1
|
Fuchs K, Totaro MG, Toplak M, Bijelic A, Macheroux P. Investigation of the inhibitory properties of azo-dyes on chorismate synthase from Paracoccidioides brasiliensis. J Enzyme Inhib Med Chem 2024; 39:2427175. [PMID: 39654448 PMCID: PMC11633415 DOI: 10.1080/14756366.2024.2427175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024] Open
Abstract
The efficient inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) by the broad-spectrum herbicide glyphosate validates the shikimate pathway as a promising target for developing antimicrobial, fungicidal and herbicidal agents. The last enzyme of this pathway, chorismate synthase (CS), catalyses an unusual reaction, making it an attractive target for novel inhibitors. Therefore, we tested a series of azo-dyes for their inhibitory potential against CS from the pathogenic fungus Paracoccidioides brasiliensis (PbCS) and identified the azo-dye PH011669 that exhibits a dissociation (Kd) and 50% inhibitory constant (IC50) of 1.1 ± 0.1 and 10 ± 1 µM, respectively. Molecular docking and MD simulations provided insight into the mode of inhibition, showing that PH011669 binds to the enzyme's active site primarily through electrostatic interactions. Thus, our study is the first to integrate structural and computational methods to guide future efforts towards designing the next generation of CS inhibitors.
Collapse
Affiliation(s)
- Katharina Fuchs
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Massimo G. Totaro
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
2
|
Franco PDA, Araújo Neto CAD, da Silva SRL, Coelho Filho JC, Brites C, Pereira-Silva JL. Autochtonal case of chronic, unifocal, pulmonary paracoccidioidomycosis with methotrexate use, in Salvador ‒ Brazil. Braz J Infect Dis 2024; 28:103768. [PMID: 38851212 PMCID: PMC11224999 DOI: 10.1016/j.bjid.2024.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/15/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024] Open
Abstract
We report an autochthonous case of mild unifocal chronic pulmonary paracoccidioidomycosis in a 48-year-old previously healthy woman with no history of possible environmental exposures in endemic rural areas, supposedly resulting from reactivation of a latent pulmonary focus secondary to the use of methotrexate for the control of Chikungunya arthropathy. Laboratory investigation ruled out other immunosuppression. Her only symptoms were a dry cough and chest pain. Diagnosis confirmed by needle lung biopsy. There were no abnormalities on physical examination nor evidence of central nervous system involvement. MRI of the total abdomen showed no involvement of other organs. Computed chest tomography showed a favorable evolution under the use of itraconazole (200 mg/day). Different tomographic presentations findings are highlighted when performed before and after treatment. CONCLUSIONS: PCM should be considered even in a woman without a history of consistent environmental exposure and in a non-endemic geographic area.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Brites
- Universidade Federal da Bahia, Departamento de Medicina, Salvador, BA, Brazil.
| | | |
Collapse
|
3
|
Borges BM, Ramos RBC, Preite NW, Kaminski VDL, Alves de Castro P, Camacho M, Maximo MF, Fill TP, Calich VLG, Traynor AM, Sarikaya-Bayram Ö, Doyle S, Bayram Ö, de Campos CBL, Zelanis A, Goldman GH, Loures FV. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol 2023; 13:1268959. [PMID: 37868350 PMCID: PMC10585178 DOI: 10.3389/fcimb.2023.1268959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1β, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rafael Berton Correia Ramos
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Patrícia Alves de Castro
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maurício Camacho
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | - Taicia Pacheco Fill
- Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aimee M. Traynor
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - André Zelanis
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
4
|
Gualtero DEA, Diaz DAM, Rivero JEF, Mantilla JC, Valsangiacomo S. Bronchial stenosis secondary to systemic paracoccidioidomycosis. Rev Soc Bras Med Trop 2023; 56:e03432023. [PMID: 37792840 PMCID: PMC10550091 DOI: 10.1590/0037-8682-0343-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 10/06/2023] Open
Affiliation(s)
| | | | | | - Julio Cesar Mantilla
- Facultad de Medicina de la Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Stefano Valsangiacomo
- Facultad de Medicina de la Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
5
|
Ariza Y, Cubides CL, Cubillos DA, Roa CL, Álvarez JC, Cuervo-Maldonado SI. Make the diagnosis - Second part. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:312-322. [PMID: 37721895 PMCID: PMC10586880 DOI: 10.7705/biomedica.7219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/07/2023] [Indexed: 09/20/2023]
Affiliation(s)
- Yenny Ariza
- Grupo de Medicina Interna e Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia.
| | - Cristian Leonardo Cubides
- Grupo de Medicina Interna e Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia.
| | - Daniel Alejandro Cubillos
- Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Carmen Lucía Roa
- Grupo de Medicina Interna e Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia.
| | - José Camilo Álvarez
- Grupo de Medicina Interna e Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia.
| | - Sonia Isabel Cuervo-Maldonado
- Grupo de Medicina Interna e Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| |
Collapse
|
6
|
Gonçales RA, Portis IG, dos Reis TF, Basso Júnior LR, Martinez R, Zhu H, Pereira M, Soares CMDA, Coelho PSR. Identification and immunogenic potential of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides brasiliensis. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1243475. [PMID: 37746134 PMCID: PMC10512324 DOI: 10.3389/ffunb.2023.1243475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023]
Abstract
In fungal pathogens the cell wall plays an important role in host-pathogen interactions because its molecular components (e.g., polysaccharides and proteins) may trigger immune responses during infection. GPI-anchored proteins represent the main protein class in the fungal cell wall where they can perform several functions, such as cell wall remodeling and adhesion to host tissues. Genomic analysis has identified the complement of GPI-anchored proteins in many fungal pathogens, but the function has remained unknown for most of them. Here, we conducted an RNA expression analysis of GPI-anchored proteins of Paracoccidioides brasiliensis which causes paracoccidioidomycosis (PCM), an important human systemic mycosis endemic in Latin America. The expression of the GPI-anchored proteins was analyzed by quantitative PCR in both the mycelium and yeast forms. qPCR analysis revealed that the transcript levels of 22 of them were increased in hyphae and 10 in yeasts, respectively, while 14 did not show any significant difference in either form. Furthermore, we cloned 46 open reading frames and purified their corresponding GPI-anchored proteins in the budding yeast. Immunoblot and ELISA analysis of four purified GPI-anchored proteins revealed immune reactivity of these proteins against sera obtained from PCM patients. The information obtained in this study provides valuable information about the expression of many GPI-anchored proteins of unknown function. In addition, based on our immune analysis, some GPI-anchored proteins are expressed during infection and therefore, they might serve as good candidates for the development of new diagnostic methods.
Collapse
Affiliation(s)
- Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Igor Godinho Portis
- Laboratorio de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz Roberto Basso Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, Universidade de São Paulo (FMRP/USP), Ribeirão Preto, SP, Brazil
| | - Roberto Martinez
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maristela Pereira
- Laboratorio de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratorio de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Paulo Sergio Rodrigues Coelho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, Universidade de São Paulo (FMRP/USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Santos SS, Rampazo E, Taborda CP, Nosanchuk JD, Boscardin SB, Almeida SR. Targeting the P10 Peptide in Maturing Dendritic Cells via the DEC205 Receptor In Vivo: A New Therapeutic Strategy against Paracoccidioidomycosis. J Fungi (Basel) 2023; 9:jof9050548. [PMID: 37233259 DOI: 10.3390/jof9050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM.
Collapse
Affiliation(s)
- Suelen S Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Eline Rampazo
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Silvia B Boscardin
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Sandro R Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
8
|
Santos Júnior SRD, Barbalho FV, Nosanchuk JD, Amaral AC, Taborda CP. Biodistribution and Adjuvant Effect of an Intranasal Vaccine Based on Chitosan Nanoparticles against Paracoccidioidomycosis. J Fungi (Basel) 2023; 9:jof9020245. [PMID: 36836359 PMCID: PMC9964167 DOI: 10.3390/jof9020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 02/15/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a fungal infection caused by the thermodimorphic Paracoccidioides sp. PCM mainly affects the lungs, but, if it is not contained by the immune response, the disease can spread systemically. An immune response derived predominantly from Th1 and Th17 T cell subsets facilitates the elimination of Paracoccidioides cells. In the present work, we evaluated the biodistribution of a prototype vaccine based on the immunodominant and protective P. brasiliensis P10 peptide within chitosan nanoparticles in BALB/c mice infected with P. brasiliensis strain 18 (Pb18). The generated fluorescent (FITC or Cy5.5) or non-fluorescent chitosan nanoparticles ranged in diameter from 230 to 350 nm, and both displayed a Z potential of +20 mV. Most chitosan nanoparticles were found in the upper airway, with smaller amounts localized in the trachea and lungs. The nanoparticles complexed or associated with the P10 peptide were able to reduce the fungal load, and the use of the chitosan nanoparticles reduced the necessary number of doses to achieve fungal reduction. Both vaccines were able to induce a Th1 and Th17 immune response. These data demonstrates that the chitosan P10 nanoparticles are an excellent candidate vaccine for the treatment of PCM.
Collapse
Affiliation(s)
- Samuel Rodrigues Dos Santos Júnior
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
- Correspondence: (S.R.D.S.J.); (C.P.T.)
| | - Filipe Vieira Barbalho
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
| | - Joshua D. Nosanchuk
- Department of Medicine and Department of Microbiology and Immunology—The Bronx, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Andre Correa Amaral
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605050, Brazil
| | - Carlos Pelleschi Taborda
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
- Laboratory of Medical Mycology, School of Medicine/IMT/SP-LIM53, University of São Paulo, São Paulo 05403000, Brazil
- Correspondence: (S.R.D.S.J.); (C.P.T.)
| |
Collapse
|
9
|
Rocha OB, e Silva KSF, Moraes D, Borges CL, Soares CMDA, Pereira M. Exposure of Paracoccidioides brasiliensis to Mebendazole Leads to Inhibition of Fungal Energy Production. Antibiotics (Basel) 2023; 12:antibiotics12020206. [PMID: 36830117 PMCID: PMC9951877 DOI: 10.3390/antibiotics12020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a fungal disease caused by organisms of the genus Paracoccidioides spp. The treatment of the disease is lengthy and includes several adverse effects. Various methodologies focus on the search for new treatments against fungal disease, including the repositioning of drugs. Our group showed the fungicidal effect of mebendazole in P. brasiliensis cells. Thus, understanding the effect of exposing fungal cells to mebendazole is significant for further studies in order to demonstrate it as a potential drug for the treatment of PCM. A proteomic analysis of P. brasiliensis exposed to mebendazole was carried out. Analyses showed that exposure strongly affected the pathways related to energy production, such as glycolysis, fermentation, and the electron transport chain. The quantification of adenosine triphosphate (ATP) and mitochondrial activity demonstrated that the drug alters the electron chain, resulting in an increase in oxidative stress. Enzymes such as superoxide dismutase (SOD) and cytochrome c oxidase (Cyt C) were repressed in cells exposed to mebendazole. The concentration of ethanol produced by the cells under treatment demonstrated that the attempt to produce energy through fermentation is also arrested. Thus, the drug inhibits fungal growth through changes in energy metabolism, making it a promising compound for use in the treatment of PCM.
Collapse
|
10
|
Silva LC, Dos Santos Filho RF, de Oliveira AA, Martins FT, Cunha S, de Almeida Soares CM, Pereira M. 3-phenacylideneoxindoles as a new class of antifungal compounds against Paracoccidioides spp. Future Microbiol 2023; 18:93-105. [PMID: 36661071 DOI: 10.2217/fmb-2022-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aims: Considering the need to identify new compounds with antifungal action, the activity of five 3-phenacylideneoxindoles compounds was evaluated. Materials & methods: The compounds were synthesized, and their antifungal activity was elucidated through minimum inhibitory concentration tests and interaction assay with other antifungals. Potential targets of compounds were predicted in silico. Results: 3-phenacylideneoxindoles compounds inhibited fungal growth with minimum inhibitory concentration and minimum fungicidal concentration ranging from 3.05 to 12.26 μM. The compounds demonstrated high selectivity index and presented a synergistic effect with itraconazole. In silico prediction revealed the pentafunctional AROM polypeptide, enolase, superoxide dismutase, catalase and kinases as proteins targets of the compound 4a. Conclusion: The results demonstrate that 3-phenacylideneoxindoles is a potential new class of antifungal compounds for paracoccidioidomycosis treatment.
Collapse
Affiliation(s)
- Lívia C Silva
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | | | - Amanda A de Oliveira
- Institute of Tropical Pathology & Public Health, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Felipe T Martins
- Chemistry institute, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Silvio Cunha
- Chemistry institute, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil
| | | | - Maristela Pereira
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| |
Collapse
|
11
|
Hahn RC, Hagen F, Mendes RP, Burger E, Nery AF, Siqueira NP, Guevara A, Rodrigues AM, de Camargo ZP. Paracoccidioidomycosis: Current Status and Future Trends. Clin Microbiol Rev 2022; 35:e0023321. [PMID: 36074014 PMCID: PMC9769695 DOI: 10.1128/cmr.00233-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM), initially reported in 1908 in the city of São Paulo, Brazil, by Adolpho Lutz, is primarily a systemic and neglected tropical mycosis that may affect individuals with certain risk factors around Latin America, especially Brazil. Paracoccidioides brasiliensis sensu stricto, a classical thermodimorphic fungus associated with PCM, was long considered to represent a monotypic taxon. However, advances in molecular taxonomy revealed several cryptic species, including Paracoccidioides americana, P. restrepiensis, P. venezuelensis, and P. lutzii, that show a preference for skin and mucous membranes, lymph nodes, and respiratory organs but can also affect many other organs. The classical diagnosis of PCM benefits from direct microscopy culture-based, biochemical, and immunological assays in a general microbiology laboratory practice providing a generic identification of the agents. However, molecular assays should be employed to identify Paracoccidioides isolates to the species level, data that would be complemented by epidemiological investigations. From a clinical perspective, all probable and confirmed cases should be treated. The choice of treatment and its duration must be considered, along with the affected organs, process severity, history of previous treatment failure, possibility of administering oral medication, associated diseases, pregnancy, and patient compliance with the proposed treatment regimen. Nevertheless, even after appropriate treatment, there may be relapses, which generally occur 5 years after the apparent cure following treatment, and also, the mycosis may be confused with other diseases. This review provides a comprehensive and critical overview of the immunopathology, laboratory diagnosis, clinical aspects, and current treatment of PCM, highlighting current issues in the identification, treatment, and patient follow-up in light of recent Paracoccidioides species taxonomic developments.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Rinaldo Poncio Mendes
- Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Faculdade de Medicina, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Federal University of Alfenasgrid.411180.d (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Andreia Ferreira Nery
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Nathan Pereira Siqueira
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Armando Guevara
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Paracoccidioidomycosis: What We Know and What Is New in Epidemiology, Diagnosis, and Treatment. J Fungi (Basel) 2022; 8:jof8101098. [PMID: 36294662 PMCID: PMC9605487 DOI: 10.3390/jof8101098] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis endemic to Latin America caused by thermodimorphic fungi of the genus Paracoccidioides. In the last two decades, enhanced understanding of the phylogenetic species concept and molecular variations has led to changes in this genus’ taxonomic classification. Although the impact of the new species on clinical presentation and treatment remains unclear, they can influence diagnosis when serological methods are employed. Further, although the infection is usually acquired in rural areas, the symptoms may manifest years or decades later when the patient might be living in the city or even in another country outside the endemic region. Brazil accounts for 80% of PCM cases worldwide, and its incidence is rising in the northern part of the country (Amazon region), owing to new settlements and deforestation, whereas it is decreasing in the south, owing to agriculture mechanization and urbanization. Clusters of the acute/subacute form are also emerging in areas with major human intervention and climate change. Advances in diagnostic methods (molecular and immunological techniques and biomarkers) remain scarce, and even the reference center’s diagnostics are based mainly on direct microscopic examination. Classical imaging findings in the lungs include interstitial bilateral infiltrates, and eventually, enlargement or calcification of adrenals and intraparenchymal central nervous system lesions are also present. Besides itraconazole, cotrimoxazole, and amphotericin B, new azoles may be an alternative when the previous ones are not tolerated, although few studies have investigated their use in treating PCM.
Collapse
|
13
|
Barros BCSC, Almeida BR, Barros DTL, Toledo MS, Suzuki E. Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. J Fungi (Basel) 2022; 8:jof8060548. [PMID: 35736031 PMCID: PMC9225092 DOI: 10.3390/jof8060548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes. This review will focus on the response of respiratory epithelial cells to two human fungal pathogens that cause systemic mycoses: Aspergillus and Paracoccidioides. Some of the host epithelial cell receptors and signaling pathways, in addition to fungal adhesins or other molecules that are responsible for fungal adhesion, invasion, or induction of cytokine secretion will be addressed in this review.
Collapse
Affiliation(s)
- Bianca C. S. C. Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Bruna R. Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Debora T. L. Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Marcos S. Toledo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Leal Prado, São Paulo 04023-062, SP, Brazil;
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
- Correspondence:
| |
Collapse
|
14
|
Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022; 11:pathogens11050569. [PMID: 35631090 PMCID: PMC9143782 DOI: 10.3390/pathogens11050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic mycoses have been viewed as neglected diseases and they are responsible for deaths and disabilities around the world. Rapid, low-cost, simple, highly-specific and sensitive diagnostic tests are critical components of patient care, disease control and active surveillance. However, the diagnosis of fungal infections represents a great challenge because of the decline in the expertise needed for identifying fungi, and a reduced number of instruments and assays specific to fungal identification. Unfortunately, time of diagnosis is one of the most important risk factors for mortality rates from many of the systemic mycoses. In addition, phenotypic and biochemical identification methods are often time-consuming, which has created an increasing demand for new methods of fungal identification. In this review, we discuss the current context of the diagnosis of the main systemic mycoses and propose alternative approaches for the identification of new targets for fungal pathogens, which can help in the development of new diagnostic tests.
Collapse
|
15
|
Bioluminescence imaging in Paracoccidioides spp.: A tool to monitor the infectious processes. Microbes Infect 2022; 24:104975. [DOI: 10.1016/j.micinf.2022.104975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/22/2022]
|
16
|
Singulani JL, Scorzoni L, da Silva PB, Nazaré AC, Polaquini CR, Baveloni FG, Chorilli M, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJ. Antifungal activity and toxicity of an octyl gallate-loaded nanostructured lipid system on cells and nonmammalian animals. Future Microbiol 2022; 17:281-291. [PMID: 35152707 DOI: 10.2217/fmb-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Octyl gallate (OG) loaded into a nanostructured lipid system (NLS) was tested for antifungal activity and in vitro and in vivo toxicity. Methods & Results: The features of NLS-OG were analyzed by dynamic light scattering and showed adequate size (132.1 nm) and homogeneity (polydispersity index = 0.200). OG was active against Paraccoccidioides spp., and NLS-OG did not affect antifungal activity. NLS-OG demonstrated reduced toxicity to lung cells and zebrafish embryos compared with OG, whereas NLS was toxic to hepatic cells. OG and NLS-OG did not show toxicity in a Galleria mellonella model at 20 mg/kg. All toxic concentrations were superior to MIC (antifungal activity). Conclusion: These results indicate good anti-Paracoccidioides activity and low toxicity of NLS-OG.
Collapse
Affiliation(s)
- Junya L Singulani
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Programa de Pós-Graduação em Enfermagem, Guarulhos University, Guarulhos, São Paulo, 07023-070, Brazil
| | - Patricia B da Silva
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Ana C Nazaré
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Carlos R Polaquini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Franciele G Baveloni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Luis O Regasini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Ana M Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Maria Js Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
17
|
Felipe CRA, Silva AD, Moreira Guimarães Penido MG. Disseminated Paracoccidioidomycosis in a Kidney Transplant Recipient. Cureus 2021; 13:e19007. [PMID: 34820246 PMCID: PMC8607338 DOI: 10.7759/cureus.19007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 11/05/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic fungal infection in Latin America, which manifests as an acute or chronic form and is more frequent in adult males. It is caused by Paracoccidioides brasiliensis or Paracoccidioides lutzii, which are thermodimorphic fungi. The disease can present as a severe and disseminated form involving the lungs, skin, lymph nodes, spleen, liver, and lymphoid organs of the gastrointestinal tract. Most of the primary infections are subclinical, and the cell-mediated immune response contains the infection. It is rare in transplant patients, and there are few cases described in the literature. In solid organ transplant patients, it usually results from the reactivation of a latent infection, manifesting itself after a few years of transplantation with frequent pulmonary and skin involvement. PCM is an endemic infection in Brazil; however, as it is not classified as a notifiable disease, there is no accurate database on its incidence, and case reports are important sources of information. Clinical disease in kidney transplant patients is rare and has a high mortality rate. In this scope, the present clinical case reports the challenges of the clinical management of disseminated PCM caused by Paracoccidioides brasiliensis in a kidney transplant recipient who used immunosuppressive drugs and was treated with Itraconazole.
Collapse
Affiliation(s)
| | - Aline D Silva
- Nephrology Center, Santa Casa de Belo Horizonte Hospital, Belo Horizonte, BRA
| | | |
Collapse
|
18
|
Oliveira LN, de Sousa Lima P. Etymologia: Paracoccidioides. Emerg Infect Dis 2021. [DOI: 10.3201/eid2709.et2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Roberto T, de Carvalho J, Beale M, Hagen F, Fisher M, Hahn R, de Camargo Z, Rodrigues A. Exploring genetic diversity, population structure, and phylogeography in Paracoccidioides species using AFLP markers. Stud Mycol 2021; 100:100131. [PMID: 34934463 PMCID: PMC8645518 DOI: 10.1016/j.simyco.2021.100131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic fungal infection acquired after inhalation of Paracoccidioides propagules from the environment. The main agents include members of the P. brasiliensis complex (phylogenetically-defined species S1, PS2, PS3, and PS4) and P. lutzii. DNA-sequencing of protein-coding loci (e.g., GP43, ARF, and TUB1) is the reference method for recognizing Paracoccidioides species due to a lack of robust phenotypic markers. Thus, developing new molecular markers that are informative and cost-effective is key to providing quality information to explore genetic diversity within Paracoccidioides. We report using new amplified fragment length polymorphism (AFLP) markers and mating-type analysis for genotyping Paracoccidioides species. The bioinformatic analysis generated 144 in silico AFLP profiles, highlighting two discriminatory primer pairs combinations (#1 EcoRI-AC/MseI-CT and #2 EcoRI-AT/MseI-CT). The combinations #1 and #2 were used in vitro to genotype 165 Paracoccidioides isolates recovered from across a vast area of South America. Considering the overall scored AFLP markers in vitro (67-87 fragments), the values of polymorphism information content (PIC = 0.3345-0.3456), marker index (MI = 0.0018), effective multiplex ratio (E = 44.6788-60.3818), resolving power (Rp = 22.3152-34.3152), discriminating power (D = 0.5183-0.5553), expected heterozygosity (H = 0.4247-0.4443), and mean heterozygosity (H avp = 0.00002-0.00004), demonstrated the utility of AFLP markers to speciate Paracoccidioides and to dissect both deep and fine-scale genetic structures. Analysis of molecular variance (AMOVA) revealed that the total genetic variance (65-66 %) was due to variability among P. brasiliensis complex and P. lutzii (PhiPT = 0.651-0.658, P < 0.0001), supporting a highly structured population. Heterothallism was the exclusive mating strategy, and the distributions of MAT1-1 or MAT1-2 idiomorphs were not significantly skewed (1:1 ratio) for P. brasiliensis s. str. (χ2 = 1.025; P = 0.3113), P. venezuelensis (χ2 = 0.692; P = 0.4054), and P. lutzii (χ2 = 0.027; P = 0.8694), supporting random mating within each species. In contrast, skewed distributions were found for P. americana (χ2 = 8.909; P = 0.0028) and P. restrepiensis (χ2 = 4.571; P = 0.0325) with a preponderance of MAT1-1. Geographical distributions confirmed that P. americana, P. restrepiensis, and P. lutzii are more widespread than previously thought. P. brasiliensis s. str. is by far the most widely occurring lineage in Latin America countries, occurring in all regions of Brazil. Our new DNA fingerprint assay proved to be rapid, reproducible, and highly discriminatory, to give insights into the taxonomy, ecology, and epidemiology of Paracoccidioides species, guiding disease-control strategies to mitigate PCM.
Collapse
Affiliation(s)
- T.N. Roberto
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - J.A. de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - M.A. Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - F. Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, People's Republic of China
| | - M.C. Fisher
- MRC Center for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - R.C. Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, 78060900, Brazil
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá, 78048902, Brazil
| | - Z.P. de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| |
Collapse
|
20
|
Etymologia: Paracoccidioides. Emerg Infect Dis 2021. [PMCID: PMC8386776 DOI: 10.3201/eid2709.210461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Lima RM, Freitas E Silva KS, Silva LDC, Ribeiro JFR, Neves BJ, Brock M, Soares CMDA, da Silva RA, Pereira M. A structure-based approach for the discovery of inhibitors against methylcitrate synthase of Paracoccidioides lutzii. J Biomol Struct Dyn 2021; 40:9361-9373. [PMID: 34060981 DOI: 10.1080/07391102.2021.1930584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raisa Melo Lima
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Lívia do Carmo Silva
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Bruno Junior Neves
- Faculty of Pharmacy, Laboratory for Molecular Modeling and Drug Design, Federal University of Goiás, Goiânia, Brazil
| | - Matthias Brock
- School of Life Science, Fungal Biology Group, University of Nottingham, Nottingham, UK
| | | | - Roosevelt Alves da Silva
- Collaborative Nucleus of Biosystems, Institute of Exact Sciences, Federal University of Jataí, Jataí, Brazil
| | - Maristela Pereira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
22
|
Coimbra-Campos LMC, Silva WN, Baltazar LM, Costa PAC, Prazeres PHDM, Picoli CC, Costa AC, Rocha BGS, Santos GSP, Oliveira FMS, Pinto MCX, Amorim JH, Azevedo VAC, Souza DG, Russo RC, Resende RR, Mintz A, Birbrair A. Circulating Nestin-GFP + Cells Participate in the Pathogenesis of Paracoccidioides brasiliensis in the Lungs. Stem Cell Rev Rep 2021; 17:1874-1888. [PMID: 34003465 DOI: 10.1007/s12015-021-10181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.
Collapse
Affiliation(s)
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila M Baltazar
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício M S Oliveira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle G Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
23
|
de Oliveira SAM, Reis JN, Catão E, Amaral AC, Souza ACO, Ribeiro AM, Faccioli LH, Carneiro FP, Marina CLF, Bürgel PH, Fernandes L, Tavares AH, Bocca AL. β2 Integrin-Mediated Susceptibility to Paracoccidioides brasiliensis Experimental Infection in Mice. Front Cell Infect Microbiol 2021; 11:622899. [PMID: 33796477 PMCID: PMC8007971 DOI: 10.3389/fcimb.2021.622899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The earliest interaction between macrophages and Paracoccidioides brasiliensis is particularly important in paracoccidioidomycosis (PCM) progression, and surface proteins play a central role in this process. The present study investigated the contribution of β2 integrin in P. brasiliensis-macrophage interaction and PCM progression. We infected β2-low expression (CD18low) and wild type (WT) mice with P. brasiliensis 18. Disease progression was evaluated for fungal burden, lung granulomatous lesions, nitrate levels, and serum antibody production. Besides, the in vitro capacity of macrophages to internalize and kill fungal yeasts was investigated. Our results revealed that CD18low mice infected with Pb18 survived during the time analyzed; their lungs showed fewer granulomas, a lower fungal load, lower levels of nitrate, and production of high levels of IgG1 in comparison to WT animals. Our results revealed that in vitro macrophages from CD18low mice slowly internalized yeast cells, showing a lower fungal burden compared to WT cells. The migration capacity of macrophages was compromised and showed a higher intensity in the lysosome signal when compared with WT mice. Our data suggest that β2 integrins play an important role in fungal survival inside macrophages, and once phagocytosed, the macrophage may serve as a protective environment for P. brasiliensis.
Collapse
Affiliation(s)
- Stephan Alberto Machado de Oliveira
- Molecular Pathology Graduation Course, Faculty of Medicine, University of Brasilia, Brasilia, Brazil.,Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Janayna Nunes Reis
- Molecular Pathology Graduation Course, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Elisa Catão
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Andre Correa Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Brazil
| | - Ana Camila Oliveira Souza
- Molecular Pathology Graduation Course, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Alice Melo Ribeiro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Lúcia Helena Faccioli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Clara Luna Freitas Marina
- Molecular Biology Graduation Course, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Pedro Henrique Bürgel
- Molecular Biology Graduation Course, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | | | | | - Anamelia Lorenzetti Bocca
- Molecular Pathology Graduation Course, Faculty of Medicine, University of Brasilia, Brasilia, Brazil.,Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,Molecular Biology Graduation Course, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
24
|
Monocyte-Derived Dendritic Cells Can Revert In Vitro Antigen-Specific Cellular Anergy in Active Human Paracoccidioidomycosis. J Fungi (Basel) 2021; 7:jof7030201. [PMID: 33802081 PMCID: PMC8000053 DOI: 10.3390/jof7030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/03/2022] Open
Abstract
We investigated the in vitro effects of two Paracoccidioides brasiliensis antigens on monocyte-derived dendritic cells (moDCs) from patients with paracoccidioidomycosis (PCM). MoDCs from patients with active or treated PCM and non-PCM subjects were generated, stimulated with TNF-α, and P. brasiliensis antigens, 43 kDa glycoprotein (gp43) and cell-free antigen (CFA), and analyzed by flow cytometry and enzyme-linked immunosorbent assays (ELISA). Our data revealed that patients with PCM had a high frequency of HLA-DR+ cells, but the treated group had more CD86+ cells with increased IL-12p40. Patients with active PCM had more CD80+ moDCs, and as a novel finding, large amounts of chemokine (C-C motif) ligand 18 (CCL18) in the supernatants from their in vitro moDC cultures. Both gp43- and CFA-stimulated moDCs from the patients with PCM successfully reverted the in vitro antigen-specific anergy, inducing a proliferative response. However, CFA-stimulated moDCs led to higher lymphoproliferation, with increased IFN-γ and TNF-α in the cells from the patients with active PCM compared with gp43. These original results combined with constant IL-10 and increased IL-12p40 levels suggest that a more complex antigen, such as CFA, may be a better inducer of the protective Th1 immune response than purified gp43 is, and a suitable target for future studies on anti-P. brasiliensis dendritic cell (DC)-based vaccines.
Collapse
|
25
|
Wagner G, Moertl D, Glechner A, Mayr V, Klerings I, Zachariah C, Van den Nest M, Gartlehner G, Willinger B. Paracoccidioidomycosis Diagnosed in Europe-A Systematic Literature Review. J Fungi (Basel) 2021; 7:157. [PMID: 33672212 PMCID: PMC7926554 DOI: 10.3390/jof7020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis that is endemic in geographical regions of Central and South America. Cases that occur in nonendemic regions of the world are imported through migration and travel. Due to the limited number of cases in Europe, most physicians are not familiar with paracoccidioidomycosis and its close clinical and histopathological resemblance to other infectious and noninfectious disease. To increase awareness of this insidious mycosis, we conducted a systematic review to summarize the evidence on cases diagnosed and reported in Europe. We searched PubMed and Embase to identify cases of paracoccidioidomycosis diagnosed in European countries. In addition, we used Scopus for citation tracking and manually screened bibliographies of relevant articles. We conducted dual abstract and full-text screening of references yielded by our searches. To identify publications published prior to 1985, we used the previously published review by Ajello et al. Overall, we identified 83 cases of paracoccidioidomycosis diagnosed in 11 European countries, published in 68 articles. Age of patients ranged from 24 to 77 years; the majority were male. Time from leaving the endemic region and first occurrence of symptoms considerably varied. Our review illustrates the challenges of considering systemic mycosis in the differential diagnosis of people returning or immigrating to Europe from endemic areas. Travel history is important for diagnostic-workup, though it might be difficult to obtain due to possible long latency period of the disease.
Collapse
Affiliation(s)
- Gernot Wagner
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; (A.G.); (V.M.); (I.K.); (C.Z.); (G.G.)
| | - Deddo Moertl
- Clinical Department of Internal Medicine III, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Dunant-Platz 1, 3100 St. Poelten, Austria;
| | - Anna Glechner
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; (A.G.); (V.M.); (I.K.); (C.Z.); (G.G.)
| | - Verena Mayr
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; (A.G.); (V.M.); (I.K.); (C.Z.); (G.G.)
| | - Irma Klerings
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; (A.G.); (V.M.); (I.K.); (C.Z.); (G.G.)
| | - Casey Zachariah
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; (A.G.); (V.M.); (I.K.); (C.Z.); (G.G.)
| | - Miriam Van den Nest
- Department for Infection Control and Hospital Epidemiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Gerald Gartlehner
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; (A.G.); (V.M.); (I.K.); (C.Z.); (G.G.)
- RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709-2194, USA
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| |
Collapse
|
26
|
Zonta YR, Dezen ALO, Della Coletta AM, Yu KST, Carvalho L, Dos Santos LA, Deprá IDC, Kratofil RM, Willson ME, Zbytnuik L, Kubes P, Ximenes VF, Dias-Melicio LA. Paracoccidioides brasiliensis Releases a DNase-Like Protein That Degrades NETs and Allows for Fungal Escape. Front Cell Infect Microbiol 2021; 10:592022. [PMID: 33643928 PMCID: PMC7902888 DOI: 10.3389/fcimb.2020.592022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic fungal disease, considered endemic in Latin America. Its etiological agents, fungi of the Paracoccidioides complex, have restricted geographic habitat, conidia as infecting form, and thermo-dimorphic characteristics. Polymorphonuclear neutrophils (PMNs) are responsible for an important defense response against fungus, releasing Neutrophil Extracellular Traps (NETs), which can wrap and destroy the yeasts. However, it has been described that some pathogens are able to evade from these DNA structures by releasing DNase as an escape mechanism. As different NETs patterns have been identified in PMNs cultures challenged with different isolates of Paracoccidioides brasiliensis, the general objective of this study was to identify if different patterns of NETs released by human PMNs challenged with Pb18 (virulent) and Pb265 (avirulent) isolates would be correlated with fungal ability to produce a DNase-like protein. To this end, PMNs from healthy subjects were isolated and challenged in vitro with both fungal isolates. The production, release, and conformation of NETs in response to the fungi were evaluated by Confocal Microscopy, Scanning Microscopy, and NETs Quantification. The identification of fungal DNase production was assessed by DNase TEST Agar, and the relative gene expression for hypothetical proteins was investigated by RT-qPCR, whose genes had been identified in the fungal genome in the GenBank (PADG_11161 and PADG_08285). It was possible to verify the NETs release by PMNs, showing different NETs formation when in contact with different isolates of the fungus. The Pb18 isolate induced the release of looser, larger, and more looking like degraded NETs compared to the Pb265 isolate, which induced the release of denser and more compact NETs. DNase TEST Agar identified the production of a DNase-like protein, showing that only Pb18 showed the capacity to degrade DNA in these plates. Besides that, we were able to identify that both PADG_08528 and PADG_11161 genes were more expressed during interaction with neutrophil by the virulent isolate, being PADG_08528 highly expressed in these cultures, demonstrating that this gene could have a greater contribution to the production of the protein. Thus, we identified that the virulent isolate is inducing more scattered and loose NETs, probably by releasing a DNase-like protein. This factor could be an important escape mechanism used by the fungus to escape the NETs action.
Collapse
Affiliation(s)
- Yohan Ricci Zonta
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Laura Ortega Dezen
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Amanda Manoel Della Coletta
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Kaio Shu Tsyr Yu
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Larissa Carvalho
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Leandro Alves Dos Santos
- Confocal Microscopy Laboratory, UNIPEX - Experimental Research Unity, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Igor de Carvalho Deprá
- Laboratory of Genetic Basis of Endocrinological Diseases, Experimental Research Unity (UNIPEX), Sector 5, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rachel M Kratofil
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michelle Elizabeth Willson
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lori Zbytnuik
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Luciane Alarcão Dias-Melicio
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,Confocal Microscopy Laboratory, UNIPEX - Experimental Research Unity, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,Department of Pathology, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
27
|
de Castro LF, de Araújo Mathias K, Nunes JV, Galastri ALB, da Silva DHL, Longhi LNA, de Souza Lima Blotta MH, Mamoni RL. Ethanol modulates the effector functions of human monocyte-derived macrophages in response to Paracoccidioides brasiliensis yeast cells. Med Mycol 2021; 59:773-783. [PMID: 33550419 DOI: 10.1093/mmy/myaa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
We aimed to investigate the effects of ethanol and its metabolites (β-hydroxybutyrate and sodium acetate) in the effector functions of macrophages in response to Paracoccidioides brasiliensis yeast cells and to determine their influence in the development of the adaptive response. Purified peripheral blood monocytes were differentiated into macrophages and were treated with ethanol, β-hydroxybutyrate, and sodium acetate, and stimulated with P. brasiliensis yeast cells and evaluated for their phenotypic characteristics, functional activity, and capability to induce T cells activation/differentiation. We found that the ethanol treatment diminished the expression of HLA-AB, HLA-DR, CD80, and CD86, modulating the expression of dectin-1, as well as Syk phosphorylation. The ethanol treatment increased the phagocytic activity, expression of CD206, and IL-10 production; however, reduced ROS production, fungicidal activity, caspase-1 cleavage, and IL-1β and IL-6 production. Our data also showed that the presence of ethanol reduced the differentiation of Th1 and Th17 cells and increased the frequency of Th2 cells. Our results indicated that ethanol exposure could suppress effector function of macrophages, possibly leading to the polarization of M2 macrophages. The ethanol modulates the expression of costimulatory and antigen-presentation molecules and interferes with the NLRP3 inflammasome. Altogether, these alterations affect the development of the adaptive response, decreasing the frequency of IL-17, IL-22, and IFN- γ producing cells, and increasing the frequency of IL-4 producing cells. Therefore, exposure to ethanol can impair the capability of macrophages to exert their effector functions and activate the acquired response related to resistance to P. brasiliensis infection.
Collapse
Affiliation(s)
- Lívia Furquim de Castro
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Kamila de Araújo Mathias
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí (FMJ), 13202-550, Jundiaí, SP, Brazil
| | - Júlia Vieira Nunes
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí (FMJ), 13202-550, Jundiaí, SP, Brazil
| | | | - Dennis Henrique Leandro da Silva
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Larissa Nara Alegrini Longhi
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | | | - Ronei Luciano Mamoni
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil.,Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí (FMJ), 13202-550, Jundiaí, SP, Brazil
| |
Collapse
|
28
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
29
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|
30
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
31
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
32
|
Melanin as a Virulence Factor in Different Species of Genus Paracoccidioides. J Fungi (Basel) 2020; 6:jof6040291. [PMID: 33213028 PMCID: PMC7712084 DOI: 10.3390/jof6040291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a granulomatous systemic mycosis caused by the thermo-dimorphic fungi of the genus Paracoccidioides. Melanin production by fungi can affect their pathogenesis and virulence. This study evaluates the production of melanin by different isolates of genus Paracoccidioides and examines how the presence of this polymer affects yeast cell phagocytosis, as well as laccase enzyme production. The results obtained showed that the isolates of genus Paracoccidioides: P. lutzii (Pb01, Pb66, ED01, Pb1578, and Pb8334), P. restrepiensis (PS3-Pb60855), P. brasiliensis (S1-Pb18), and P. americana (PS2-Pbcão) produce melanin in the presence of L-3,4-dihydroxyphenylalanine (L-DOPA). Phagocytosis assays were carried out with peritoneal macrophages from C57Bl/6 mice that were challenged with Pb18, Pb60855, and Pb01. We observed that melanin interferes with phagocytosis in the presence or absence of complement or heat-inactivated serum. This article confirms that different species of the genus Paracoccidioides produce melanin in different magnitudes and that the polymer functions as a virulence factor.
Collapse
|
33
|
Cataño J, Porras J. Adrenal Paracoccidioidomycosis. Am J Trop Med Hyg 2020; 103:935-936. [PMID: 32896237 PMCID: PMC7470546 DOI: 10.4269/ajtmh.20-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Juan Cataño
- Internal Medicine Department, Infectious Diseases Section, University of Antioquia School of Medicine, Medellín, Colombia
| | - Jessica Porras
- Infectious Diseases Section, CES Clinic, Medellín, Colombia
| |
Collapse
|
34
|
Costa MDC, de Carvalho MM, Sperandio FF, Ribeiro Junior NV, Hanemann JAC, Pigossi SC, de Carli ML. Oral Paracoccidioidomycosis affecting women: A systematic review. Mycoses 2020; 64:108-122. [PMID: 33031605 DOI: 10.1111/myc.13194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Paracoccidioidomycosis (PCM) is an infection caused by fungi of the genus Paracoccidioides and is marked by a strong predilection for men; nevertheless, some women have had developed PCM and have presented oral involvement by the disease. OBJECTIVES To review all published cases until August 2020 of oral PCM in women, with emphasis on the presence of systemic changes, deleterious habits (tobacco and alcohol) and oral manifestation features through a systematic review. METHODS Observational studies (both prospective and retrospective) and case reports indexed in the Embase, PubMed, Scopus, Web of Science and LIVIVO databases were selected by two reviewers in a two-phase process following the pre-established PICOS criteria. RESULTS Twenty-five studies met the eligibility criteria and were selected for qualitative synthesis, of which 72 participants were enrolled. Brazilian White women between 40 and 50 years were the most affected and social history revealed them to be housewives or rural workers. Fifteen women (33.3% of the informed cases) presented any systemic change at the time of PCM diagnosis, namely pregnancy, HIV infection and/or depression. Moriform stomatitis was predominant and affected preferentially the gingivae and alveolar processes in the form of a single painful lesion. Most patients were treated with sulfamethoxazole + trimethoprim or itraconazole. CONCLUSIONS Oral PCM in women is rare; some cases showed systemic changes at the time of PCM diagnosis, namely HIV infection, pregnancy and depression. New studies should be conducted to elucidate the influence of systemic alterations on the development of oral PCM in women.
Collapse
Affiliation(s)
- Matheus de Castro Costa
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Milena Moraes de Carvalho
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Felipe Fornias Sperandio
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.,Oral Medicine Oral Pathology Resident, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Noé Vital Ribeiro Junior
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Suzane Cristina Pigossi
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Marina Lara de Carli
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, MG, Brazil
| |
Collapse
|
35
|
Intranasal Vaccine Using P10 Peptide Complexed within Chitosan Polymeric Nanoparticles as Experimental Therapy for Paracoccidioidomycosis in Murine Model. J Fungi (Basel) 2020; 6:jof6030160. [PMID: 32887256 PMCID: PMC7560165 DOI: 10.3390/jof6030160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a granulomatous fungal disease caused by the dimorphic fungal species of Paracoccidioides, which mainly affects the lungs. Modern strategies for the treatment and/or prevention of PCM are based on a Th1-type immune response, which is important for controlling the disease. One of the most studied candidates for a vaccine is the P10 peptide, derived from the 43 kDa glycoprotein of Paracoccidioides brasiliensis. In order to improve its immune modulatory effect, the P10 peptide was associated with a chitosan-conjugated nanoparticle. The nanoparticles presented 220 nm medium size, poly dispersion index (PDI) below 0.5, zeta potential of +20 mV and encapsulation efficiency around 90%. The nanoparticles' non-toxicity was verified by hemolytic test and cell viability using murine macrophages. The nanoparticles were stable and presented physicochemical characteristics desirable for biological applications, reducing the fungal load and the usual standard concentration of the peptide from 4 to 20 times.
Collapse
|
36
|
Longo LVG, Breyer CA, Novaes GM, Gegembauer G, Leitão NP, Octaviano CE, Toyama MH, de Oliveira MA, Puccia R. The Human Pathogen Paracoccidioides brasiliensis Has a Unique 1-Cys Peroxiredoxin That Localizes Both Intracellularly and at the Cell Surface. Front Cell Infect Microbiol 2020; 10:394. [PMID: 32850492 PMCID: PMC7417364 DOI: 10.3389/fcimb.2020.00394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus that causes systemic paracoccidioidomycosis, a granulomatous disease. The massive production of reactive oxygen species (ROS) by the host's cellular immune response is an essential strategy to restrain the fungal growth. Among the ROS, the hydroperoxides are very toxic antimicrobial compounds and fungal peroxidases are part of the pathogen neutralizing antioxidant arsenal against the host's defense. Among them, the peroxiredoxins are highlighted, since some estimates suggest that they are capable of decomposing most of the hydroperoxides generated in the host's mitochondria and cytosol. We presently characterized a unique P. brasiliensis 1-Cys peroxiredoxin (PbPrx1). Our results reveal that it can decompose hydrogen peroxide and organic hydroperoxides very efficiently. We showed that dithiolic, but not monothiolic compounds or heterologous thioredoxin reductant systems, were able to retain the enzyme activity. Structural analysis revealed that PbPrx1 has an α/β structure that is similar to the 1-Cys secondary structures described to date and that the quaternary conformation is represented by a dimer, independently of the redox state. We investigated the PbPrx1 localization using confocal microscopy, fluorescence-activated cell sorter, and immunoblot, and the results suggested that it localizes both in the cytoplasm and at the cell wall of the yeast and mycelial forms of P. brasiliensis, as well as in the yeast mitochondria. Our present results point to a possible role of this unique P. brasiliensis 1-Cys Prx1 in the fungal antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Larissa Valle Guilhen Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Alexandre Breyer
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Gabriela Machado Novaes
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Gregory Gegembauer
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natanael Pinheiro Leitão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla Elizabete Octaviano
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Finato AC, Almeida DF, Dos Santos AR, Nascimento DC, Cavalcante RS, Mendes RP, Soares CT, Paniago AMM, Venturini J. Evaluation of antifibrotic and antifungal combined therapies in experimental pulmonary paracoccidioidomycosis. Med Mycol 2020; 58:667-678. [PMID: 31578565 DOI: 10.1093/mmy/myz100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the Paracoccidioides genus. Most of the patients with chronic form present sequelae, like pulmonary fibrosis, with no effective treatment, leading to impaired lung functions. In the present study, we aimed to investigate the antifibrotic activity of three compounds: pentoxifylline (PTX), azithromycin (AZT), and thalidomide (Thal) in a murine model of pulmonary PCM treated with itraconazole (ITC) or cotrimoxazole (CMX). BALB/c mice were inoculated with P. brasiliensis (Pb) by the intratracheal route and after 8 weeks, they were submitted to one of the following six treatments: PTX/ITC, PTX/CMX, AZT/ITC, AZT/CMX, Thal/ITC, and Thal/CMX. After 8 weeks of treatment, the lungs were collected for determination of fungal burden, production of OH-proline, deposition of reticulin fibers, and pulmonary concentrations of cytokines and growth factors. Pb-infected mice treated with PTX/ITC presented a reduction in the pulmonary concentrations of OH-proline, associated with lower concentrations of interleukin (IL)-6, IL-17, and transforming growth factor (TGF)-β1 and higher concentrations of IL-10 compared to the controls. The Pb-infected mice treated with AZT/CMX exhibited decreased pulmonary concentrations of OH-proline associated with lower levels of TGF-β1, and higher levels of IL-10 compared controls. The mice treated with ITC/Thal and CMX/Thal showed intense weight loss, increased deposition of reticulin fibers, high pulmonary concentrations of CCL3, IFN-γ and VEGF, and decreased concentrations of IL-6, IL-1β, IL-17, and TGF-β1. In conclusion, our findings reinforce the antifibrotic role of PTX only when associated with ITC, and AZT only when associated with CMX, but Thal did not show any action upon addition.
Collapse
Affiliation(s)
- Angela C Finato
- Faculdade de Ciências. Universidade Estadual Paulista (UNESP), 17033-360 Bauru, SP, Brazil
| | - Débora F Almeida
- Faculdade de Ciências. Universidade Estadual Paulista (UNESP), 17033-360 Bauru, SP, Brazil.,Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| | - Amanda R Dos Santos
- Faculdade de Ciências. Universidade Estadual Paulista (UNESP), 17033-360 Bauru, SP, Brazil.,Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| | | | - Ricardo S Cavalcante
- Faculdade de Medicina de Botucatu. Universidade Estadual Paulista (UNESP), 18618-687 Botucatu, SP, Brazil
| | - Rinaldo P Mendes
- Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil.,Faculdade de Medicina de Botucatu. Universidade Estadual Paulista (UNESP), 18618-687 Botucatu, SP, Brazil
| | | | - Anamaria M M Paniago
- Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| | - James Venturini
- Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
38
|
Milhomem Cruz-Leite VR, Salem-Izacc SM, Novaes E, Neves BJ, de Almeida Brito W, O'Hara Souza Silva L, Paccez JD, Parente-Rocha JA, Pereira M, Maria de Almeida Soares C, Borges CL. Nitrogen Catabolite Repression in members of Paracoccidioides complex. Microb Pathog 2020; 149:104281. [PMID: 32585293 DOI: 10.1016/j.micpath.2020.104281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023]
Abstract
Paracoccidioides complex is a genus that comprises pathogenic fungi which are responsible by systemic disease Paracoccidioidomycosis. In host tissues, pathogenic fungi need to acquire nutrients in order to survive, making the uptake of nitrogen essential for their establishment and dissemination. Nitrogen utilization is employed by the alleviation of Nitrogen Catabolite Repression (NCR) which ensures the use of non-preferential or alternative nitrogen sources when preferential sources are not available. NCR is controlled by GATA transcription factors which act through GATA binding sites on promoter regions in NCR-sensitive genes. This process is responsible for encoding proteins involved with the scavenge, uptake and catabolism of a wide variety of non-preferential nitrogen sources. In this work, we predict the existence of AreA GATA transcription factor and feature the zinc finger domain by three-dimensional structure in Paracoccidioides. Furthermore, we demonstrate the putative genes involved with NCR response by means of in silico analysis. The gene expression profile under NCR conditions was evaluated. Demonstrating that P. lutzii supported transcriptional regulation and alleviated NCR in non-preferential nitrogen-dependent medium. The elucidation of NCR in members of Paracoccidioides complex will provide new knowledge about survival, dissemination and virulence for these pathogens with regard to nitrogen-scavenging strategies in the interactions of host-pathogens.
Collapse
Affiliation(s)
| | - Silvia Maria Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Evandro Novaes
- Escola de Agronomia, Setor de Melhoramento de Plantas, Universidade Federal de Goiás, Campus II Samambaia, Rodovia Goiânia a Nova Veneza, Goiás, Brazil.
| | - Bruno Junior Neves
- Centro Universitário de Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil.
| | - Wesley de Almeida Brito
- Centro Universitário de Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil; Universidade Estadual de Goiás - UEG - CCET, Anápolis, Goiás, Brazil.
| | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
39
|
Pagliari C, Kanashiro-Galo L, Jesus ACC, Saldanha MG, Sotto MN. Paracoccidioidomycosis: characterization of subpopulations of macrophages and cytokines in human mucosal lesions. Med Mycol 2020; 57:757-763. [PMID: 30418569 DOI: 10.1093/mmy/myy120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Mucosal lesions of paracoccidioidomycosis (PCM) are frequently described and clinically important. Macrophages are classified as M1 or M2. M1 are proinflammatory and M2 are related to chronicity. Dectin-1 recognizes β-glucan and plays an important role against fungal cells. The objective was to verify the presence of M1, M2, and dectin-1 and a possible correlation with Th1/Th2 cytokines in mucosal PCM lesions. In sum, 33 biopsies of oral PCM were submitted to histological and immunohistochemistry analysis, and positive cells were quantified. Eleven biopsies were characterized by compact granulomas (G1), 12 with loose granulomas (G2), and 10 with both kind of granulomas (G3). pSTAT-1 was equally increased in the three groups. G1 was characterized by an increased number of CD163+ macrophages. G2 presented similar number of arginase 1, iNOS, and CD163 expressing cells. G3 presented an increased number of cells expressing arginase 1 and CD163 over iNOS. G1 and G3 presented high number of cells expressing interferon (IFN)-γ; interleukin (IL) 5 was increased in G2 and G3; the expression of IL10 was similar among the three groups, and the expression of tumor necrosis factor (TNF)-α was higher in G3. G1 correlates to Th1 cytokines and pSTAT-1 and G2 correlates to Th2 cytokines. G3 presents both kinds of cytokines. We could not associate the expression of arginase-1, CD163, iNOS, and dectin-1 with the pattern of cytokines or kind of granuloma.
Collapse
Affiliation(s)
- C Pagliari
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - L Kanashiro-Galo
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - A C C Jesus
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - M G Saldanha
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA, Brazil
| | - M N Sotto
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Boniche C, Rossi SA, Kischkel B, Vieira Barbalho F, Nogueira D’Aurea Moura Á, Nosanchuk JD, Travassos LR, Pelleschi Taborda C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J Fungi (Basel) 2020; 6:jof6010031. [PMID: 32121415 PMCID: PMC7151209 DOI: 10.3390/jof6010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence in systemic fungal infections in humans has increased focus for the development of fungal vaccines and use of monoclonal antibodies. Invasive mycoses are generally difficult to treat, as most occur in vulnerable individuals, with compromised innate and adaptive immune responses. Mortality rates in the setting of our current antifungal drugs remain excessively high. Moreover, systemic mycoses require prolonged durations of antifungal treatment and side effects frequently occur, particularly drug-induced liver and/or kidney injury. The use of monoclonal antibodies with or without concomitant administration of antifungal drugs emerges as a potentially efficient treatment modality to improve outcomes and reduce chemotherapy toxicities. In this review, we focus on the use of monoclonal antibodies with experimental evidence on the reduction of fungal burden and prolongation of survival in in vivo disease models. Presently, there are no licensed monoclonal antibodies for use in the treatment of systemic mycoses, although the potential of such a vaccine is very high as indicated by the substantial promising results from several experimental models.
Collapse
Affiliation(s)
- Camila Boniche
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Suélen Andreia Rossi
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Brenda Kischkel
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Filipe Vieira Barbalho
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Ágata Nogueira D’Aurea Moura
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Luiz R. Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo 04021-001, Brazil;
| | - Carlos Pelleschi Taborda
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
- Correspondence:
| |
Collapse
|
41
|
Endemic Fungi in Transplant and Immunocompromised Hosts: Epidemiology, Diagnosis, Treatment, and Prevention. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Medina-Alarcón KP, L Singulani JD, Dutra LA, S Pitangui ND, Pereira-da-Silva MA, Dos Santos MB, Ayusso GM, Regasini LO, Soares CP, Chorilli M, Mendes-Giannini MJ, Fusco-Almeida AM. Antifungal activity of 2'-hydroxychalcone loaded in nanoemulsion against Paracoccidioides spp. Future Microbiol 2020; 15:21-33. [PMID: 32043361 DOI: 10.2217/fmb-2019-0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: This study aimed to evaluate the activity of 2'-hydroxychalcone-loaded in nanoemulsion (NLS + 2'chalc), the cytotoxic effect and toxicity against Paracoccidioides brasiliensis and Paracoccidioides lutzii using a zebrafish model. Materials & methods: Preparation and physical-chemical characterization of nanoemulsion (NLS) and NLS + 2'chalc were performed. MIC and minimum fungicide concentration, cytotoxicity and toxicity were also evaluated in the Danio rerio model. Results: NLS + 2'chalc showed fungicidal activity against Paracoccidioides spp. without cytotoxicity in MRC5 and HepG2 lines. It also had high selectivity index values and no toxicity in the zebrafish model based on MIC values. Conclusion: NLS + 2'chalc is a potential new alternative treatment for paracoccidioidomycosis.
Collapse
Affiliation(s)
- Kaila P Medina-Alarcón
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Junya de L Singulani
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Luiz A Dutra
- Structural Genomics Consortium, Research Institute-UNICAMP, Campinas, SP, Brasil
| | - Nayla de S Pitangui
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Marcelo A Pereira-da-Silva
- Institute of Physics of Sao Carlos, IFSC/USP, Sao Carlos, SP, Brazil.,Paulista Central University Center, UNICEP, Sao Carlos, SP, Brazil
| | - Mariana B Dos Santos
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brasil
| | - Gabriela M Ayusso
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brasil
| | - Luis O Regasini
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brasil
| | - Christiane P Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Department of Clinical Analysis, Cytology Laboratory, Araraquara, SP, Brazil
| | - Marlus Chorilli
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Maria Js Mendes-Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Ana M Fusco-Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| |
Collapse
|
43
|
Van Dyke MCC, Teixeira MM, Barker BM. Fantastic yeasts and where to find them: the hidden diversity of dimorphic fungal pathogens. Curr Opin Microbiol 2019; 52:55-63. [PMID: 31181385 PMCID: PMC11227906 DOI: 10.1016/j.mib.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
Abstract
Dimorphic fungal pathogens are a significant cause of human disease worldwide. Notably, the dimorphic fungal pathogens within the order Onygenales are considered primary pathogens, causing disease in healthy hosts. Current changes in taxonomy are underway due to advances in molecular phylogenetics, population genetics, and new emerging dimorphic fungal pathogens causing human disease. In this review, we highlight evolutionary relationships of dimorphic fungal pathogens that cause human disease within the order Onygenales and provide rationale to support increased investment in studies understanding the evolutionary relationships of these pathogens to improve rapid diagnostics, help identify mechanisms of antifungal resistance, understand adaptation to human host, and factors associated with virulence.
Collapse
Affiliation(s)
| | - Marcus M Teixeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States; Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States.
| |
Collapse
|
44
|
da Silva LS, Barbosa UR, Silva LDC, Soares CMA, Pereira M, da Silva RA. Identification of a new antifungal compound against isocitrate lyase of Paracoccidioides brasiliensis. Future Microbiol 2019; 14:1589-1606. [DOI: 10.2217/fmb-2019-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To perform virtual screening of compounds based on natural products targeting isocitrate lyase of Paracoccidioides brasiliensis. Materials & methods: Homology modeling and molecular dynamics simulations were applied in order to obtain conformational models for virtual screening. The selected hits were tested in vitro against enzymatic activity of ICL of the dimorphic fungus P. brasiliensis and growth of the Paracoccidioides spp. The cytotoxicity and selectivity index of the compounds were defined. Results & conclusion: Carboxamide, lactone and β-carboline moieties were identified as interesting chemical groups for the design of new antifungal compounds. The compounds inhibited ICL of the dimorphic fungus P. brasiliensis activity. The compound 4559339 presented minimum inhibitory concentration of 7.3 μg/ml in P. brasiliensis with fungicidal effect at this concentration. Thus, a new potential antifungal against P. brasiliensis is proposed.
Collapse
Affiliation(s)
- Luciane S da Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| | - Uessiley R Barbosa
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
- UNIFIMES, Centro Universitário de Mineiros, Mineiros, Goiás, 75833-130, Brazil
| | - Lívia do C Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Célia MA Soares
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Roosevelt A da Silva
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| |
Collapse
|
45
|
Calich VLG, Mamoni RL, Loures FV. Regulatory T cells in paracoccidioidomycosis. Virulence 2019; 10:810-821. [PMID: 30067137 PMCID: PMC6779406 DOI: 10.1080/21505594.2018.1483674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/26/2018] [Indexed: 12/24/2022] Open
Abstract
This review addresses the role of regulatory T cells (Tregs), which are essential for maintaining peripheral tolerance and controlling pathogen immunity, in the host response against Paracoccidioides brasiliensis, a primary fungal pathogen. A brief introduction on the general features of Treg cells summarizes their main functions, subpopulations, mechanisms of suppression and plasticity. The main aspects of immunity in the diverse forms of the P. brasiliensis infection are presented, as are the few extant studies on the relevance of Treg cells in the control of severity of the human disease. Finally, the influence of Toll-like receptors, Dectin-1, NOD-like receptor P3 (NLRP3), Myeloid differentiation factor-88 (MyD88), as well as the enzyme indoleamine 2,3 dioxygenase (IDO) on the expansion and function of Treg cells in a murine model of pulmonary paracoccidioidomycosis (PCM) is also discussed. It is demonstrated that some of these components are involved in the negative control of Treg cell expansion, whereas others positively trigger the proliferation and activity of these cells. Finally, the studies here summarized highlight the dual role of Treg cells in PCM, which can be protective by controlling excessive immunity and tissue pathology but also deleterious by inhibiting the anti-fungal immunity necessary to control fungal growth and dissemination.
Collapse
Affiliation(s)
- Vera L. G. Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ronei L. Mamoni
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiai (FMJ), Jundiai, Brazil
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Flávio V. Loures
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP) at São José dos Campos, São Paulo, Brazil
| |
Collapse
|
46
|
Souza ACO, Favali C, Soares NC, Tavares NM, Jerônimo MS, Veloso Junior PH, Marina CL, Santos C, Brodskyn C, Bocca AL. New Role of P. brasiliensis α-Glucan: Differentiation of Non-conventional Dendritic Cells. Front Microbiol 2019; 10:2445. [PMID: 31736892 PMCID: PMC6833476 DOI: 10.3389/fmicb.2019.02445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023] Open
Abstract
The cell wall has a critical role in the host immune response to fungal pathogens. In this study, we investigated the influence of two cell wall fractions of the dimorphic fungi Paracoccidioides brasiliensis (Pb) in the in vitro generation of monocyte-derived dendritic cells (MoDCs). Monocytes were purified from the peripheral blood of healthy donors and cultivated for 7 days in medium supplemented with IL-4 and GM-CSF in the presence of Pb cell wall fractions: the alkali-insoluble F1, constituted by β-1,3-glucans, chitin and proteins, and the alkali-soluble F2, mainly constituted by α-glucan. MoDCs phenotypes were evaluated regarding cell surface expression of CD1a, DC-SIGN, HLA-DR, CD80, and CD83 and production of cytokines. The α-glucan-rich cell wall fraction downregulated the differentiation of CD1a+ MoDCs, a dendritic cell subset that stimulate Th1 responses. The presence of both cell fractions inhibited DC-SIGN and HLA-DR expression, while the expression of maturation markers was differentially induced in CD1a– MoDCs. Differentiation upon F1 and F2 stimulation induced mixed profile of inflammatory cytokines. Altogether, these data demonstrate that Pb cell wall fractions differentially induce a dysregulation in DCs differentiation. Moreover, our results suggest that cell wall α-glucan promote the differentiation of CD1a– DCs, potentially favoring Th2 polarization and contributing to pathogen persistence.
Collapse
Affiliation(s)
| | - Cecília Favali
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | | | | | | | | | - Clara Luna Marina
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Claire Santos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Cláudia Brodskyn
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | |
Collapse
|
47
|
A hidden battle in the dirt: Soil amoebae interactions with Paracoccidioides spp. PLoS Negl Trop Dis 2019; 13:e0007742. [PMID: 31589617 PMCID: PMC6797224 DOI: 10.1371/journal.pntd.0007742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/17/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022] Open
Abstract
Paracoccidioides spp. are thermodimorphic fungi that cause a neglected tropical disease (paracoccidioidomycosis) that is endemic to Latin America. These fungi inhabit the soil, where they live as saprophytes with no need for a mammalian host to complete their life cycle. Despite this, they developed sophisticated virulence attributes allowing them not only to survive in host tissues but also to cause disease. A hypothesis for selective pressures driving the emergence or maintenance of virulence of soil fungi is their interaction with soil predators such as amoebae and helminths. We evaluated the presence of environmental amoeboid predators in soil from armadillo burrows where Paracoccidioides had been previously detected and tested if the interaction of Paracoccidioides with amoebae selects for fungi with increased virulence. Nematodes, ciliates, and amoebae-all potential predators of fungi-grew in cultures from soil samples. Microscopical observation and ITS sequencing identified the amoebae as Acanthamoeba spp, Allovahlkampfia spelaea, and Vermamoeba vermiformis. These three amoebae efficiently ingested, killed and digested Paracoccidioides spp. yeast cells, as did laboratory adapted axenic Acanthamoeba castellanii. Sequential co-cultivation of Paracoccidioides with A. castellanii selected for phenotypical traits related to the survival of the fungus within a natural predator as well as in murine macrophages and in vivo (Galleria mellonella and mice). These changes in virulence were linked to the accumulation of cell wall alpha-glucans, polysaccharides that mask recognition of fungal molecular patterns by host pattern recognition receptors. Altogether, our results indicate that Paracoccidioides inhabits a complex environment with multiple amoeboid predators that can exert selective pressure to guide the evolution of virulence traits.
Collapse
|
48
|
Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Med Microbiol Immunol 2019; 209:1-13. [PMID: 31555911 DOI: 10.1007/s00430-019-00635-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality associated with systemic fungal infections in humans cannot be underestimated. The nematode Caenorhabditis elegans has become popular for the in vivo study of the pathogenesis of human fungal pathogens and as an antifungal drug-screening tool. C. elegans offers many advantages as a model organism for the study of human fungal diseases, including lack of ethics requirements, easy maintenance in the laboratory, fully sequenced genome, availability of genetic mutants, and the possibility of liquid assays for high-throughput antifungal screening. Its major drawbacks include the inability to grow at 37 °C and absence of an adaptive immune response. However, several virulence factors involved in the pathogenesis of medically important fungal pathogens have been identified using the C. elegans model, consequently providing new leads for drug discovery and potential drug targets. We review the use of C. elegans as a model animal to understand the pathogenesis of medically important human fungal pathogens and the discovery of novel antifungal compounds. The review makes a case for C. elegans as a suitable invertebrate model for a plethora of practical applications in the investigation of fungal pathogenesis as well as its amenability for liquid-based high-throughput screening of potential antifungal compounds.
Collapse
|
49
|
Peres da Silva R, Longo LGV, Cunha JPCD, Sobreira TJP, Rodrigues ML, Faoro H, Goldenberg S, Alves LR, Puccia R. Comparison of the RNA Content of Extracellular Vesicles Derived from Paracoccidioides brasiliensis and Paracoccidioides lutzii. Cells 2019; 8:cells8070765. [PMID: 31340551 PMCID: PMC6678485 DOI: 10.3390/cells8070765] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt RNA fractions contained in EVs isolated from culture supernatants of P. brasiliensis Pb18, Pb3, and P. lutzii Pb01. Shared mRNA sequences were related to protein modification, translation, and DNA metabolism/biogenesis, while those related to transport and oxidation-reduction were exclusive to Pb01. The presence of functional full-length mRNAs was validated by in vitro translation. Among small non-coding (nc)RNA, 15 were common to all samples; small nucleolar (sno)RNAs were enriched in P. brasiliensis EVs, whereas for P. lutzii there were similar proportions of snoRNA, rRNA, and tRNA. Putative exonic sRNAs were highly abundant in Pb18 EVs. We also found sRNA sequences bearing incomplete microRNA structures mapping to exons. RNA-seq data suggest that extracellular fractions containing Pb18 EVs can modulate the transcriptome of murine monocyte-derived dendritic cells in a transwell system. Considering that sRNA classes are involved in transcription/translation modulation, our general results may indicate that differences in virulence among fungal isolates can be related to their distinct EV-RNA content.
Collapse
Affiliation(s)
- Roberta Peres da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil
| | - Larissa G V Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil
| | - Julia P C da Cunha
- Laboratório Especial de Ciclo Celular-Center of Toxins, Immune Response and Cell Signaling-Center (CeTICS), Butantan Institute, São Paulo 05503-900, Brazil
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Marcio L Rodrigues
- Instituto Carlos Chagas-FIOCRUZ PR, Curitiba 81350-010, Brazil
- Instituto de Microbiologia da Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Helisson Faoro
- Instituto Carlos Chagas-FIOCRUZ PR, Curitiba 81350-010, Brazil
| | | | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil.
| |
Collapse
|
50
|
Giusiano G, Aguirre C, Vratnica C, Rojas F, Corallo T, Cattana ME, Fernández M, Mussin J, de Los Angeles Sosa M. Emergence of acute/subacute infant-juvenile paracoccidioidomycosis in Northeast Argentina: Effect of climatic and anthropogenic changes? Med Mycol 2019; 57:30-37. [PMID: 29346653 DOI: 10.1093/mmy/myx153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 11/14/2022] Open
Abstract
Argentina has two endemic areas of paracoccidioidomycosis (PCM). Bordering Paraguay and Brazil, Northeast Argentina (NEA) comprises the area with the highest incidence where the chronic adult clinical form has historically been reported. Juvenile form in children and adolescents is rare in this area since only one case was reported in the last 10 years. Despite this, between 2010 and 2012, several cases of acute/subacute clinical forms in children aged 10 to 16 (median 12) were detected. In the last decade, the NEA region has been exposed to ecological variations as consequences of certain climatic and anthropogenic changes, including El Niño-Southern Oscillation phenomenon during 2009, and deforestation. The region has also suffered from the significant ecological effects of the construction of one of the biggest hydroelectric dams of South America. This study aims to describe clinical and epidemiological aspects of acute/subacute PCM cases detected in children from NEA and to discuss climatic and anthropogenic changes as possible contributing factors in the emergence of this disease in children. This acute/subacute PCM cluster was characterized by severe disseminated and aggressive presentations to localized form, with a high spectrum of clinical manifestations uncommonly observed. Due to the lack of experience in acute/subacute PCM in children in the studied area and the atypical clinical manifestations observed, the diagnosis was delayed. In order to avoid misdiagnosis, a higher level of suspicion is now required in NEA and countries bordering the southern part of the endemic area, which are affected by the changes discussed in this article.
Collapse
Affiliation(s)
- Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Clarisa Aguirre
- Hospital Pediátrico Dr. Avelino Castelán, Resistencia, Argentina
| | | | - Florencia Rojas
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Teresa Corallo
- Hospital Pediátrico Dr. Avelino Castelán, Resistencia, Argentina
| | - María Emilia Cattana
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Mariana Fernández
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Javier Mussin
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - María de Los Angeles Sosa
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
- Laboratorio Central de Salud Pública, Corrientes, Argentina
| |
Collapse
|