce the F420 cofactor. Furthermore, 5-nitrothiophenes were shown to be activated by the F420-dependent nitroreductase Ddn and to release nitric oxide, a mechanism of action identical to that described for nitroimidazoles.
Collapse
|
20
|
Jackson M, McNeil MR, Brennan PJ. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol 2014; 8:855-75. [PMID: 23841633 DOI: 10.2217/fmb.13.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most of the newly discovered compounds showing promise for the treatment of TB, notably multidrug-resistant TB, inhibit aspects of Mycobacterium tuberculosis cell envelope metabolism. This review reflects on the evolution of the knowledge that many of the front-line and emerging products inhibit aspects of cell envelope metabolism and in the process are bactericidal not only against actively replicating M. tuberculosis, but contrary to earlier impressions, are effective against latent forms of the disease. While mycolic acid and arabinogalactan synthesis are still primary targets of existing and new drugs, peptidoglycan synthesis, transport mechanisms and the synthesis of the decaprenyl-phosphate carrier lipid all show considerable promise as targets for new products, older drugs and new combinations. The advantages of whole cell- versus target-based screening in the perpetual search for new targets and products to counter multidrug-resistant TB are discussed.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | | | | |
Collapse
|
21
|
Lechartier B, Rybniker J, Zumla A, Cole ST. Tuberculosis drug discovery in the post-post-genomic era. EMBO Mol Med 2014; 6:158-68. [PMID: 24401837 PMCID: PMC3927952 DOI: 10.1002/emmm.201201772] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The expectation that genomics would result in new therapeutic interventions for infectious diseases remains unfulfilled. In the post-genomic era, the decade immediately following the availability of the genome sequence of Mycobacterium tuberculosis, tuberculosis (TB) drug discovery relied heavily on the target-based approach but this proved unsuccessful leading to a return to whole cell screening. Genomics underpinned screening by providing knowledge and many enabling technologies, most importantly whole genome resequencing to find resistance mutations and targets, and this resulted in a selection of leads and new TB drug candidates that are reviewed here. Unexpectedly, many new targets were found to be ‘promiscuous’ as they were inhibited by a variety of different compounds. In the post-post-genomics era, more advanced technologies have been implemented and these include high-content screening, screening for inhibitors of latency, the use of conditional knock-down mutants for validated targets and siRNA screens. In addition, immunomodulation and pharmacological manipulation of host functions are being explored in an attempt to widen our therapeutic options.
Collapse
Affiliation(s)
- Benoit Lechartier
- Ecole Polytechnique Fédérale de Lausanne Global Health Institute, Lausanne, Switzerland
| | | | | | | |
Collapse
|
22
|
Rostirolla DC, Milech de Assunção T, Bizarro CV, Basso LA, Santos DS. Biochemical characterization of Mycobacterium tuberculosis IMP dehydrogenase: kinetic mechanism, metal activation and evidence of a cooperative system. RSC Adv 2014. [DOI: 10.1039/c4ra02142h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proposed kinetic mechanism forMtIMPDH in the presence of K+.
Collapse
Affiliation(s)
- Diana Carolina Rostirolla
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| | | | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| | - Diogenes Santiago Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| |
Collapse
|
23
|
Caleffi-Ferracioli KR, Maltempe FG, Siqueira VLD, Cardoso RF. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis (Edinb) 2013; 93:660-3. [DOI: 10.1016/j.tube.2013.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
24
|
In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012; 56:5790-3. [PMID: 22926573 DOI: 10.1128/aac.01476-12] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benzothiazinones (BTZ) are a new class of drug candidates to combat tuberculosis that inhibit decaprenyl-phosphoribose epimerase (DprE1), an essential enzyme involved in arabinan biosynthesis. Using the checkerboard method and cell viability assays, we have studied the interaction profiles of BTZ043, the current lead compound, with several antituberculosis drugs or drug candidates against Mycobacterium tuberculosis strain H37Rv, namely, rifampin, isoniazid, ethambutol, TMC207, PA-824, moxifloxacin, meropenem with or without clavulanate, and SQ-109. No antagonism was found between BTZ043 and the tested compounds, and most of the interactions were purely additive. Data from two different approaches clearly indicate that BTZ043 acts synergistically with TMC207, with a fractional inhibitory concentration index of 0.5. TMC207 at a quarter of the MIC (20 ng/ml) used in combination with BTZ043 (1/4 MIC, 0.375 ng/ml) had a stronger bactericidal effect on M. tuberculosis than TMC207 alone at a concentration of 80 ng/ml. This synergy was not observed when the combination was tested on a BTZ-resistant M. tuberculosis mutant, suggesting that DprE1 inhibition is the basis for the interaction. This finding excludes the possibility of synergy occurring through an off-target mechanism. We therefore hypothesize that sub-MICs of BTZ043 weaken the bacterial cell wall and allow improved penetration of TMC207 to its target. Synergy between two new antimycobacterial compounds, such as TMC207 and BTZ043, with novel targets, offers an attractive foundation for a new tuberculosis regimen.
Collapse
|
25
|
Sacksteder KA, Protopopova M, Barry CE, Andries K, Nacy CA. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol 2012; 7:823-37. [PMID: 22827305 PMCID: PMC3480206 DOI: 10.2217/fmb.12.56] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Existing drugs have limited efficacy against the rising threat of drug-resistant TB, have significant side effects, and must be given in combinations of four to six drugs for at least 6 months for drug-sensitive TB and up to 24 months for drug-resistant TB. The long treatment duration has led to increased patient noncompliance with therapy. This, in turn, drives the development of additional drug resistance in a spiral that has resulted in some forms of TB being currently untreatable by existing drugs. New antitubercular drugs in development, particularly those with mechanisms of action that are different from existing first- and second-line TB drugs, are anticipated to be effective against both drug-sensitive and drug-resistant TB. SQ109 is a new TB drug candidate with a novel mechanism of action that was safe and well tolerated in Phase I and early Phase II clinical trials. We describe herein the identification, development and characterization of SQ109 as a promising new antitubercular drug.
Collapse
Affiliation(s)
| | | | - Clifton E Barry
- Tuberculosis Research Section, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Koen Andries
- Antimicrobial Research, Janssen Infectious Diseases, Beerse, Belgium
| | | |
Collapse
|
26
|
Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacterial lgt mutant. J Bacteriol 2012; 194:3938-49. [PMID: 22609911 DOI: 10.1128/jb.00127-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Preprolipopoprotein diacylglyceryl transferase (Lgt) is the gating enzyme of lipoprotein biosynthesis, and it attaches a lipid structure to the N-terminal part of preprolipoproteins. Using Lgt from Escherichia coli in a BLASTp search, we identified the corresponding Lgt homologue in Mycobacterium tuberculosis and two homologous (MSMEG_3222 and MSMEG_5408) Lgt in Mycobacterium smegmatis. M. tuberculosis lgt was shown to be essential, but an M. smegmatis ΔMSMEG_3222 mutant could be generated. Using Triton X-114 phase separation and [(14)C]palmitic acid incorporation, we demonstrate that MSMEG_3222 is the major Lgt in M. smegmatis. Recombinant M. tuberculosis lipoproteins Mpt83 and LppX are shown to be localized in the cell envelope of parental M. smegmatis but were absent from the cell membrane and cell wall in the M. smegmatis ΔMSMEG_3222 strain. In a proteomic study, 106 proteins were identified and quantified in the secretome of wild-type M. smegmatis, including 20 lipoproteins. All lipoproteins were secreted at higher levels in the ΔMSMEG_3222 mutant. We identify the major Lgt in M. smegmatis, show that lipoproteins lacking the lipid anchor are secreted into the culture filtrate, and demonstrate that M. tuberculosis lgt is essential and thus a validated drug target.
Collapse
|
27
|
Pinheiro M, Lúcio M, Lima JLFC, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond) 2011; 6:1413-1428. [PMID: 22026379 DOI: 10.2217/nnm.11.122] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
TB is an infectious disease that is far from being eradicated and controlled. The treatment for TB is associated with noncompliance to therapy because it consists of a long-term treatment with a multidrug combination and is associated with the appearance of several side effects. Liposomal formulations are being developed with first- and second-line antibiotics, and might be an extremely useful alternative to current therapies. This article will thus focus on the role of liposomes as nanodelivery systems for the treatment of TB. Among several advantages, these nanocarriers allow an increase in the bioavailability of antibiotics, which may lead to a reduction in the time of treatment. Results obtained with such nanosystems, although preliminary, are promising and are perspective of the use of inhalation for TB treatment.
Collapse
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal
| | | | | | | |
Collapse
|
28
|
|
29
|
Affiliation(s)
- Alan Fairlamb
- Wellcome Principal Research Fellow, Division of Biological Chemistry & Drug Discovery, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Stewart Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015, Lausanne, Switzerland
| |
Collapse
|