1
|
Kieran TJ, Maines TR, Belser JA. Eleven quick tips to unlock the power of in vivo data science. PLoS Comput Biol 2025; 21:e1012947. [PMID: 40245007 PMCID: PMC12005514 DOI: 10.1371/journal.pcbi.1012947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Affiliation(s)
- Troy J. Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | - Taronna R. Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | - Jessica A. Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| |
Collapse
|
2
|
Belser JA, Pulit-Penaloza JA, Brock N, Sun X, Kieran TJ, Pappas C, Zeng H, Vu MN, Lakdawala SS, Tumpey TM, Maines TR. Ocular infectivity and replication of a clade 2.3.4.4b A(H5N1) influenza virus associated with human conjunctivitis in a dairy farm worker in the USA: an in-vitro and ferret study. THE LANCET. MICROBE 2025:101070. [PMID: 40112840 DOI: 10.1016/j.lanmic.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 03/22/2025]
Abstract
BACKGROUND The human eye represents a potential site of influenza A virus (IAV) replication, and an entry point for the virus to reach the respiratory tract. The frequent detection of conjunctivitis among farm workers with confirmed infection with clade 2.3.4.4b A(H5N1) IAV from this ongoing outbreak represents an atypical disease presentation for this virus subtype. We aimed to investigate whether the occurrence of ocular complications reported following clade 2.3.4.4b A(H5N1) virus infection was associated with an enhanced capacity of this virus to replicate in mammalian ocular tissue and cause infection following ocular exposure. METHODS Primary human nasal and corneal tissue constructs were infected with A(H5N1) A/Texas/37/2024 (Texas/37), A(H1N1)pdm09 A/Nebraska/14/2019 (Neb/14), and A(H7N7) A/Netherlands/219/2003 (NL/219) viruses (multiplicity of infection [MOI] of 0·01-0·02, 33°C). Corneal tissue constructs were also infected with an expanded panel of IAVs (Texas/37, A[H5N1] A/Michigan/90/2024 [MI/90], A[H5N1] A/Chile/25945/2023 [Chile/25945], NL/219, A/Netherlands/230/2003 [NL/230], and Neb/14; MOI of 0·01, 37°C). In-vitro infections of tissue constructs were used to assess replication kinetics by infectious virus titration. Induction of innate host antiviral responses in infected corneal tissue constructs was assessed by PCR array (MOI of 2·00, 37°C). Ferrets (serologically naive or pre-immune to A[H1N1]pdm09 virus) were inoculated by the ocular route with Texas/37 A(H5N1) virus-using a liquid inoculum (10⁶ plaque forming units [PFU]), aerosol inhalation (15-16 PFU), or ocular-only aerosol exposure (18-132 PFU)-to assess pathogenicity and tropism of the virus following different exposure routes. Transmissibility was assessed by placing serologically naive or pre-immune ferrets inoculated by ocular-only aerosol exposure in direct contact with serologically naive ferrets, monitoring pathogenicity in contact animals, and measuring viral titres in nasal washes of both inoculated and contact ferrets. FINDINGS Nasal and corneal tissue constructs supported replication of all IAVs tested. In corneal tissue constructs, A(H7N7) and A(H1N1)pdm09 viruses reached 10-fold higher overall titres than A(H5N1) isolates. Relatively few genes (n=13) related to antiviral responses were significantly differentially expressed in corneal tissue constructs infected with IAV, with no consistent differential expression among clade 2.3.4.4b A(H5N1) viruses associated with either conjunctivitis or severe respiratory disease, although strain-specific differences were observed. Serologically naive ferrets inoculated by liquid ocular, aerosol inhalation, or aerosol-only ocular routes with Texas/37 virus exhibited a systemic and fatal infection in all animals, transmitting the virus to naive cagemates. By contrast, reduced disease severity following ocular-only aerosol inoculation was observed in animals with pre-existing heterosubtypic immunity. No serologically naive ferrets placed in direct contact with pre-immune ferrets inoculated with Texas/37 virus by the ocular-only aerosol route became infected. INTERPRETATION A clade 2.3.4.4b A(H5N1) virus from the dairy cattle outbreak in the USA that was first detected in March, 2024, does not appear to possess features indicative of an ocular tropism. However, this virus can maintain a virulent and transmissible phenotype in ferrets following ocular exposure, highlighting the importance of ocular protection. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Nicole Brock
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Troy J Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Claudia Pappas
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hui Zeng
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michelle N Vu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
Kieran TJ, Sun X, Maines TR, Belser JA. Optimal thresholds and key parameters for predicting influenza A virus transmission events in ferrets. NPJ VIRUSES 2024; 2:64. [PMID: 39664046 PMCID: PMC11628394 DOI: 10.1038/s44298-024-00074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Although assessments of influenza A virus transmissibility in the ferret model play a critical role in pandemic risk evaluations, few studies have investigated which virological data collected from virus-inoculated animals are most predictive of subsequent virus transmission to naïve contacts. We compiled viral titer data from >475 ferrets inoculated with 97 contemporary IAV (including high- and low-pathogenicity avian, swine-origin, and human viruses of multiple HA subtypes) that served as donors for assessments of virus transmission in the presence of direct contact (DCT) or via respiratory droplets (RDT). A diversity of molecular determinants, clinical parameters, and infectious titer measurements and derived quantities were examined to identify which metrics were most statistically supported with transmission outcome. Higher viral loads in nasal wash (NW) specimens were strongly associated with higher transmission frequencies in DCT, but not RDT models. However, viruses that reached peak titers in NW specimens early (day 1 p.i.) were strongly associated with higher transmission in both models. Interestingly, viruses with 'intermediate' transmission outcomes (33-66%) had NW titers and derived quantities more similar to non-transmissible viruses (<33%) in a DCT setting, but with efficiently transmissible viruses (>67%) in a RDT setting. Machine learning was employed to further assess the predictive role of summary measures and varied interpretation of intermediate transmission outcomes in both DCT and RDT models, with models employing these different thresholds yielding high performance metrics against both internal and external datasets. Collectively, these findings suggest that higher viral load in inoculated animals can be predictive of DCT outcomes, whereas the timing of when peak titers are detected in inoculated animals can inform RDT outcomes. Identification that intermediate transmission outcomes should be contextualized relative to the transmission mode assessed provides needed refinement towards improving interpretation of ferret transmission studies in the context of pandemic risk assessment.
Collapse
Affiliation(s)
- Troy J. Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Taronna R. Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Jessica A. Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
4
|
Kieran TJ, Sun X, Maines TR, Belser JA. Machine learning approaches for influenza A virus risk assessment identifies predictive correlates using ferret model in vivo data. Commun Biol 2024; 7:927. [PMID: 39090358 PMCID: PMC11294530 DOI: 10.1038/s42003-024-06629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
In vivo assessments of influenza A virus (IAV) pathogenicity and transmissibility in ferrets represent a crucial component of many pandemic risk assessment rubrics, but few systematic efforts to identify which data from in vivo experimentation are most useful for predicting pathogenesis and transmission outcomes have been conducted. To this aim, we aggregated viral and molecular data from 125 contemporary IAV (H1, H2, H3, H5, H7, and H9 subtypes) evaluated in ferrets under a consistent protocol. Three overarching predictive classification outcomes (lethality, morbidity, transmissibility) were constructed using machine learning (ML) techniques, employing datasets emphasizing virological and clinical parameters from inoculated ferrets, limited to viral sequence-based information, or combining both data types. Among 11 different ML algorithms tested and assessed, gradient boosting machines and random forest algorithms yielded the highest performance, with models for lethality and transmission consistently better performing than models predicting morbidity. Comparisons of feature selection among models was performed, and highest performing models were validated with results from external risk assessment studies. Our findings show that ML algorithms can be used to summarize complex in vivo experimental work into succinct summaries that inform and enhance risk assessment criteria for pandemic preparedness that take in vivo data into account.
Collapse
Affiliation(s)
- Troy J Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
5
|
Abstract
Past pandemic influenza viruses with sustained human-to-human transmissibility have emerged from animal influenza viruses. Employment of experimental models to assess the pandemic risk of emerging zoonotic influenza viruses provides critical information supporting public health efforts. Ferret transmission experiments have been utilized to predict the human-to-human transmission potential of novel influenza viruses. However, small sample sizes and a lack of standardized protocols can introduce interlaboratory variability, complicating interpretation of transmission experimental data. To assess the range of variation in ferret transmission experiments, a global exercise was conducted by 11 laboratories using two common stock H1N1 influenza viruses with different transmission characteristics in ferrets. Parameters known to affect transmission were standardized, including the inoculation route, dose, and volume, as well as a strict 1:1 donor/contact ratio for respiratory droplet transmission. Additional host and environmental parameters likely to affect influenza transmission kinetics were monitored and analyzed. The overall transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the robustness of the ferret model for zoonotic influenza risk assessment. Among environmental parameters that varied across laboratories, donor-to-contact airflow directionality was associated with increased transmissibility. To attain high confidence in identifying viruses with moderate to high transmissibility or low transmissibility under a smaller number of participating laboratories, our analyses support the notion that as few as three but as many as five laboratories, respectively, would need to independently perform viral transmission experiments with concordant results. This exercise facilitates the development of a more homogenous protocol for ferret transmission experiments that are employed for the purposes of risk assessment.
Collapse
|
6
|
Mueller Brown K, Le Sage V, French AJ, Jones JE, Padovani GH, Avery AJ, Schultz-Cherry S, Rosch JW, Hiller NL, Lakdawala SS. Secondary infection with Streptococcus pneumoniae decreases influenza virus replication and is linked to severe disease. FEMS MICROBES 2022; 3:xtac007. [PMID: 35392116 PMCID: PMC8981988 DOI: 10.1093/femsmc/xtac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Secondary bacterial infection is a common complication in severe influenza virus infections. During the H1N1 pandemic of 2009, increased mortality was observed among healthy young adults due to secondary bacterial pneumonia, one of the most frequent bacterial species being Streptococcus pneumoniae (Spn). Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, the ferret model was used to examine whether secondary Spn infection (strains BHN97 and D39) influence replication and airborne transmission of the 2009 pandemic H1N1 virus (H1N1pdm09). Secondary infection with Spn after H1N1pdm09 infection consistently resulted in a significant decrease in viral titers in the ferret nasal washes. While secondary Spn infection appeared to negatively impact influenza virus replication, animals precolonized with Spn were equally susceptible to H1N1pdm09 airborne transmission. In line with previous work, ferrets with preceding H1N1pdm09 and secondary Spn infection had increased bacterial loads and more severe clinical symptoms as compared to animals infected with H1N1pdm09 or Spn alone. Interestingly, the donor animals that displayed the most severe clinical symptoms had reduced airborne transmission of H1N1pdm09. Based on these data, we propose an asymmetrical relationship between these two pathogens, rather than a synergistic one, since secondary bacterial infection enhances Spn colonization and pathogenesis but decreases viral titers.
Collapse
Affiliation(s)
- Karina Mueller Brown
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Andrea J French
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Gabriella H Padovani
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Annika J Avery
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Bridgeside Point II, Pittsburgh, PA 15219, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Mrotz VJ, Nestor KM, Maines TR, Powell N, Belser JA. Effects of Buprenorphine Treatment on Influenza Pathogenesis in the Ferret ( Mustela putorius furo). Comp Med 2022; 72:22-29. [PMID: 35256041 DOI: 10.30802/aalas-cm-21-000087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ferrets are the gold-standard model for influenza A virus (IAV) research due to their natural susceptibility to human and zoonotic IAV, comparable respiratory anatomy and physiology to humans, and development of clinical signs similar to those seen in infected people. Because the presence and progression of clinical signs can be useful in infectious disease research, uncertainty in how analgesics alter research outcomes or compromise characteristics of disease progression have outweighed the concern regarding animal discomfort from these symptoms. Nonetheless, the principles of animal research require consideration of refinements for this important model for IAV research. Opioids offer a possible refinement option that would not directly affect the inflammatory cascade involved in IAV infection. Mirroring pathogenicity studies that use ferrets, 12 ferrets were inoculated intranasally with the A(H3N2) IAV A/Panama/2007/1999 and divided into 3 treatment groups ( n = 4 each), of which 2 groups received buprenorphine treatments on different schedules and the third received a saline control. The duration and location of viral replication, lymphohematopoietic changes, and clinical signs were comparable across all groups at all time points. High quantities of infectious virus in nasal wash specimens were detected in ferrets from all groups through day 5 after inoculation, and peak viral titers from the upper respiratory tract did not differ between ferrets receiving buprenorphine treatments on either schedule. Compared with the saline group, ferrets receiving buprenorphine exhibited transient weight loss and pyrexia, but all groups ultimately achieved similar peaks in both of these measurements. Collectively, these findings support the continued evaluation of buprenorphine as a refinement for IAV-challenged ferrets.
Collapse
Affiliation(s)
- Victoria J Mrotz
- Comparative Medicine Branch, Division of Scientific Resources, Prevention, Atlanta, GA
| | - Kaitlyn M Nestor
- Comparative Medicine Branch, Division of Scientific Resources, Prevention, Atlanta, GA
| | - Taronna R Maines
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control, Prevention, Atlanta, GA
| | - Nathaniel Powell
- Comparative Medicine Branch, Division of Scientific Resources, Prevention, Atlanta, GA
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control, Prevention, Atlanta, GA
| |
Collapse
|
8
|
Abstract
Human respiratory virus infections lead to a spectrum of respiratory symptoms and disease severity, contributing to substantial morbidity, mortality and economic losses worldwide, as seen in the COVID-19 pandemic. Belonging to diverse families, respiratory viruses differ in how easy they spread (transmissibility) and the mechanism (modes) of transmission. Transmissibility as estimated by the basic reproduction number (R0) or secondary attack rate is heterogeneous for the same virus. Respiratory viruses can be transmitted via four major modes of transmission: direct (physical) contact, indirect contact (fomite), (large) droplets and (fine) aerosols. We know little about the relative contribution of each mode to the transmission of a particular virus in different settings, and how its variation affects transmissibility and transmission dynamics. Discussion on the particle size threshold between droplets and aerosols and the importance of aerosol transmission for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus is ongoing. Mechanistic evidence supports the efficacies of non-pharmaceutical interventions with regard to virus reduction; however, more data are needed on their effectiveness in reducing transmission. Understanding the relative contribution of different modes to transmission is crucial to inform the effectiveness of non-pharmaceutical interventions in the population. Intervening against multiple modes of transmission should be more effective than acting on a single mode.
Collapse
Affiliation(s)
- Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
9
|
Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen HL. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583:834-838. [PMID: 32408338 DOI: 10.21203/rs.3.rs-20774/v1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 05/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.
Collapse
MESH Headings
- Aerosols
- Alveolar Epithelial Cells/pathology
- Alveolar Epithelial Cells/virology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Antigens, Viral/metabolism
- Betacoronavirus/immunology
- Betacoronavirus/isolation & purification
- Betacoronavirus/metabolism
- Betacoronavirus/pathogenicity
- Bronchi/pathology
- Bronchi/virology
- COVID-19
- Coronavirus Infections/immunology
- Coronavirus Infections/transmission
- Coronavirus Infections/virology
- Disease Models, Animal
- Duodenum/virology
- Fomites/virology
- Housing, Animal
- Kidney/virology
- Lung/pathology
- Lung/virology
- Male
- Mesocricetus/immunology
- Mesocricetus/virology
- Nasal Mucosa/virology
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/transmission
- Pneumonia, Viral/virology
- RNA, Viral/analysis
- SARS-CoV-2
- Viral Load
- Weight Loss
Collapse
Affiliation(s)
- Sin Fun Sia
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Meng Yan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Fung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Tim Choy
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alvina Y L Wong
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Prathanporn Kaewpreedee
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John M Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen HL. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583:834-838. [PMID: 32408338 PMCID: PMC7394720 DOI: 10.1038/s41586-020-2342-5] [Citation(s) in RCA: 1060] [Impact Index Per Article: 212.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Sin Fun Sia
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Meng Yan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Fung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Tim Choy
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alvina Y L Wong
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Prathanporn Kaewpreedee
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John M Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Belser JA, Barclay W, Barr I, Fouchier RAM, Matsuyama R, Nishiura H, Peiris M, Russell CJ, Subbarao K, Zhu H, Yen HL. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerg Infect Dis 2019; 24:965-971. [PMID: 29774862 PMCID: PMC6004870 DOI: 10.3201/eid2406.172114] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model.
Collapse
|
12
|
Lipsitch M, Barclay W, Raman R, Russell CJ, Belser JA, Cobey S, Kasson PM, Lloyd-Smith JO, Maurer-Stroh S, Riley S, Beauchemin CA, Bedford T, Friedrich TC, Handel A, Herfst S, Murcia PR, Roche B, Wilke CO, Russell CA. Viral factors in influenza pandemic risk assessment. eLife 2016; 5. [PMID: 27834632 PMCID: PMC5156527 DOI: 10.7554/elife.18491] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk.
Collapse
Affiliation(s)
- Marc Lipsitch
- Center for Communicable Disease Dynamics, Harvard T. H Chan School of Public Health, Boston, United States.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Wendy Barclay
- Division of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Rahul Raman
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jessica A Belser
- Centers for Disease Control and Prevention, Atlanta, United States
| | - Sarah Cobey
- Department of Ecology and Evolutionary Biology, University of Chicago, Chicago, United States
| | - Peter M Kasson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.,Fogarty International Center, National Institutes of Health, Bethesda, United States
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore.,National Public Health Laboratory, Communicable Diseases Division, Ministry of Health, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, United States
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, United States
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pablo R Murcia
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
| | | | - Claus O Wilke
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States.,Department of Integrative Biology, The University of Texas at Austin, Austin, United States
| | - Colin A Russell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Oh DY, Hurt AC. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness. Front Microbiol 2016; 7:80. [PMID: 26870031 PMCID: PMC4740393 DOI: 10.3389/fmicb.2016.00080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.
Collapse
Affiliation(s)
- Ding Y Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; School of Applied and Biomedical Sciences, Federation University Australia, GippslandVIC, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; Melbourne School of Population and Global Health, University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
14
|
Animal models for influenza virus transmission studies: a historical perspective. Curr Opin Virol 2015; 13:101-8. [PMID: 26126082 DOI: 10.1016/j.coviro.2015.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Animal models are used to simulate, under experimental conditions, the complex interactions among host, virus, and environment that affect the person-to-person spread of influenza viruses. The three species that have been most frequently employed, both past and present, as influenza virus transmission models-ferrets, mice, and guinea pigs-have each provided unique insights into the factors governing the efficiency with which these viruses pass from an infected host to a susceptible one. This review will highlight a few of these noteworthy discoveries, with a particular focus on the historical contexts in which each model was developed and the advantages and disadvantages of each species with regard to the study of influenza virus transmission among mammals.
Collapse
|
15
|
Carter DM, Bloom CE, Kirchenbaum GA, Tsvetnitsky V, Isakova-Sivak I, Rudenko L, Ross TM. Cross-protection against H7N9 influenza strains using a live-attenuated H7N3 virus vaccine. Vaccine 2015; 33:108-16. [PMID: 25448100 DOI: 10.1016/j.vaccine.2014.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/18/2014] [Accepted: 11/06/2014] [Indexed: 01/25/2023]
Abstract
In 2013, avian H7N9 influenza viruses were detected infecting people in China resulting in high mortality. Influenza H7 vaccines that provide cross-protection against these new viruses are needed until specific H7N9 vaccines are ready to market. In this study, an available H7N3 cold-adapted, temperature sensitive, live attenuated influenza vaccine (LAIV) elicited protective immune responses in ferrets against H7N9 viruses. The H7N3 LAIV administered alone (by intranasal or subcutaneous administration) or in a prime-boost strategy using inactivated H7N9 virus resulted in high HAI titers and protected 100% of the animals against H7N9 challenge. Naïve ferrets passively administered immune serum from H7N3 LAIV infected animals were also protected. In contrast, recombinant HA protein or inactivated viruses did not protect ferrets against challenge and elicited lower antibody titers. Thus, the H7N3 LAIV vaccine was immunogenic in healthy seronegative ferrets and protected these ferrets against the newly emerged H7N9 avian influenza virus.
Collapse
Affiliation(s)
- Donald M Carter
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | - Chalise E Bloom
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | | | | | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Ted M Ross
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA.
| |
Collapse
|
16
|
Reply to "Can limited scientific value of potential pandemic pathogen experiments justify the risks?". mBio 2014; 5:e02053-14. [PMID: 25316702 PMCID: PMC4205797 DOI: 10.1128/mbio.02053-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Mänz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014; 157:329-339. [PMID: 24725402 DOI: 10.1016/j.cell.2014.02.040] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.
Collapse
Affiliation(s)
- Martin Linster
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Sander van Boheemen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eefje J A Schrauwen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Benjamin Mänz
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Jan Baumann
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Debby van Riel
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
18
|
Richard M, de Graaf M, Herfst S. Avian influenza A viruses: from zoonosis to pandemic. Future Virol 2014; 9:513-524. [PMID: 25214882 DOI: 10.2217/fvl.14.30] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zoonotic influenza A viruses originating from the animal reservoir pose a threat for humans, as they have the ability to trigger pandemics upon adaptation to and invasion of an immunologically naive population. Of particular concern are the H5N1 viruses that continue to circulate in poultry in numerous countries in Europe, Asia and Africa, and the recently emerged H7N9 viruses in China, due to their relatively high number of human fatalities and pandemic potential. To start a pandemic, zoonotic influenza A viruses should not only acquire the ability to attach to, enter and replicate in the critical target cells in the respiratory tract of the new host, but also efficiently spread between humans by aerosol or respiratory droplet transmission. Here, we discuss the latest advances on the genetic and phenotypic determinants required for avian influenza A viruses to adapt to and transmit between mammals.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Abstract
Please see later in the article for the Editors' Summary
Collapse
Affiliation(s)
- Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Alison P. Galvani
- Department of Epidemiology (Microbial Diseases), Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
20
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
21
|
de Graaf M, Fouchier RAM. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 2014; 33:823-41. [PMID: 24668228 DOI: 10.1002/embj.201387442] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)-binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.
Collapse
Affiliation(s)
- Miranda de Graaf
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
22
|
Host adaptation and transmission of influenza A viruses in mammals. Emerg Microbes Infect 2014; 3:e9. [PMID: 26038511 PMCID: PMC3944123 DOI: 10.1038/emi.2014.9] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/17/2022]
Abstract
A wide range of influenza A viruses of pigs and birds have infected humans in the last decade, sometimes with severe clinical consequences. Each of these so-called zoonotic infections provides an opportunity for virus adaptation to the new host. Fortunately, most of these human infections do not yield viruses with the ability of sustained human-to-human transmission. However, animal influenza viruses have acquired the ability of sustained transmission between humans to cause pandemics on rare occasions in the past, and therefore, influenza virus zoonoses continue to represent threats to public health. Numerous recent studies have shed new light on the mechanisms of adaptation and transmission of avian and swine influenza A viruses in mammals. In particular, several studies provided insights into the genetic and phenotypic traits of influenza A viruses that may determine airborne transmission. Here, we summarize recent studies on molecular determinants of virulence and adaptation of animal influenza A virus and discuss the phenotypic traits associated with airborne transmission of newly emerging influenza A viruses. Increased understanding of the determinants and mechanisms of virulence and transmission may aid in assessing the risks posed by animal influenza viruses to human health, and preparedness for such risks.
Collapse
|
23
|
Herfst S, Imai M, Kawaoka Y, Fouchier RAM. Avian influenza virus transmission to mammals. Curr Top Microbiol Immunol 2014; 385:137-55. [PMID: 25048542 DOI: 10.1007/82_2014_387] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.
Collapse
Affiliation(s)
- S Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|