1
|
de Las Heras Prieto H, Cole LM, Forbes S, Palmer M, Schwartz-Narbonne R. Separation of mycolic acid isomers by cyclic ion mobility-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9917. [PMID: 39313945 DOI: 10.1002/rcm.9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
RATIONALE Mycobacterial species contain high concentrations of mycolic acids in their cell wall. Mycobacteria can pose a threat to both human health and the environment. Mass spectrometry lipidomic characterization can identify bacterial species and suggest targets for microbiological interventions. Due to the complex structures of mycolic acids and the possibility of isobaric isomers, multiple levels of separation are required for complete characterization. In this study, cyclic ion mobility (cIM) mass spectrometry (MS) was used for the analysis, separation and fragmentation of mycolic acids isomers from the bacterial species Gordonia amarae and Mycobacterium bovis. METHODS Mycolic acid isomers were interrogated from cultured G. amarae biomass and commercially available M. bovis mycolic acid extracts. These were infused into a cIM-enabled quadrupole time-of-flight MS. Ions of interest were non-simultaneously selected with the quadrupole and passed around the cyclic ion mobility device multiple times. Fragment ion analysis was then performed for the resolved isomers of the quadrupole-selected ions. RESULTS Repeated passes of the cIM device successfully resolved otherwise overlapping MA isomers, allowing isomer isolation and producing an ion-specific post-mobility fragmentation spectrum without isomeric interference. CONCLUSIONS Mycolic acids (MA) isomers from G. amarae and M. bovis were resolved, resulting in a high mobility resolution and low interference fragmentation analysis. These revealed varying patterns of MA isomers in the two species: G. amarae's most abundant ion of each set of MA has 1-2 conformations, while the MA + 2 m/z the most abundant ion of each set has 3-6 conformations. These were resolved after 70 passes of the cyclic device. M. bovis' most abundant ion of each keto-MA set has 2 conformations, while the keto-MA + 2 m/z has 1-2 conformations. These were resolved after 75 passes.
Collapse
Affiliation(s)
| | - Laura M Cole
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Sarah Forbes
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | |
Collapse
|
2
|
Klepp LI, Blanco FC, Bigi MM, Vázquez CL, García EA, Sabio y García J, Bigi F. B Cell and Antibody Responses in Bovine Tuberculosis. Antibodies (Basel) 2024; 13:84. [PMID: 39449326 PMCID: PMC11503302 DOI: 10.3390/antib13040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
The development of vaccines and effective diagnostic methods for bovine tuberculosis requires an understanding of the immune response against its causative agent, Mycobacterium bovis. Although this disease is primarily investigated and diagnosed through the assessment of cell-mediated immunity, the role of B cells and antibodies in bovine tuberculosis has been relatively undervalued and understudied. Current evidence indicates that circulating M. bovis-specific antibodies are not effective in controlling the disease. However, local humoral immune responses may contribute to either defence or pathology. Recent studies in animal models and cattle vaccine trials suggest a potential beneficial role of B cells in tuberculosis control. This review discusses the role of B cells and antibodies in bovine tuberculosis and explores antibody-based diagnostics for the disease, including traditional techniques, such as different ELISA, new platforms based on multiple antigens and point-of-care technologies. The high specificity and sensitivity values achieved by numerous antibody-based tests support their use as complementary tests for the diagnosis of bovine tuberculosis, especially for identifying infected animals that may be missed by the official tests.
Collapse
Affiliation(s)
- Laura Inés Klepp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - María Mercedes Bigi
- INBIOMED, Instituto de Investigaciones Biomédicas, (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), UBA-CONICET, Paraguay 2155, Buenos Aires C1121ABG, Argentina;
| | - Cristina Lourdes Vázquez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Elizabeth Andrea García
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Julia Sabio y García
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| |
Collapse
|
3
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
R S, Kumar SN, M MR, Pattar J, B V DR. Investigating the effect of acidic and basic precipitation on the antibacterial activity of ZnO nanoparticles against Gram-negative and Gram-positive bacteria. J Mater Chem B 2024; 12:2180-2196. [PMID: 38323518 DOI: 10.1039/d3tb02119j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In the present work, acidic (direct) and basic precipitation (indirect) methods were used to demonstrate the influence of the mode of precipitation on the structural properties of ZnO nanoparticles (NPs). Four samples of ZnO nanoparticles were prepared, two samples via each mode of precipitation. DZOa and IZOa were the aged samples prepared via acidic and basic precipitation methods, and DZOwa and IZOwa were processed without aging. Both precipitation processes were carried out without using any surfactant reagents. Zinc hydroxide precipitate, which was formed during the basic precipitation method, could be critical in deciding the properties of ZnO NPs, unlike zinc hydroxide formed during acidic precipitation. Aging of zinc hydroxide, synthesised by basic precipitation method for 48 hours was found to be an added advantage in controlling the properties of ZnO NPs. The influence of the mode of precipitation on the structural properties and antibacterial activity of ZnO NPs against Gram-positive and Gram-negative bacterial strains was tested. The antibacterial activity of all four ZnO NPs was analysed via zone of inhibition measurements at a concentration dose of 200 μg ml-1. IZOa nanoparticles prepared using the basic precipitation method showed a higher antibacterial activity against three Gram-negative and one Gram-positive strains, namely, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. DZOa nanoparticles synthesized through acidic precipitation showed relatively high antibacterial activity against Salmonella typhimurium, a Gram-negative strain. ZnO NPs prepared without aging, IZOwa and DZOwa, showed a higher antibacterial activity against E. coli and Bacillus sp. strains, respectively. All ZnO NPs were characterized via UV-visible, FTIR, XRD, and HRSEM techniques.
Collapse
Affiliation(s)
- Sreekanth R
- Department of Chemistry, REVA University, Bengaluru, Karnataka, India.
| | - S Naveen Kumar
- Department of Chemistry, REVA University, Bengaluru, Karnataka, India.
| | | | - Jayadev Pattar
- Department of Physics, REVA University, Bengaluru, Karnataka, India
| | - Damodar Reddy B V
- Department of Biotechnology, REVA University, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Ge Y, Luo Q, Liu L, Shi Q, Zhang Z, Yue X, Tang L, Liang L, Hu J, Ouyang W. S288T mutation altering MmpL3 periplasmic domain channel and H-bond network: a novel dual drug resistance mechanism. J Mol Model 2024; 30:39. [PMID: 38224406 DOI: 10.1007/s00894-023-05814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
CONTEXT Mycobacterial membrane proteins Large 3 (MmpL3) is responsible for the transport of mycobacterial acids out of cell membrane to form cell wall, which is essential for the survival of Mycobacterium tuberculosis (Mtb) and has become a potent anti-tuberculosis target. SQ109 is an ethambutol (EMB) analogue, as a novel anti-tuberculosis drug, can effectively inhibit MmpL3, and has completed phase 2b-3 clinical trials. Drug resistance has always been the bottleneck problem in clinical treatment of tuberculosis. The S288T mutant of MmpL3 shows significant resistance to the inhibitor SQ109, while the specific action mechanism remains unclear. The results show that MmpL3 S288T mutation causes local conformational change with little effect on the global structure. With MmpL3 bound by SQ109 inhibitor, the distance between D710 and R715 increases resulting in H-bond destruction, but their interactions and proton transfer function are still restored. In addition, the rotation of Y44 in the S288T mutant leads to an obvious bend in the periplasmic domain channel and an increased number of contact residues, reducing substrate transport efficiency. This work not only provides a possible dual drug resistance mechanism of MmpL3 S288T mutant but also aids the development of novel anti-tuberculosis inhibitors. METHODS In this work, molecular dynamics (MD) and quantum mechanics (QM) simulations both were performed to compare inhibitor (i.e., SQ109) recognition, motion characteristics, and H-bond energy change of MmpL3 after S288T mutation. In addition, the WT_SQ109 complex structure was obtained by molecular docking program (Autodock 4.2); Molecular Mechanics/ Poisson Boltzmann Surface Area (MM-PBSA) and Solvated Interaction Energy (SIE) methods were used to calculate the binding free energies (∆Gbind); Geometric criteria were used to analyze the changes of hydrogen bond networks.
Collapse
Affiliation(s)
- Yutong Ge
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qing Luo
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zhigang Zhang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Lingkai Tang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
6
|
Dhulap A, Banerjee P. Pharmacophore based virtual screening & molecular docking approach for identification of mycobacterial membrane protein large 3 (MmpL3) inhibitors. J Biomol Struct Dyn 2023; 41:11062-11077. [PMID: 36571432 DOI: 10.1080/07391102.2022.2159876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
Tuberculosis (TB) disease continues to remain one of the global threats for mankind. Till date many antibacterial compounds have been identified to target mycobacterium tuberculosis (MTB). However, the mutating nature of the mycobacteria has always posed a challenge for designing newer drugs which can target both the non-mutating and mutating forms of TB. In this process, Mycobacterial membrane protein Large 3 (MmpL3) transporter was identified as one of the key targets for inhibiting tuberculosis. Herein we have made an effort to find potential inhibitors against MmpL3 by using a pharmacophore-based virtual screening workflow, followed by molecular docking studies and molecular dynamic simulations. Based on a set of 220 compounds showing anti-tubercular activity proposed to target MmpL3 transporter with MIC values ranging from 0.003 to 737 μM, a 5-point pharmacophore ADHHR_2 model possessing one hydrogen acceptor, one hydrogen donor, two hydrophobic groups and an aromatic ring system was generated. The model validated by enrichment study was used to screen Asinex and DrugBank database to identify a potential lead compound such as DrugBank_6059 that was found to show better binding affinity (-11.36) and hydrophobic interactions with target protein in comparison to standard drug SQ109.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijeet Dhulap
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR Unit for Research and Development of Information Products, Pune, Maharashtra, India
| | - Paromita Banerjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR Unit for Research and Development of Information Products, Pune, Maharashtra, India
| |
Collapse
|
7
|
Brčić J, Tong A, Wender PA, Cegelski L. Conjugation of Vancomycin with a Single Arginine Improves Efficacy against Mycobacteria by More Effective Peptidoglycan Targeting. J Med Chem 2023; 66:10226-10237. [PMID: 37477249 PMCID: PMC10783851 DOI: 10.1021/acs.jmedchem.3c00565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.
Collapse
Affiliation(s)
- Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Alan Tong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Gaglani P, Dwivedi M, Upadhyay TK, Kaushal RS, Ahmad I, Saeed M. A pro-oxidant property of vitamin C to overcome the burden of latent Mycobacterium tuberculosis infection: A cross-talk review with Fenton reaction. Front Cell Infect Microbiol 2023; 13:1152269. [PMID: 37153159 PMCID: PMC10155705 DOI: 10.3389/fcimb.2023.1152269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 05/09/2023] Open
Abstract
Tuberculosis (TB), caused by the bacillus M. tuberculosis, is one of the deadliest infectious illnesses of our day, along with HIV and malaria.Chemotherapy, the cornerstone of TB control efforts, is jeopardized by the advent of M. tuberculosis strains resistant to many, if not all, of the existing medications.Isoniazid (INH), rifampicin (RIF), pyrazinamide, and ethambutol are used to treat drug-susceptible TB for two months, followed by four months of INH and RIF, but chemotherapy with potentially harmful side effects is sometimes needed to treat multidrug-resistant (MDR) TB for up to two years. Chemotherapy might be greatly shortened by drugs that kill M. tuberculosis more quickly while simultaneously limiting the emergence of drug resistance.Regardless of their intended target, bactericidal medicines commonly kill pathogenic bacteria (gram-negative and gram-positive) by producing hydroxyl radicals via the Fenton reaction.Researchers have concentrated on vitamins with bactericidal properties to address the rising cases globally and have discovered that these vitamins are effective when given along with first-line drugs. The presence of elevated iron content, reactive oxygen species (ROS) generation, and DNA damage all contributed to VC's sterilizing action on M. tb in vitro. Moreover, it has a pleiotropic effect on a variety of biological processes such as detoxification, protein folding - chaperons, cell wall processes, information pathways, regulatory, virulence, metabolism etc.In this review report, the authors extensively discussed the effects of VC on M. tb., such as the generation of free radicals and bactericidal mechanisms with existing treatments, and their further drug development based on ROS production.
Collapse
Affiliation(s)
- Pratikkumar Gaglani
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
9
|
Hodges H, Obeng K, Avanzi C, Ausmus AP, Angala SK, Kalera K, Palcekova Z, Swarts BM, Jackson M. Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria. ACS Chem Biol 2023; 18:595-604. [PMID: 36856664 PMCID: PMC10071489 DOI: 10.1021/acschembio.2c00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Bacteria from the genus Mycobacterium include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in Mycobacterium smegmatis. We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.
Collapse
Affiliation(s)
- Heather Hodges
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Kwaku Obeng
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Alex P. Ausmus
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Zuzana Palcekova
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| |
Collapse
|
10
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
11
|
Bisht D, Singh R, Sharma D, Sharma D, Gautam S, Gupta MK. Unraveling Major Proteins of Mycobacterium tuberculosis Envelope. CURR PROTEOMICS 2022; 19:372-379. [DOI: 10.2174/1570164619666220908141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Although treatable, resistant form of tuberculosis (TB) has posed a major impediment to the
effective TB control programme. As the Mycobacterium tuberculosis cell envelope is closely associated
with its virulence and resistance, it is very important to understand the cell envelope for better
treatment of causative pathogens. Cell membrane plays a crucial role in imparting various cell functions.
Proteins being the functional moiety, it is impossible to characterize the functional properties
based on genetic analysis alone. Proteomic based research has indicated mycobacterial envelope as a
good source of antigens/proteins. Envelope/membrane and associated proteins have an anticipated role
in biological processes, which could be of vital importance to the microbe, and hence could qualify as
drug targets. This review provides an overview of the prominent and biologically important cell envelope
and highlights the different functions offered by the proteins associated with it. Selective targeting
of the mycobacterial envelope offers an untapped opportunity to address the problems associated
with the current drug regimen and also will lead to the development of more potent and safer drugs
against all forms of tuberculous infections.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Rananjay Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Bahadur Shah Zafar Marg,
New Delhi-110002, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | | |
Collapse
|
12
|
Hu T, Yang X, Liu F, Sun S, Xiong Z, Liang J, Yang X, Wang H, Yang X, Guddat LW, Yang H, Rao Z, Zhang B. Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3. Structure 2022; 30:1395-1402.e4. [PMID: 35981536 DOI: 10.1016/j.str.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
New anti-tubercular agents are urgently needed to address the emerging threat of drug resistance to human tuberculosis. Here, we have used structure-assisted methods to develop compounds that target mycobacterial membrane protein large 3 (MmpL3). MmpL3 is essential for the transport of mycolic acids, an important cell-wall component of mycobacteria. We prepared compounds that potently inhibit the growth of Mycobacterium tuberculosis (Mtb) and other mycobacteria in cell culture. The cryoelectron microscopy (cryo-EM) structure of mycobacterial MmpL3 in complex with one of these compounds (ST004) was determined using lipid nanodiscs at an overall resolution of 3.36 Å. The structure reveals the binding mode of ST004 to MmpL3, with the S4 and S5 subsites of the inhibitor-binding pocket in the proton translocation channel playing vital roles. These data are a promising starting point for the development of anti-tuberculosis drugs that target MmpL3.
Collapse
Affiliation(s)
- Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
13
|
Mehaffy C, Ryan JM, Kruh-Garcia NA, Dobos KM. Extracellular Vesicles in Mycobacteria and Tuberculosis. Front Cell Infect Microbiol 2022; 12:912831. [PMID: 35719351 PMCID: PMC9204639 DOI: 10.3389/fcimb.2022.912831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) remains a public health issue causing millions of infections every year. Of these, about 15% ultimately result in death. Efforts to control TB include development of new and more effective vaccines, novel and more effective drug treatments, and new diagnostics that test for both latent TB Infection and TB disease. All of these areas of research benefit from a good understanding of the physiology of Mycobacterium tuberculosis (Mtb), the primary causative agent of TB. Mtb secreted protein antigens have been the focus of vaccine and diagnosis research for the past century. Recently, the discovery of extracellular vesicles (EVs) as an important source of secreted antigens in Mtb has gained attention. Similarly, the discovery that host EVs can carry Mtb products during in vitro and in vivo infection has spiked interest because of its potential use in blood-based diagnostics. Despite advances in understanding the content of Mtb and Mtb-infected host extracellular vesicles, our understanding on the biogenesis and role of Mtb and host extracellular vesicles during Mtb infection is still nascent. Here, we explore the current literature on extracellular vesicles regarding Mtb, discuss the host and Mtb extracellular vesicles as distinct entities, and discuss current gaps in the field.
Collapse
|
14
|
Belete TM. Recent Progress in the Development of Novel Mycobacterium Cell Wall Inhibitor to Combat Drug-Resistant Tuberculosis. Microbiol Insights 2022; 15:11786361221099878. [PMID: 35645569 PMCID: PMC9131376 DOI: 10.1177/11786361221099878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Despite decades of research in drug development against TB, it is still the leading cause of death due to infectious diseases. The long treatment duration, patient noncompliance coupled with the ability of the tuberculosis bacilli to resist the current drugs increases multidrug-resistant tuberculosis that exacerbates the situation. Identification of novel drug targets is important for the advancement of drug development against Mycobacterium tuberculosis. The development of an effective treatment course that could help us eradicates TB. Hence, we require drugs that could eliminate the bacteria and shorten the treatment duration. This review briefly describes the available data on the peptidoglycan component structural characterization, identification of the metabolic pathway, and the key enzymes involved in the peptidoglycan synthesis, like N-Acetylglucosamine-1-phosphate uridyltransferase, mur enzyme, alanine racemase as well as their inhibition. Besides, this paper also provides studies on mycolic acid and arabinogalactan synthesis and the transport mechanisms that show considerable promise as new targets to develop a new product with their inhibiter.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
15
|
Snizhko AD, Kyrychenko AV, Gladkov ES. Synthesis of Novel Derivatives of 5,6,7,8-Tetrahydroquinazolines Using α-Aminoamidines and In Silico Screening of Their Biological Activity. Int J Mol Sci 2022; 23:3781. [PMID: 35409144 PMCID: PMC8999073 DOI: 10.3390/ijms23073781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
α-Aminoamidines are promising reagents for the synthesis of a diverse family of pyrimidine ring derivatives. Here, we demonstrate the use of α-aminoamidines for the synthesis of a new series of 5,6,7,8-tetrahydroquinazolines by their reaction with bis-benzylidene cyclohexanones. The reaction occurs in mild conditions and is characterized by excellent yields. It has easy workup, as compared to the existing methods of tetrahydroquinazoline preparation. Newly synthesized derivatives of 5,6,7,8-tetrahydroquinazoline bear protecting groups at the C2-tert-butyl moiety of a quinazoline ring, which can be easily cleaved, opening up further opportunities for their functionalization. Moreover, molecular docking studies indicate that the synthesized compounds reveal high binding affinity toward some essential enzymes of Mycobacterial tuberculosis, such as dihydrofolate reductase (DHFR), pantothenate kinase (MtPanK), and FAD-containing oxidoreductase DprE1 (MtDprE1), so that they may be promising candidates for the molecular design and the development of new antitubercular agents against multidrug-resistant strains of the Tubercle bacillus. Finally, the high inhibition activity of the synthesized compounds was also predicted against β-glucosidase, suggesting a novel tetrahydroquinazoline scaffold for the treatment of diabetes.
Collapse
Affiliation(s)
- Arsenii D. Snizhko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Alexander V. Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Eugene S. Gladkov
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
- State Scientific Institution “Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
| |
Collapse
|
16
|
Ejalonibu MA, Elrashedy AA, Lawal MM, Mhlongo NN, Kumalo HM. Pharmacophore mapping of the crucial mediators of dual inhibitor activity of PanK and PyrG in tuberculosis disease. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2019251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Murtala A. Ejalonibu
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A. Elrashedy
- Natural and Microbial Product Department, National Research Centre, Giza, Egypt
| | - Monsurat M. Lawal
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ndumiso N. Mhlongo
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M. Kumalo
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Umare MD, Khedekar PB, Chikhale RV. Mycobacterial Membrane Protein Large 3 (MmpL3) Inhibitors: A Promising Approach to Combat Tuberculosis. ChemMedChem 2021; 16:3136-3148. [PMID: 34288519 DOI: 10.1002/cmdc.202100359] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/17/2021] [Indexed: 11/08/2022]
Abstract
Tuberculosis is a prominent aliment throughout the world and a leading cause of mortality among infectious diseases. Drug development for multi-drug resistance and reducing the current therapy time is the top priority. Mycobacterial membrane protein large 3 (MmpL3) is a promising target with high potential, however, it has not been explored to its greatest potential. It is a membrane transporter that translocates trehalose-monomycolate which is a precursor for the synthesis of mycolic acid that is essential for the synthesis of the bacterial cell wall and is pathogenic in nature. In this review, we have discussed the current development of MmpL3 inhibitors, different scaffolds, their derivatives, and their synthetic schemes and provide insight into the challenges in developing these inhibitors.
Collapse
Affiliation(s)
- Mohit D Umare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, MS, India
| | - Pramod B Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, MS, India
| | - Rupesh V Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1 N 1AX, UK
| |
Collapse
|
18
|
The Phosphatidyl- myo-Inositol Dimannoside Acyltransferase PatA Is Essential for Mycobacterium tuberculosis Growth In Vitro and In Vivo. J Bacteriol 2021; 203:JB.00439-20. [PMID: 33468587 DOI: 10.1128/jb.00439-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
Mycobacterium tuberculosis comprises an unusual cell envelope dominated by unique lipids and glycans that provides a permeability barrier against hydrophilic drugs and is central for its survival and virulence. Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids considered to be not only key structural components of the cell envelope but also the precursors of lipomannan (LM) and lipoarabinomannan (LAM), important lipoglycans implicated in host-pathogen interactions. Here, we focus on PatA, a membrane-associated acyltransferase that transfers a palmitoyl moiety from palmitoyl coenzyme A (palmitoyl-CoA) to the 6-position of the mannose ring linked to the 2-position of inositol in PIM1/PIM2 We validate that the function of PatA is vital for M. tuberculosis in vitro and in vivo We constructed a patA conditional mutant and showed that silencing patA is bactericidal in batch cultures. This phenotype was associated with significantly reduced levels of Ac1PIM2, an important structural component of the mycobacterial inner membrane. The requirement of PatA for viability was also demonstrated during macrophage infection and in a mouse model of infection, where a dramatic decrease in viable counts was observed upon silencing of the patA gene. This is reminiscent of the behavior of PimA, the mannosyltransferase that initiates the PIM pathway, also found to be essential for M. tuberculosis growth in vitro and in vivo Altogether, the experimental data highlight the significance of the early steps of the PIM biosynthetic pathway for M. tuberculosis physiology and reveal that PatA is a novel target for drug discovery programs against this major human pathogen.IMPORTANCE Tuberculosis (TB) is the leading cause of death from a single infectious agent. The emergence of drug resistance in strains of M. tuberculosis, the etiologic agent of TB, emphasizes the need to identify new targets and antimicrobial agents. The mycobacterial cell envelope is a major factor in this intrinsic drug resistance. Here, we have focused on the biosynthesis of PIMs, key virulence factors and important components of the cell envelope. Specifically, we have determined that PatA, the acyltransferase responsible for the first acylation step of the PIM synthesis pathway, is essential in M. tuberculosis These results highlight the importance of early steps of the PIM biosynthetic pathway for mycobacterial physiology and the suitability of PatA as a potential new drug target.
Collapse
|
19
|
Egorova A, Jackson M, Gavrilyuk V, Makarov V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021; 41:2350-2387. [PMID: 33645845 DOI: 10.1002/med.21798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, Fort Collins, USA
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
20
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
21
|
Angala SK, Joe M, McNeil MR, Liav A, Lowary TL, Jackson M. Use of Synthetic Glycolipids to Probe the Number and Position of Arabinan Chains on Mycobacterial Arabinogalactan. ACS Chem Biol 2021; 16:20-26. [PMID: 33382235 PMCID: PMC7859836 DOI: 10.1021/acschembio.0c00765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arabinogalactan of Corynebacterianeae is a critical heteropolysaccharide that tethers outer membrane mycolic acids to peptidoglycan thus forming the characteristic cell wall core of these prokaryotes. An essential α-(1→5)-arabinosyltransferase, AftA, is responsible for the transfer of the first arabinofuranosyl (Araf) unit of the arabinan domain to the galactan backbone of arabinogalactan, but the number and precise position at which Araf residue(s) is/are added in mycobacteria remain ill-defined. Using membrane preparations from Mycobacterium smegmatis overexpressing aftA, farnesyl-phospho-arabinose as an Araf donor, and a series of synthetic galactan acceptors of various lengths, we here show that a single priming arabinosyl residue substitutes the C-5 position of a precisely positioned internal 6-linked galactofuranosyl residue of the galactan acceptors, irrespective of their length. This unexpected result suggests that, like the structurally related mycobacterial lipoarabinomannans, the arabinogalactan of mycobacteria may in fact harbor a single arabinan chain.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Maju Joe
- Department of Chemistry, The University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Michael R. McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Avraham Liav
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Todd L. Lowary
- Department of Chemistry, The University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang Taipei 11529, Taiwan
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| |
Collapse
|
22
|
Ejalonibu MA, Elrashedy AA, Lawal MM, Kumalo HM, Mhlongo NN. Probing the dual inhibitory mechanisms of novel thiophenecarboxamide derivatives against Mycobacterium tuberculosis PyrG and PanK: an insight from biomolecular modeling study. J Biomol Struct Dyn 2020; 40:2978-2990. [PMID: 33155869 DOI: 10.1080/07391102.2020.1844055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The growing occurrence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb) strains underscores an urgent need for new antibiotics. The development of more bioactive antibiotics against drug-resistant organisms with a different mode of action could be a game-changer for the cure and eradication of tuberculosis (TB). Pantothenate Kinase (PanK) and CTP synthetase (PyrG) are both essential for RNA, DNA, and Lipids biosynthesis pathways. Given the extensive knowledge on these biosynthesis pathways inhibition of Mtb growth and survival, these enzymes present a fascinating opportunity for anti-mycobacterial drug discovery. Recently, it was experimentally established that the active metabolite 11426026 of compound 7947882 (a prodrug activated by EthA monooxygenase, 5-methyl-N-(4-nitrophenyl) thiophene-2-carboxamide) inhibits the activities of PyrG and PanK to indicate novel multitarget therapy aimed at discontinuing Mtb growth. However, the molecular mechanisms of their selective inhibition remain subtle. In this work, molecular dynamics simulations were employed to investigate the inhibitory mechanism as well as the selectivity impact of the active metabolite inhibitor of these enzymes. Computational modeling of the studied protein-ligand systems reveals that the active metabolite can potentially inhibit both PanK and PyrG, thereby creating a pathway as a double target approach in tuberculosis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Murtala A Ejalonibu
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A Elrashedy
- Natural and Microbial Product Department, National Research Centre, Giza, Egypt
| | - Monsurat M Lawal
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M Kumalo
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ndumiso N Mhlongo
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Brown AR, Gordon RA, Hyland SN, Siegrist MS, Grimes CL. Chemical Biology Tools for Examining the Bacterial Cell Wall. Cell Chem Biol 2020; 27:1052-1062. [PMID: 32822617 DOI: 10.1016/j.chembiol.2020.07.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
Bacteria surround themselves with cell walls to maintain cell rigidity and protect against environmental insults. Here we review chemical and biochemical techniques employed to study bacterial cell wall biogenesis. Recent advances including the ability to isolate critical intermediates, metabolic approaches for probe incorporation, and isotopic labeling techniques have provided critical insight into the biochemistry of cell walls. Fundamental manuscripts that have used these techniques to discover cell wall-interacting proteins, flippases, and cell wall stoichiometry are discussed in detail. The review highlights that these powerful methods and techniques have exciting potential to identify and characterize new targets for antibiotic development.
Collapse
Affiliation(s)
- Ashley R Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Rebecca A Gordon
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Stephen N Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
24
|
Yang X, Hu T, Yang X, Xu W, Yang H, Guddat LW, Zhang B, Rao Z. Structural Basis for the Inhibition of Mycobacterial MmpL3 by NITD-349 and SPIRO. J Mol Biol 2020; 432:4426-4434. [DOI: 10.1016/j.jmb.2020.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
|
25
|
Molecular Docking and Chemical Analysis of Alcohol Compounds (C16-C20) Bound to InhA Receptors as Mycobactericidal Candidates. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.5.135-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by a bacterium called Mycobacterium tuberculosis. TB infection spreads through the air and is more likely when using inappropriate disinfectants in medical and laboratory equipment related to TB research. Appropriate disinfectants used for laboratory equipment can reduce the risk of TB disease transmission. Alcohol compound is a common disinfectant with broad-spectrum activity against microbes, viruses, and fungi. Molecular Docking can be applied to support virtual receptor-ligand screening in finding the right mycobactericidal agent as a disinfectant candidate from the alcohol group. Based on docking analysis, octadecanol (C18) has potential as a mycobactericidal agent with InhA as its specific receptor. Gibbs (ΔG) free energy obtained by octadecanol (C18) and InhA is -4.9 kcal/mol.
Collapse
|
26
|
Alsayed SSR, Lun S, Luna G, Beh CC, Payne AD, Foster N, Bishai WR, Gunosewoyo H. Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. RSC Adv 2020; 10:7523-7540. [PMID: 33014349 PMCID: PMC7497412 DOI: 10.1039/c9ra10663d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Our group has previously reported several indolecarboxamides exhibiting potent antitubercular activity. Herein, we rationally designed several arylcarboxamides based on our previously reported homology model and the recently published crystal structure of the mycobacterial membrane protein large 3 (MmpL3). Many analogues showed considerable anti-TB activity against drug-sensitive (DS) Mycobacterium tuberculosis (M. tb) strain. Naphthamide derivatives 13c and 13d were the most active compounds in our study (MIC: 6.55, 7.11 μM, respectively), showing comparable potency to the first line anti-tuberculosis (anti-TB) drug ethambutol (MIC: 4.89 μM). In addition to the naphthamide derivatives, we also identified the quinolone-2-carboxamides and 4-arylthiazole-2-carboxamides as potential MmpL3 inhibitors in which compounds 8i and 18b had MIC values of 9.97 and 9.82 μM, respectively. All four compounds retained their high activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tb strains. It is worth noting that the two most active compounds 13c and 13d also exhibited the highest selective activity towards DS, MDR and XDR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 227 μM], indicating their potential lack of cytotoxicity. The four compounds were docked into the MmpL3 active site and were studied for their drug-likeness using Lipinski's rule of five. Synthesis and pharmacological evaluation of arylcarboxamide derivatives based on an antimycobacterial indole-2-carboxamide scaffold. The most active compounds demonstrated activities against MDR and XDR M. tb strains.![]()
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland 21231-1044, USA.
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Chau Chun Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102, WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Neil Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102, WA, Australia
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland 21231-1044, USA. .,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| |
Collapse
|
27
|
Zhang B, Li J, Yang X, Wu L, Zhang J, Yang Y, Zhao Y, Zhang L, Yang X, Yang X, Cheng X, Liu Z, Jiang B, Jiang H, Guddat LW, Yang H, Rao Z. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell 2019; 176:636-648.e13. [PMID: 30682372 DOI: 10.1016/j.cell.2019.01.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/22/2018] [Accepted: 12/31/2018] [Indexed: 01/01/2023]
Abstract
Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.
Collapse
Affiliation(s)
- Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jia Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xi Cheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Dual targeting approach for Mycobacterium tuberculosis drug discovery: insights from DFT calculations and molecular dynamics simulations. Struct Chem 2019. [DOI: 10.1007/s11224-019-01422-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Abstract
Tuberculosis (TB) is a major issue in global health and affects millions of people each year. Multidrug-resistant tuberculosis (MDR-TB) annually causes many deaths worldwide. Development of a way to diagnose and treat patients with MDR-TB can potentially reduce the incidence of the disease. The current study reviews the risk factors, pattern of progression, mechanism of resistance, and interaction between bacteria and the host immune system, which disrupts the immune response. It also targets the components of Mycobacterium tuberculosis (Mtb) and diagnosis and treatment options that could be available for clinical use in the near future. Mutations play an important role in development of MDR-TB and the selection of appropriate mutations can help to understand the type of resistance in patients to anti-TB drugs. In this way, they can be initially treated with proper and effective therapeutic choices, which can accelerate the course of treatment and improve patient health. Targeting the components and enzymes of Mtb is necessary for understanding bacterial survival and finding a way to destroy the pathogen and allow patients to recover faster and prevent the spread of disease, especially resistant strains.
Collapse
Affiliation(s)
- Majid Faridgohar
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Khosravi AD, Sirous M, Abdi M, Ahmadkhosravi N. Characterization of the most common embCAB gene mutations associated with ethambutol resistance in Mycobacterium tuberculosis isolates from Iran. Infect Drug Resist 2019; 12:579-584. [PMID: 30881063 PMCID: PMC6411316 DOI: 10.2147/idr.s196800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Ethambutol (Emb) is one of the first-line drugs in the standard combination therapy for tuberculosis; however, due to the rapid increase in Emb resistance among clinical isolates of Mycobacterium tuberculosis (MTB), early detection of Emb resistance is desirable. As the embCAB operon is considered involved in resistance to Emb, this study aimed to analyze the most common mutations within the embCAB operon among MTB isolates from Iran to find any correlations of these mutations with Emb resistance. Methods A total of 307 clinical isolates of MTB were screened for Emb resistance by phenotypic drug-susceptibility testing. PCR amplification was performed on extracted DNA from all Emb-resistant and randomly selected Emb-susceptible isolates using sets of primers for various gene loci of embC, embA, and embB, followed by sequencing for the detection of most common alterations. Results In total, ten isolates showed resistance to Emb by phenotypic susceptibility testing (3.25%). The mutation rate in ten Emb-resistant MTB strains was 20% (n=2), comprising one mutation in embB (10%), at codon 306 Met–Val and one in embC (10%) at codon 270 Thr–Ile. A nonsynonymous mutation in the embA gene in one of the randomly selected Emb-susceptible isolates located in codon 330 Leu–Leu was also noticed. Conclusion The majority of our Emb-resistant isolates (n=8, 80%) did not demonstrate the sequences investigated within the embCAB operon. As such, these mutations solely are insufficient for the development of complete resistance to Emb in MTB isolates. Additional mechanisms of resistance other than mutations in these sequences studied within the embCAB operon should also be considered.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mehrandokht Sirous
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mahtab Abdi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Nazanin Ahmadkhosravi
- Khuzestan Tuberculosis Regional Reference Laboratory, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci Rep 2019; 9:2927. [PMID: 30814666 PMCID: PMC6393673 DOI: 10.1038/s41598-019-39654-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple regulatory mechanisms including post-translational modifications (PTMs) confer complexity to the simpler genomes and proteomes of Mycobacterium tuberculosis (Mtb). PTMs such as glycosylation play a significant role in Mtb adaptive processes. The glycoproteomic patterns of clinical isolates of the Mycobacterium tuberculosis complex (MTBC) representing the lineages 3, 4, 5 and 7 were characterized by mass spectrometry. A total of 2944 glycosylation events were discovered in 1325 proteins. This data set represents the highest number of glycosylated proteins identified in Mtb to date. O-glycosylation constituted 83% of the events identified, while 17% of the sites were N-glycosylated. This is the first report on N-linked protein glycosylation in Mtb and in Gram-positive bacteria. Collectively, the bulk of Mtb glycoproteins are involved in cell envelope biosynthesis, fatty acid and lipid metabolism, two-component systems, and pathogen-host interaction that are either surface exposed or located in the cell wall. Quantitative glycoproteomic analysis revealed that 101 sites on 67 proteins involved in Mtb fitness and survival were differentially glycosylated between the four lineages, among which 64% were cell envelope and membrane proteins. The differential glycosylation pattern may contribute to phenotypic variabilities across Mtb lineages. The study identified several clinically important membrane-associated glycolipoproteins that are relevant for diagnostics as well as for drug and vaccine discovery.
Collapse
|
32
|
Catalão MJ, Filipe SR, Pimentel M. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Front Microbiol 2019; 10:190. [PMID: 30804921 PMCID: PMC6378297 DOI: 10.3389/fmicb.2019.00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the leading cause of death by an infectious diseases. The biosynthesis of the mycobacterial cell wall (CW) is an area of increasing research significance, as numerous antibiotics used to treat TB target biosynthesis pathways of essential CW components. The main feature of the mycobacterial cell envelope is an intricate structure, the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex responsible for its innate resistance to many commonly used antibiotics and involved in virulence. A hallmark of mAGP is its unusual peptidoglycan (PG) layer, which has subtleties that play a key role in virulence by enabling pathogenic species to survive inside the host and resist antibiotic pressure. This dynamic and essential structure is not a target of currently used therapeutics as Mtb is considered naturally resistant to most β-lactam antibiotics due to a highly active β-lactamase (BlaC) that efficiently hydrolyses many β-lactam drugs to render them ineffective. The emergence of multidrug- and extensive drug-resistant strains to the available antibiotics has become a serious health threat, places an immense burden on health care systems, and poses particular therapeutic challenges. Therefore, it is crucial to explore additional Mtb vulnerabilities that can be used to combat TB. Remodeling PG enzymes that catalyze biosynthesis and recycling of the PG are essential to the viability of Mtb and are therefore attractive targets for novel antibiotics research. This article reviews PG as an alternative antibiotic target for TB treatment, how Mtb has developed resistance to currently available antibiotics directed to PG biosynthesis, and the potential of targeting this essential structure to tackle TB by attacking alternative enzymatic activities involved in Mtb PG modifications and metabolism.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio R. Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
34
|
Kathleen M, Patrick B. Editorial: Introduction to thematic issue 'Molecular Effectors of Tuberculosis Pathogenesis'. Pathog Dis 2018; 76:5307233. [PMID: 30726953 DOI: 10.1093/femspd/fty077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- McDonough Kathleen
- Wadsworth Center, NYS Department of Health; and Department of Biomedical Sciences, University at Albany, SUNY, USA
| | - Brennan Patrick
- Department of Microbiology, Immunology and Pathology, Colorado State University, USA
| |
Collapse
|
35
|
Liu M, Xiong LB, Tao X, Liu QH, Wang FQ, Wei DZ. Metabolic Adaptation of Mycobacterium neoaurum ATCC 25795 in the Catabolism of Sterols for Producing Important Steroid Intermediates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12141-12150. [PMID: 30362748 DOI: 10.1021/acs.jafc.8b04777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To understand the adaptation of Mycobacterium neoaurum ATCC25795 ( Mn) in sterol catabolism and steroid production, we used integrated transcriptome and proteome analysis to identify the biochemical pathways utilized in this process. Metabolic alterations during sterol catabolism center on propionyl-CoA pools. Generally, enhanced pathways for metabolizing propionyl-CoA were found in Mn, which were tightly coordinated with cell-envelope biosynthesis. The cells responded to sterol substrates and toxic steroid products by changing the composition of the cell envelope. This adaptive mechanism allowed Mn to use minimally water-soluble sterol as a carbon source. Several putative efflux proteins were found to be induced in Mn. They probably transported products to the extracellular environment, protecting the cells against high intracellular levels of toxic intermediates, inhibition of which also influenced sterol uptake. The work provided various targets for rational engineering of robust Mn with powerful sterol-uptake capacity and strong tolerance to toxic products for the steroid industry.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Liang-Bin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Qing-Hai Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
36
|
Vincent AT, Nyongesa S, Morneau I, Reed MB, Tocheva EI, Veyrier FJ. The Mycobacterial Cell Envelope: A Relict From the Past or the Result of Recent Evolution? Front Microbiol 2018; 9:2341. [PMID: 30369911 PMCID: PMC6194230 DOI: 10.3389/fmicb.2018.02341] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022] Open
Abstract
Mycobacteria are well known for their taxonomic diversity, their impact on global health, and for their atypical cell wall and envelope. In addition to a cytoplasmic membrane and a peptidoglycan layer, the cell envelope of members of the order Corynebacteriales, which include Mycobacterium tuberculosis, also have an arabinogalactan layer connecting the peptidoglycan to an outer membrane, the so-called “mycomembrane.” This unusual cell envelope composition of mycobacteria is of prime importance for several physiological processes such as protection from external stresses and for virulence. Although there have been recent breakthroughs in the elucidation of the composition and organization of this cell envelope, its evolutionary origin remains a mystery. In this perspectives article, the characteristics of the cell envelope of mycobacteria with respect to other actinobacteria will be dissected through a molecular evolution framework in order to provide a panoramic view of the evolutionary pathways that appear to be at the origin of this unique cell envelope. In combination with a robust molecular phylogeny, we have assembled a gene matrix based on the presence or absence of key determinants of cell envelope biogenesis in the Actinobacteria phylum. We present several evolutionary scenarios regarding the origin of the mycomembrane. In light of the data presented here, we also propose a novel alternative hypothesis whereby the stepwise acquisition of core enzymatic functions may have allowed the sequential remodeling of the external cell membrane during the evolution of Actinobacteria and has led to the unique mycomembrane of slow-growing mycobacteria as we know it today.
Collapse
Affiliation(s)
- Antony T Vincent
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, QC, Canada.,McGill International TB Centre, Montreal, QC, Canada
| | - Sammy Nyongesa
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Isabelle Morneau
- Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Michael B Reed
- McGill International TB Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Elitza I Tocheva
- Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Frederic J Veyrier
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, QC, Canada.,McGill International TB Centre, Montreal, QC, Canada
| |
Collapse
|
37
|
Investigation of the anti-TB potential of selected propolis constituents using a molecular docking approach. Sci Rep 2018; 8:12238. [PMID: 30116003 PMCID: PMC6095843 DOI: 10.1038/s41598-018-30209-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Human tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading bacterial killer disease worldwide and new anti-TB drugs are urgently needed. Natural remedies have long played an important role in medicine and continue to provide some inspiring templates for drug design. Propolis, a substance naturally-produced by bees upon collection of plant resins, is used in folk medicine for its beneficial anti-TB activity. In this study, we used a molecular docking approach to investigate the interactions between selected propolis constituents and four ‘druggable’ proteins involved in vital physiological functions in M. tuberculosis, namely MtPanK, MtDprE1, MtPknB and MtKasA. The docking score for ligands towards each protein was calculated to estimate the binding free energy, with the best docking score (lowest energy value) indicating the highest predicted ligand/protein affinity. Specific interactions were also explored to understand the nature of intermolecular bonds between the most active ligands and the protein binding site residues. The lignan (+)-sesamin displayed the best docking score towards MtDprE1 (−10.7 kcal/mol) while the prenylated flavonoid isonymphaeol D docked strongly with MtKasA (−9.7 kcal/mol). Both compounds showed docking scores superior to the control inhibitors and represent potentially interesting scaffolds for further in vitro biological evaluation and anti-TB drug design.
Collapse
|
38
|
Li H, Guo H, Chen T, Yu L, Chen Y, Zhao J, Yan H, Chen M, Sun Q, Zhang C, Zhou L, Chen L. Genome-wide SNP and InDel mutations in Mycobacterium tuberculosis associated with rifampicin and isoniazid resistance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3903-3914. [PMID: 31949778 PMCID: PMC6962771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Multiple resistances to isoniazid and rifampicin lead to the majority of death associated with M. tuberculosis infection. This study aimed to characterize the single nucleotide polymorphisms (SNPs) and insertion and deletion (InDel) mutations associated with isoniazid and rifampicin resistance. METHODS The M. tuberculosis strain H37Rv was cultured and treated with isoniazid or rifampicin for generations. Total DNA samples from different generations were extracted for construction of DNA library, and the SNP and InDel mutation in different samples were detected by whole genome sequencing. Bioinformatics analysis such as phylogenetic tree and heap map were also performed. RESULTS Totally 58 nonsynonymous SNP mutations, 64 synonymous SNP mutations, and 99 SNP mutations in intergenic regions were detected in M. tuberculosis strains treated with rifampicin or isoniazid. Seven InDel mutations were found in the intergenic regions, and also six frameshift InDel mutation and three non-frameshift InDel mutations were also characterized. The phylogenetic tree showed clustering of all samples into three main subgroups. A great number of known and newly identified genes associated with drug resistance were detected in M. tuberculosis, showing distinct mutation patterns. CONCLUSION By whole genome sequencing, many genetic mutations in both known and new genes associated with isoniazid and rifampicin resistance were characterized in M. tuberculosis.
Collapse
Affiliation(s)
- Haicheng Li
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Huixin Guo
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Tao Chen
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Li Yu
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Yuhui Chen
- Outpatient Office Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Jiao Zhao
- Medical College of Jinan University GuangzhouChina
| | - Huimin Yan
- Guangdong Medical UniversityDongguan, China
| | - Mu Chen
- Department of Pulmonology, The Sixth Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Qi Sun
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Chenchen Zhang
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Lin Zhou
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Liang Chen
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| |
Collapse
|
39
|
Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol 2018; 13:689-710. [PMID: 29771143 DOI: 10.2217/fmb-2017-0135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular bacterium that persists and replicates inside macrophages. The bacterium possesses an unusual lipid-rich cell envelope that provides a hydrophobic impermeable barrier against many environmental stressors and allows it to survive extremely hostile intracellular surroundings. Since the lipid-rich envelope is crucial for M. tuberculosis virulence, the components of the cell wall lipid biogenesis pathways constitute an attractive target for the development of vaccines and antimycobacterial chemotherapeutics. In this review, we provide a detailed description of the mycobacterial cell envelope lipid components and their contributions to the physiology and pathogenicity of mycobacteria. We also discussed the current status of the antimycobacterial drugs that target biosynthesis, export and regulation of cell envelope lipids.
Collapse
Affiliation(s)
- Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, 500 007, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India
| |
Collapse
|
40
|
Goins CM, Dajnowicz S, Smith MD, Parks JM, Ronning DR. Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis. J Biol Chem 2018; 293:3651-3662. [PMID: 29352107 PMCID: PMC5846135 DOI: 10.1074/jbc.ra117.001681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis antigen 85 (Ag85) enzymes catalyze the transfer of mycolic acid (MA) from trehalose monomycolate to produce the mycolyl arabinogalactan (mAG) or trehalose dimycolate (TDM). These lipids define the protective mycomembrane of mycobacteria. The current model of substrate binding within the active sites of Ag85s for the production of TDM is not sterically and geometrically feasible; additionally, this model does not account for the production of mAG. Furthermore, this model does not address how Ag85s limit the hydrolysis of the acyl-enzyme intermediate while catalyzing acyl transfer. To inform an updated model, we obtained an Ag85 acyl-enzyme intermediate structure that resembles the mycolated form. Here, we present a 1.45-Å X-ray crystal structure of M. tuberculosis Ag85C covalently modified by tetrahydrolipstatin (THL), an esterase inhibitor that suppresses M. tuberculosis growth and mimics structural attributes of MAs. The mode of covalent inhibition differs from that observed in the reversible inhibition of the human fatty-acid synthase by THL. Similarities between the Ag85-THL structure and previously determined Ag85C structures suggest that the enzyme undergoes structural changes upon acylation, and positioning of the peptidyl arm of THL limits hydrolysis of the acyl-enzyme adduct. Molecular dynamics simulations of the modeled mycolated-enzyme form corroborate the structural analysis. From these findings, we propose an alternative arrangement of substrates that rectifies issues with the previous model and suggest a direct role for the β-hydroxy of MA in the second half-reaction of Ag85 catalysis. This information affords the visualization of a complete mycolyltransferase catalytic cycle.
Collapse
Affiliation(s)
- Christopher M. Goins
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390
| | - Steven Dajnowicz
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390, ,Biology and Soft Matter Division and
| | - Micholas D. Smith
- University of Tennessee and Oak Ridge National Laboratory (UT/ORNL) Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and ,Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Jerry M. Parks
- University of Tennessee and Oak Ridge National Laboratory (UT/ORNL) Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and
| | - Donald R. Ronning
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390, , To whom correspondence should be addressed:
Dept. of Chemistry and Biochemistry, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606-3390. Tel.:
419-530-1585; E-mail:
| |
Collapse
|
41
|
Malm S, Maaß S, Schaible UE, Ehlers S, Niemann S. In vivo virulence of Mycobacterium tuberculosis depends on a single homologue of the LytR-CpsA-Psr proteins. Sci Rep 2018; 8:3936. [PMID: 29500450 PMCID: PMC5834633 DOI: 10.1038/s41598-018-22012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
LytR-cpsA-Psr (LCP) domain containing proteins fulfil important functions in bacterial cell wall synthesis. In Mycobacterium tuberculosis complex (Mtbc) strains, the causative agents of tuberculosis (TB), the genes Rv3484 and Rv3267 encode for LCP proteins which are putatively involved in arabinogalactan transfer to peptidoglycan. To evaluate the significance of Rv3484 for Mtbc virulence, we generated a deletion mutant in the Mtbc strain H37Rv and studied its survival in mice upon aerosol infection. The deletion mutant failed to establish infection demonstrating that Rv3484 is essential for growth in mice. Following an initial phase of marginal replication in the lungs until day 21, the Rv3484 deletion mutant was almost eliminated by day 180 post-infectionem. Interestingly, the mutant also showed higher levels of resistance to meropenem/clavulanate and lysozyme, both targeting peptidoglycan structure. We conclude that Rv3484 is essential for Mtbc virulence in vivo where its loss of function cannot be compensated by Rv3267.
Collapse
Affiliation(s)
- S Malm
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany.
| | - S Maaß
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
| | - U E Schaible
- Cellular Microbiology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
| | - S Ehlers
- Molecular Inflammation Medicine, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
| | - S Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
- German Center for Infection Research, Borstel Site, Borstel, Germany
| |
Collapse
|
42
|
Tersa M, Raich L, Albesa-Jové D, Trastoy B, Prandi J, Gilleron M, Rovira C, Guerin ME. The Molecular Mechanism of Substrate Recognition and Catalysis of the Membrane Acyltransferase PatA from Mycobacteria. ACS Chem Biol 2018; 13:131-140. [PMID: 29185694 DOI: 10.1021/acschembio.7b00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycolipids play a central role in a variety of important biological processes in all living organisms. PatA is a membrane acyltransferase involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements, and virulence factors of Mycobacterium tuberculosis. PatA catalyzes the transfer of a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to the 2-position of inositol in PIM1/PIM2. We report here the crystal structure of PatA in the presence of 6-O-palmitoyl-α-d-mannopyranoside, unraveling the acceptor binding mechanism. The acceptor mannose ring localizes in a cavity at the end of a surface-exposed long groove where the active site is located, whereas the palmitate moiety accommodates into a hydrophobic pocket deeply buried in the α/β core of the protein. Both fatty acyl chains of the PIM2 acceptor are essential for the reaction to take place, highlighting their critical role in the generation of a competent active site. By the use of combined structural and quantum-mechanics/molecular-mechanics (QM/MM) metadynamics, we unravel the catalytic mechanism of PatA at the atomic-electronic level. Our study provides a detailed structural rationale for a stepwise reaction, with the generation of a tetrahedral transition state for the rate-determining step. Finally, the crystal structure of PatA in the presence of β-d-mannopyranose and palmitate suggests an inhibitory mechanism for the enzyme, providing exciting possibilities for inhibitor design and the discovery of chemotherapeutic agents against this major human pathogen.
Collapse
Affiliation(s)
- Montse Tersa
- Structural Biology
Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Lluís Raich
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and IQTCUB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - David Albesa-Jové
- Structural Biology
Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- Departamento de
Bioquímica, Universidad del País Vasco, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Beatriz Trastoy
- Structural Biology
Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Jacques Prandi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and IQTCUB, Universitat de Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Marcelo E. Guerin
- Structural Biology
Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- Departamento de
Bioquímica, Universidad del País Vasco, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
43
|
Viljoen A, Richard M, Nguyen PC, Fourquet P, Camoin L, Paudal RR, Gnawali GR, Spilling CD, Cavalier JF, Canaan S, Blaise M, Kremer L. Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo. J Biol Chem 2018; 293:2755-2769. [PMID: 29301937 DOI: 10.1074/jbc.ra117.000760] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/05/2017] [Indexed: 12/27/2022] Open
Abstract
An increasing prevalence of cases of drug-resistant tuberculosis requires the development of more efficacious chemotherapies. We previously reported the discovery of a new class of cyclipostins and cyclophostin (CyC) analogs exhibiting potent activity against Mycobacterium tuberculosis both in vitro and in infected macrophages. Competitive labeling/enrichment assays combined with MS have identified several serine or cysteine enzymes in lipid and cell wall metabolism as putative targets of these CyC compounds. These targets included members of the antigen 85 (Ag85) complex (i.e. Ag85A, Ag85B, and Ag85C), responsible for biosynthesis of trehalose dimycolate and mycolylation of arabinogalactan. Herein, we used biochemical and structural approaches to validate the Ag85 complex as a pharmacological target of the CyC analogs. We found that CyC7β, CyC8β, and CyC17 bind covalently to the catalytic Ser124 residue in Ag85C; inhibit mycolyltransferase activity (i.e. the transfer of a fatty acid molecule onto trehalose); and reduce triacylglycerol synthase activity, a property previously attributed to Ag85A. Supporting these results, an X-ray structure of Ag85C in complex with CyC8β disclosed that this inhibitor occupies Ag85C's substrate-binding pocket. Importantly, metabolic labeling of M. tuberculosis cultures revealed that the CyC compounds impair both trehalose dimycolate synthesis and mycolylation of arabinogalactan. Overall, our study provides compelling evidence that CyC analogs can inhibit the activity of the Ag85 complex in vitro and in mycobacteria, opening the door to a new strategy for inhibiting Ag85. The high-resolution crystal structure obtained will further guide the rational optimization of new CyC scaffolds with greater specificity and potency against M. tuberculosis.
Collapse
Affiliation(s)
- Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France
| | - Matthias Richard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France
| | - Phuong Chi Nguyen
- Aix-Marseille Université, CNRS, EIPL, IMM FR3479, 13009 Marseille, France; Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13009 Marseille, France
| | - Patrick Fourquet
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13009 Marseille, France
| | - Luc Camoin
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13009 Marseille, France
| | - Rishi R Paudal
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, Missouri 63121
| | - Giri R Gnawali
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, Missouri 63121
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, Missouri 63121
| | - Jean-François Cavalier
- Aix-Marseille Université, CNRS, EIPL, IMM FR3479, 13009 Marseille, France; Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13009 Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, EIPL, IMM FR3479, 13009 Marseille, France; Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13009 Marseille, France
| | - Mickael Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France.
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
44
|
Goins CM, Schreidah CM, Dajnowicz S, Ronning DR. Structural basis for lipid binding and mechanism of the Mycobacterium tuberculosis Rv3802 phospholipase. J Biol Chem 2017; 293:1363-1372. [PMID: 29247008 DOI: 10.1074/jbc.ra117.000240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/05/2017] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis rv3802c gene encodes an essential enzyme with thioesterase and phospholipase A activity. Overexpression of Rv3802 orthologs in Mycobacterium smegmatis and Corynebacterium glutamicum increases mycolate content and decreases glycerophospholipids. Although a role in modulating the lipid composition of the unique mycomembrane has been proposed, the true biological function of Rv3802 remains uncertain. In this study, we present the first M. tuberculosis Rv3802 X-ray crystal structure, solved to 1.7 Å resolution. On the basis of the binding of PEG molecules to Rv3802, we identified its lipid-binding site and the structural basis for phosphatidyl-based substrate binding and phospholipase A activity. We found that movement of the α8-helix affords lipid binding and is required for catalytic turnover through covalent tethering. We gained insights into the mechanism of acyl hydrolysis by observing differing arrangements of PEG and water molecules within the active site. This study provides structural insights into biological function and facilitates future structure-based drug design toward Rv3802.
Collapse
Affiliation(s)
- Christopher M Goins
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390 and
| | - Celine M Schreidah
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390 and
| | - Steven Dajnowicz
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390 and.,the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Donald R Ronning
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390 and
| |
Collapse
|
45
|
Cabruja M, Mondino S, Tsai YT, Lara J, Gramajo H, Gago G. A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism. Open Biol 2017; 7:rsob.160277. [PMID: 28228470 PMCID: PMC5356441 DOI: 10.1098/rsob.160277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/25/2017] [Indexed: 01/02/2023] Open
Abstract
Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo, we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C12 to C18 acyl-CoAs, but not of long-chain acyl-CoAs (C19 to C24). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.
Collapse
Affiliation(s)
- Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sonia Mondino
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yi Ting Tsai
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julia Lara
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
46
|
Boot M, van Winden VJC, Sparrius M, van de Weerd R, Speer A, Ummels R, Rustad T, Sherman DR, Bitter W. Cell envelope stress in mycobacteria is regulated by the novel signal transduction ATPase IniR in response to trehalose. PLoS Genet 2017; 13:e1007131. [PMID: 29281637 PMCID: PMC5760070 DOI: 10.1371/journal.pgen.1007131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
The cell envelope of mycobacteria is a highly unique and complex structure that is functionally equivalent to that of Gram-negative bacteria to protect the bacterial cell. Defects in the integrity or assembly of this cell envelope must be sensed to allow the induction of stress response systems. The promoter that is specifically and most strongly induced upon exposure to ethambutol and isoniazid, first line drugs that affect cell envelope biogenesis, is the iniBAC promoter. In this study, we set out to identify the regulator of the iniBAC operon in Mycobacterium marinum using an unbiased transposon mutagenesis screen in a constitutively iniBAC-expressing mutant background. We obtained multiple mutants in the mce1 locus as well as mutants in an uncharacterized putative transcriptional regulator (MMAR_0612). This latter gene was shown to function as the iniBAC regulator, as overexpression resulted in constitutive iniBAC induction, whereas a knockout mutant was unable to respond to the presence of ethambutol and isoniazid. Experiments with the M. tuberculosis homologue (Rv0339c) showed identical results. RNAseq experiments showed that this regulatory gene was exclusively involved in the regulation of the iniBAC operon. We therefore propose to name this dedicated regulator iniBAC Regulator (IniR). IniR belongs to the family of signal transduction ATPases with numerous domains, including a putative sugar-binding domain. Upon testing different sugars, we identified trehalose as an activator and metabolic cue for iniBAC activation, which could also explain the effect of the mce1 mutations. In conclusion, cell envelope stress in mycobacteria is regulated by IniR in a cascade that includes trehalose.
Collapse
Affiliation(s)
- Maikel Boot
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Vincent J. C. van Winden
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Sparrius
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert van de Weerd
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Tige Rustad
- Center for Infectious Disease, Seattle, Washington, United States of America
| | - David R. Sherman
- Center for Infectious Disease, Seattle, Washington, United States of America
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
- Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Igarashi M, Ishizaki Y, Takahashi Y. New antituberculous drugs derived from natural products: current perspectives and issues in antituberculous drug development. J Antibiot (Tokyo) 2017; 71:ja2017126. [PMID: 29089593 DOI: 10.1038/ja.2017.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Tuberculosis is one of the most common and challenging infectious diseases worldwide. Especially, the lack of effective chemotherapeutic drugs for tuberculosis/human immunodeficiency virus co-infection and prevalence of multidrug-resistant and extensively drug-resistant tuberculosis remain to be serious clinical problems. Development of new drugs is a potential solution to fight tuberculosis. In this decade, the development status of new antituberculous drugs has been greatly advanced by the leading role of international organizations such as the Global Alliance for Tuberculosis Drug Development, Stop Tuberculosis Partnership and Global Health Innovative Technology Fund. In this review, we introduce the development status of new drugs for tuberculosis, focusing on those derived from natural products.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.126.
Collapse
|
48
|
N-Acetylglucosamine-1-Phosphate Transferase, WecA, as a Validated Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.01310-17. [PMID: 28874370 DOI: 10.1128/aac.01310-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/25/2017] [Indexed: 12/24/2022] Open
Abstract
The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.
Collapse
|
49
|
Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol 2017; 8:681. [PMID: 28487675 PMCID: PMC5403904 DOI: 10.3389/fmicb.2017.00681] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infectious diseases caused by clinically important Mycobacteria continue to be an important public health problem worldwide primarily due to emergence of drug resistance crisis. In recent years, the control of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (MTB), is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least isoniazid (INH) and rifampicin (RIF), two key drugs in the treatment of the disease. Despite the availability of curative anti-TB therapy, inappropriate and inadequate treatment has allowed MTB to acquire resistance to the most important anti-TB drugs. Likewise, for most mycobacteria other than MTB, the outcome of drug treatment is poor and is likely related to the high levels of antibiotic resistance. Thus, a better knowledge of the underlying mechanisms of drug resistance in mycobacteria could aid not only to select the best therapeutic options but also to develop novel drugs that can overwhelm the existing resistance mechanisms. In this article, we review the distinctive mechanisms of antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of TabrizTabriz, Iran
| | - Mona Ghazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Abbas A. Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Mohammad M. Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
- Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
50
|
Perkowski EF, Zulauf KE, Weerakoon D, Hayden JD, Ioerger TR, Oreper D, Gomez SM, Sacchettini JC, Braunstein M. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection. mBio 2017; 8:e00333-17. [PMID: 28442606 PMCID: PMC5405230 DOI: 10.1128/mbio.00333-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory (in vitro) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT (exported in vivotechnology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions.IMPORTANCE There is long-standing interest in identifying exported proteins of bacteria as they play critical roles in physiology and virulence and are commonly immunogenic antigens and targets of antibiotics. While significant effort has been made to identify the bacterial proteins that are exported beyond the cytoplasm to the membrane, cell wall, or host environment, current methods to identify exported proteins are limited by their use of bacteria growing under laboratory (in vitro) conditions. Because in vitro conditions do not mimic the complexity of the host environment, critical exported proteins that are preferentially exported in the context of infection may be overlooked. We developed a novel method to identify proteins that are exported by bacteria during host infection and applied it to identify Mycobacterium tuberculosis proteins exported in a mouse model of tuberculosis.
Collapse
Affiliation(s)
- E F Perkowski
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - K E Zulauf
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - D Weerakoon
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - J D Hayden
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - T R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - D Oreper
- Joint Department of Biomedical Engineering at UNC-Chapel Hill and NC State University, Chapel Hill, North Carolina, USA
| | - S M Gomez
- Joint Department of Biomedical Engineering at UNC-Chapel Hill and NC State University, Chapel Hill, North Carolina, USA
| | - J C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - M Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|