1
|
Ziesmer J, Tajpara P, Hempel N, Ehrström M, Melican K, Eidsmo L, Sotiriou GA. Vancomycin-Loaded Microneedle Arrays against Methicillin-Resistant Staphylococcus Aureus Skin Infections. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001307. [PMID: 34307835 PMCID: PMC8281827 DOI: 10.1002/admt.202001307] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Indexed: 05/24/2023]
Abstract
Skin and soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major healthcare burden, often treated with intravenous injection of the glycopeptide antibiotic vancomycin (VAN). However, low local drug concentration in the skin limits its treatment efficiency, while systemic exposure promotes the development of resistant bacterial strains. Topical administration of VAN on skin is ineffective as its high molecular weight prohibits transdermal penetration. In order to implement a local VAN delivery, microneedle (MN) arrays with a water-insoluble support layer for the controlled administration of VAN into the skin are developed. The utilization of such a support layer results in water-insoluble needle shafts surrounded by drug-loaded water-soluble tips with high drug encapsulation. The developed MN arrays can penetrate the dermal barriers of both porcine and fresh human skin. Permeation studies on porcine skin reveal that the majority of the delivered VAN is retained within the skin. It is shown that the VAN-MN array reduces MRSA growth both in vitro and ex vivo on skin. The developed VAN-MN arrays may be extended to several drugs and may facilitate localized treatment of MRSA-caused skin infections while minimizing adverse systemic effects.
Collapse
Affiliation(s)
- Jill Ziesmer
- Department of MicrobiologyTumour and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | - Poojabahen Tajpara
- Department of Medicine SolnaUnit of RheumatologyKarolinska InstitutetStockholmSE‐17177Sweden
| | | | - Marcus Ehrström
- Department of Reconstructive Plastic SurgeryKarolinska University Hospital SolnaStockholmSE‐17176Sweden
| | - Keira Melican
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES)Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Liv Eidsmo
- Department of Medicine SolnaUnit of RheumatologyKarolinska InstitutetStockholmSE‐17177Sweden
- Diagnostiskt Centrum HudStockholmSE‐11137Sweden
- Leo Foundation Skin Immunology CenterUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Georgios A. Sotiriou
- Department of MicrobiologyTumour and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| |
Collapse
|
2
|
Richter-Dahlfors A, Melican K. A Cinematic View of Tissue Microbiology in the Live Infected Host. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0007-2019. [PMID: 31152520 PMCID: PMC11026076 DOI: 10.1128/microbiolspec.bai-0007-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Tissue microbiology allows for the study of bacterial infection in the most clinically relevant microenvironment, the living host. Advancements in techniques and technology have facilitated the development of novel ways of studying infection. Many of these advancements have come from outside the field of microbiology. In this article, we outline the progression from bacteriology through cellular microbiology to tissue microbiology, highlighting seminal studies along the way. We outline the enormous potential but also some of the challenges of the tissue microbiology approach. We focus on the role of emerging technologies in the continual development of infectious disease research and highlight future possibilities in our ongoing quest to understand host-pathogen interaction.
Collapse
Affiliation(s)
- Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
3
|
Capel E, Barnier JP, Zomer AL, Bole-Feysot C, Nussbaumer T, Jamet A, Lécuyer H, Euphrasie D, Virion Z, Frapy E, Pélissier P, Join-Lambert O, Rattei T, Bourdoulous S, Nassif X, Coureuil M. Peripheral blood vessels are a niche for blood-borne meningococci. Virulence 2017; 8:1808-1819. [PMID: 29099305 DOI: 10.1080/21505594.2017.1391446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Neisseria meningitidis is the causative agent of cerebrospinal meningitis and that of a rapidly progressing fatal septic shock known as purpura fulminans. Meningococcemia is characterized by bacterial adhesion to human endothelial cells of the microvessels. Host specificity has hampered studies on the role of blood vessels colonization in N. meningitidis associated pathogenesis. In this work, using a humanized model of SCID mice allowing the study of bacterial adhesion to human cells in an in vivo context we demonstrate that meningococcal colonization of human blood vessels is a prerequisite to the establishment of sepsis and lethality. To identify the molecular pathways involved in bacterial virulence, we performed transposon insertion site sequencing (Tn-seq) in vivo. Our results demonstrate that 36% of the genes that are important for growth in the blood of mice are dispensable when bacteria colonize human blood vessels, suggesting that human endothelial cells lining the blood vessels are feeding niches for N. meningitidis in vivo. Altogether, our work proposes a new paradigm for meningococcal virulence in which colonization of blood vessels is associated with metabolic adaptation and sustained bacteremia responsible for sepsis and subsequent lethality.
Collapse
Affiliation(s)
- Elena Capel
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Jean-Philippe Barnier
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Aldert L Zomer
- d Department of Infectious Diseases and Immunology , Faculty of Veterinary Medicine, Utrecht University , Utrecht , The Netherlands
| | - Christine Bole-Feysot
- e Plateforme génomique de l'Institut Imagine, INSERM UMR 1163, Paris Descartes Sorbonne Université Paris Cité , Paris , France
| | - Thomas Nussbaumer
- f CUBE - Division of Computational Systems Biology, Dept. of Microbiology and Ecosystem Science , University of Vienna , Vienna , Austria
| | - Anne Jamet
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Hervé Lécuyer
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Daniel Euphrasie
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Zoé Virion
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Eric Frapy
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Philippe Pélissier
- g Service de Chirurgie Plastique Reconstructrice et Esthétique, Groupe Hospitalier Paris Saint Joseph , Paris , France
| | - Olivier Join-Lambert
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Thomas Rattei
- f CUBE - Division of Computational Systems Biology, Dept. of Microbiology and Ecosystem Science , University of Vienna , Vienna , Austria
| | - Sandrine Bourdoulous
- b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,h INSERM U1016, Institut Cochin , Paris , France.,i CNRS UMR8104 , Paris , France
| | - Xavier Nassif
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Mathieu Coureuil
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| |
Collapse
|
4
|
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017; 15:149-159. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier, which is one of the tightest barriers in the body, protects the brain from insults, such as infections. Indeed, only a few of the numerous blood-borne bacteria can cross the blood-brain barrier to cause meningitis. In this Review, we focus on invasive extracellular pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus and Escherichia coli, to review the obstacles that bacteria have to overcome in order to invade the meninges from the bloodstream, and the specific skills they have developed to bypass the blood-brain barrier. The medical importance of understanding how these barriers can be circumvented is underlined by the fact that we need to improve drug delivery into the brain.
Collapse
|
5
|
Prucha M, Zazula R, Russwurm S. Immunotherapy of Sepsis: Blind Alley or Call for Personalized Assessment? Arch Immunol Ther Exp (Warsz) 2016; 65:37-49. [PMID: 27554587 DOI: 10.1007/s00005-016-0415-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/14/2016] [Indexed: 01/20/2023]
Abstract
Sepsis is the most frequent cause of death in noncoronary intensive care units. In the past 10 years, progress has been made in the early identification of septic patients and their treatment. These improvements in support and therapy mean that mortality is gradually decreasing, however, the rate of death from sepsis remains unacceptably high. Immunotherapy is not currently part of the routine treatment of sepsis. Despite experimental successes, the administration of agents to block the effect of sepsis mediators failed to show evidence for improved outcome in a multitude of clinical trials. The following survey summarizes the current knowledge and results of clinical trials on the immunotherapy of sepsis and describes the limitations of our knowledge of the pathogenesis of sepsis. Administration of immunomodulatory drugs should be linked to the current immune status assessed by both clinical and molecular patterns. Thus, a careful daily review of the patient's immune status needs to be introduced into routine clinical practice giving the opportunity for effective and tailored use of immunomodulatory therapy.
Collapse
Affiliation(s)
- Miroslav Prucha
- Department of Clinical Biochemistry, Hematology and Immunology, Hospital Na Homolce, Prague, Czech Republic.
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University in Prague and Thomayer Hospital, Prague, Czech Republic
| | - Stefan Russwurm
- Department of Anesthesiology and Intensive Care, University Hospital, Jena, Germany
| |
Collapse
|
7
|
Uberos J, Molina-Oya M, Martinez-Serrano S, Fernández-López L. Surface adhesion and host response as pathogenicity factors of Neisseria meningitidis. World J Clin Infect Dis 2015; 5:37-43. [DOI: 10.5495/wjcid.v5.i2.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/12/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis (N. meningitidis) is an exclusively human pathogen that has been identified in 10%-35% of the adult population and in 5.9% of the child population. Despite the high prevalence of carriers of N. meningitidis, it only occasionally causes meningococcal disease in the context of endemic disease, in certain geographic areas or in isolated epidemic outbreaks. After the N. meningitidis genome is described, progress has been made toward understanding the pathogenic mechanisms of the bacteria, although some aspects concerning its interaction with the environment and the host remain unclear. Some studies have reported that oxidative stress in the environment can modify the surface characteristics of N. meningitidis, increasing its adhesive properties and favouring an asymptomatic carrier state. The antigenic structure of N. meningitidis can be modified by its importing genetic material from other bacteria in its ecological niche. Some structures of lipopolysaccharides help it to evade the immune response, and these are observed more frequently in N. meningitidis isolated from blood than in healthy nasopharyngeal carriers. There is evidence that pili and capsule are downregulated upon contact with target cells. This paper reviews current knowledge on host-environment-bacteria mechanisms and interactions, with the aim of contributing to our understanding of the pathogenic mechanisms of N. meningitidis.
Collapse
|