1
|
Sauvat L, Verhoeven PO, Gagnaire J, Berthelot P, Paul S, Botelho-Nevers E, Gagneux-Brunon A. Vaccines and monoclonal antibodies to prevent healthcare-associated bacterial infections. Clin Microbiol Rev 2024; 37:e0016022. [PMID: 39120140 PMCID: PMC11391692 DOI: 10.1128/cmr.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
SUMMARYHealthcare-associated infections (HAIs) represent a burden for public health with a high prevalence and high death rates associated with them. Pathogens with a high potential for antimicrobial resistance, such as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and Clostridioides difficile, are responsible for most HAIs. Despite the implementation of infection prevention and control intervention, globally, HAIs prevalence is stable and they are mainly due to endogenous pathogens. It is undeniable that complementary to infection prevention and control measures, prophylactic approaches by active or passive immunization are needed. Specific groups at-risk (elderly people, chronic condition as immunocompromised) and also healthcare workers are key targets. Medical procedures and specific interventions are known to be at risk of HAIs, in addition to hospital environmental exposure. Vaccines or monoclonal antibodies can be seen as attractive preventive approaches for HAIs. In this review, we present an overview of the vaccines and monoclonal antibodies in clinical development for prevention of the major bacterial HAIs pathogens. Based on the current state of knowledge, we look at the challenges and future perspectives to improve prevention by these means.
Collapse
Affiliation(s)
- Léo Sauvat
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O Verhoeven
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Julie Gagnaire
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Amandine Gagneux-Brunon
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
2
|
Zhang Y, Wang X, Liang Y, Zhang L, Fan J, Yang Y. A Semisynthetic Oligomannuronic Acid-Based Glycoconjugate Vaccine against Pseudomonas aeruginosa. ACS CENTRAL SCIENCE 2024; 10:1515-1523. [PMID: 39220693 PMCID: PMC11363335 DOI: 10.1021/acscentsci.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and has become increasingly resistant to multiple antibiotics. However, development of novel classes of antibacterial agents against multidrug-resistant P. aeruginosa is extremely difficult. Herein we develop a semisynthetic oligomannuronic acid-based glycoconjugate vaccine that confers broad protection against infections of both mucoid and nonmucoid strains of P. aeruginosa. The well-defined glycoconjugate vaccine formulated with Freund's adjuvant (FA) employing a highly conserved antigen elicited a strong and specific immune response and protected mice against both mucoid and nonmucoid strains of P. aeruginosa. The resulting antibodies recognized different strains of P. aeruginosa and mediated the opsonic killing of the bacteria at varied levels depending on the amount of alginate expressed on the surface of the strains. Vaccination with the glycoconjugate vaccine plus FA significantly promoted the pulmonary and blood clearance of the mucoid PAC1 strain of P. aeruginosa and considerably improved the survival rates of mice against the nonmucoid PAO1 strain of P. aeruginosa. Thus, the semisynthetic glycoconjugate is a promising vaccine that may provide broad protection against both types of P. aeruginosa.
Collapse
Affiliation(s)
- Yiyue Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaotong Wang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youling Liang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liangliang Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahao Fan
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Amandine GB, Gagnaire J, Pelissier C, Philippe B, Elisabeth BN. Vaccines for healthcare associated infections without vaccine prevention to date. Vaccine X 2022; 11:100168. [PMID: 35600984 PMCID: PMC9118472 DOI: 10.1016/j.jvacx.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
In spite of the widespread implementation of preventive strategies, the prevalence of healthcare-associated infections (HAIs) remains high. The prevalence of multidrug resistant organisms is high in HAIs. In 2019, the World Health Organization retained antimicrobial resistance as one of the ten issues for global health. The development of vaccines may contribute to the fight against antimicrobial resistance to reduce the burden of HAIs. Staphylococcus aureus, Gram negative bacteria and Clostridium difficile are the most frequent pathogens reported in HAIs. Consequently, the development of vaccines against these pathogens is crucial. At this stage, the goal of obtaining effective vaccines against S.aureus and Gram negative bacteria has not yet been achieved. However, we can expect in the near future availability of a vaccine against C. difficile. In addition, identifying populations who may benefit from these vaccines is complex, as at-risk patients are not great responders to vaccines, or as vaccination may occur too late, when they are already confronted to the risk. Vaccinating healthcare workers (HCWs) against these pathogens may have an impact only if HCWs play a role in the transmission and in the pathogens acquisition in patients, if the vaccine is effective to reduce pathogens carriage and if vaccine coverage is sufficient to protect patients. Acceptance of these potential vaccines should be evaluated and addressed in patients and in HCWs.
Collapse
Affiliation(s)
- Gagneux-Brunon Amandine
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France.,Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Julie Gagnaire
- Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,Infection Control Unit, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Carole Pelissier
- Occupational Health Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Berthelot Philippe
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France.,Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,Infection Control Unit, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Botelho-Nevers Elisabeth
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France.,Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| |
Collapse
|
4
|
Esmaeilzadeh F, Mahmoodi S. A Novel Design of Multi-epitope Peptide Vaccine Against Pseudomonas
aeruginosa. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211013110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As an opportunistic pathogen, Pseudomonas aeruginosa causes many different
hazardous infections. The high mortality rate resulting from infection with this antibiotic-resistant pathogen
has made it a major challenge in clinical treatment; it has been listed as the most harmful bacterium to
humans by the WHO. So far, no vaccine has been approved for P. aeruginosa.
Objective:
Infections performed by bacterial attachment and colonization with type IV pili (T4P), known
as the most essential adhesive vital for adhesion, while pilQ is necessary for the biogenesis of T4P, also
outer membrane proteins of a pathogen is also effective in stimulating the immune system; in this regard,
pilQ, OprF, and OprI, are excellent candidate antigens for production of an effective vaccine against P.
aeruginosa.
Methods:
In this research, various bioinformatics methods were employed in order to design a new multiepitope
peptide vaccine versus P. aeruginosa. Since T CD4+ cell immunity is important in eradicating P.
aeruginosa, OprF, OprI, and pilQ antigens were analyzed to determine Helper T cell Lymphocyte (HTL)
epitopes by many different immunoinformatics servers. One of the receptor agonists 2 (TLR2), a segment
of the Por B protein from Neisseria meningitides was used as an adjuvant in order to stimulate an effective
cellular immune response, and suitable linkers were used to connect all the above mentioned parts. In
the vaccine construct, linear B cell epitopes were also identified.
Results:
Conforming the bioinformatics forecasts, the designed vaccine possesses high antigenicity and is
not allergen.
Conclusion:
In this regard, the designed vaccine candidate is strongly believed to possess the potential of
inducing cellular and humoral immunity against P. aeruginosa.
Collapse
Affiliation(s)
| | - Shirin Mahmoodi
- Department of Medical Biotechnology,
School of Medicine, Fasa University of Medical Sciences, Fasa, Fars, Iran
| |
Collapse
|
5
|
Michalik M, Djahanschiri B, Leo JC, Linke D. An Update on "Reverse Vaccinology": The Pathway from Genomes and Epitope Predictions to Tailored, Recombinant Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:45-71. [PMID: 34918241 DOI: 10.1007/978-1-0716-1892-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the concept of reverse vaccinology. They all follow the same basic principles-mining available genome and proteome information for antigen candidates, and recombinantly expressing them for vaccine production. Some of the same principles have been used successfully for cancer therapy approaches. In this review, we focus on infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.
Collapse
Affiliation(s)
| | - Bardya Djahanschiri
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Jack C Leo
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Nasrin S, Hegerle N, Sen S, Nkeze J, Sen S, Permala-Booth J, Choi M, Sinclair J, Tapia MD, Johnson JK, Sow SO, Thaden JT, Fowler VG, Krogfelt KA, Brauner A, Protonotariou E, Christaki E, Shindo Y, Kwa AL, Shakoor S, Singh-Moodley A, Perovic O, Jacobs J, Lunguya O, Simon R, Cross AS, Tennant SM. Distribution of serotypes and antibiotic resistance of invasive Pseudomonas aeruginosa in a multi-country collection. BMC Microbiol 2022; 22:13. [PMID: 34991476 PMCID: PMC8732956 DOI: 10.1186/s12866-021-02427-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections and is frequently associated with healthcare-associated infections. Because of its ability to rapidly acquire resistance to antibiotics, P. aeruginosa infections are difficult to treat. Alternative strategies, such as a vaccine, are needed to prevent infections. We collected a total of 413 P. aeruginosa isolates from the blood and cerebrospinal fluid of patients from 10 countries located on 4 continents during 2005–2017 and characterized these isolates to inform vaccine development efforts. We determined the diversity and distribution of O antigen and flagellin types and antibiotic susceptibility of the invasive P. aeruginosa. We used an antibody-based agglutination assay and PCR for O antigen typing and PCR for flagellin typing. We determined antibiotic susceptibility using the Kirby-Bauer disk diffusion method. Results Of the 413 isolates, 314 (95%) were typed by an antibody-based agglutination assay or PCR (n = 99). Among the 20 serotypes of P. aeruginosa, the most common serotypes were O1, O2, O3, O4, O5, O6, O8, O9, O10 and O11; a vaccine that targets these 10 serotypes would confer protection against more than 80% of invasive P. aeruginosa infections. The most common flagellin type among 386 isolates was FlaB (41%). Resistance to aztreonam (56%) was most common, followed by levofloxacin (42%). We also found that 22% of strains were non-susceptible to meropenem and piperacillin-tazobactam. Ninety-nine (27%) of our collected isolates were resistant to multiple antibiotics. Isolates with FlaA2 flagellin were more commonly multidrug resistant (p = 0.04). Conclusions Vaccines targeting common O antigens and two flagellin antigens, FlaB and FlaA2, would offer an excellent strategy to prevent P. aeruginosa invasive infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02427-4.
Collapse
Affiliation(s)
- Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Hegerle
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shaichi Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph Nkeze
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunil Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myeongjin Choi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James Sinclair
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Milagritos D Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins, Mali, Bamako, Mali
| | - Joshua T Thaden
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Vance G Fowler
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Karen A Krogfelt
- Statens Serum Institut, Copenhagen, Denmark.,Department of Natural Sciences and Environment, Roskilde University, Roskilde, Denmark
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | | | - Eirini Christaki
- Department of Medicine, AHEPA University Hospital, Thessaloniki, Greece.,University of Cyprus Medical School, Nicosia, Cyprus
| | - Yuichiro Shindo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrea L Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sadia Shakoor
- Departments of Pathology and Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Ashika Singh-Moodley
- National Institute for Communicable Diseases a Division of the National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Olga Perovic
- National Institute for Communicable Diseases a Division of the National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Octavie Lunguya
- Department of Clinical Microbiology, National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo.,Department of Microbiology, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Development of Multi-epitope Subunit Vaccine Against Pseudomonas aeruginosa Using OprF/OprI and PopB Proteins. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The emerging problem of antibiotic resistance in Pseudomonas aeruginosa is a global health concern; hence, revealing innovative therapeutic approaches (such as designing an immunogenic vaccine candidate) is needed. There is no evidence of the availability of an effective vaccine that can combat the infection caused by this microorganism. Objectives: This research was conducted to develop a potential chimeric vaccine against P. aeruginosa using reverse vaccinology approaches. Methods: The present vaccine candidate comprised outer membrane protein F and I (OprF/OprI) and PopB with appropriate linkers. After applying meticulous immune-informatics investigation, the multi-epitope vaccine was created, including helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), interferon gamma (IFN-γ), and interleukin 4 (IL-4) epitopes. Then, the physicochemical characteristics, allergenicity, toxicity, and antigenicity were analyzed. After investigating the secondary structure, the tertiary structure (3D) model was generated, refined, and validated via computational methods. Besides, the strong protein-ligand interaction and stability between the vaccine candidate and toll-like receptor 4 (TLR4) were determined via molecular docking and dynamics analyses. Moreover, in silico cloning accompanied by pET-22b (+) was used to achieve high translation efficiency. Results: Our results presumed that the chimeric-designed vaccine was thermostable and contained optimal physicochemical properties. This vaccine candidate was nontoxic and highly soluble and had stable protein and TLR4 interaction, adequately overexpressed in Escherichia coli. Overall, it could induce immune responses and repress this microorganism. Conclusions: Therefore, to inhibit Pseudomonas infections experimentally, the efficacy and safety of the vaccine design need to be validated.
Collapse
|
8
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
9
|
Quest for Novel Preventive and Therapeutic Options Against Multidrug-Resistant Pseudomonas aeruginosa. Int J Pept Res Ther 2021; 27:2313-2331. [PMID: 34393689 PMCID: PMC8351238 DOI: 10.1007/s10989-021-10255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a critical healthcare challenge due to its ability to cause persistent infections and the acquisition of antibiotic resistance mechanisms. Lack of preventive vaccines and rampant drug resistance phenomenon has rendered patients vulnerable. As new antimicrobials are in the preclinical stages of development, mining for the unexploited drug targets is also crucial. In the present study, we designed a B- and T-cell multi-epitope vaccine against P. aeruginosa using a subtractive proteomics and immunoinformatics approach. A total of five proteins were shortlisted based on essentiality, extracellular localization, virulence, antigenicity, pathway association, hydrophilicity, and low molecular weight. These include two outer membrane porins; OprF (P13794) and OprD (P32722), a protein activator precursor pra (G3XDA9), a probable outer membrane protein precursor PA1288 (Q9I456), and a conserved hypothetical protein PA4874 (Q9HUT9). These shortlisted proteins were further analyzed to identify immunogenic and antigenic B- and T-cell epitopes. The best scoring epitopes were then further subjected to the construction of a polypeptide multi-epitope vaccine and joined with cholera toxin B subunit adjuvant. The final chimeric construct was docked with TLR4 and confirmed by normal mode simulation studies. The designed B- and T-cell multi-epitope vaccine candidate is predicted immunogenic in nature and has shown strong interactions with TLR-4. Immune simulation predicted high-level production of B- and T-cell population and maximal expression was ensured in E. coli strain K12. The identified drug targets qualifying the screening criteria were: UDP-2-acetamido-2-deoxy-d-glucuronic acid 3-dehydrogenase WbpB (G3XD23), aspartate semialdehyde dehydrogenase (Q51344), 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (Q9HV71), 3-deoxy-D-manno-octulosonic-acid transferase (Q9HUH7), glycyl-tRNA synthetase alpha chain (Q9I7B7), riboflavin kinase/FAD synthase (Q9HVM3), aconitate hydratase 2 (Q9I2V5), probable glycosyltransferase WbpH (G3XD85) and UDP-3-O-[3-hydroxylauroyl] glucosamine N-acyltransferase (Q9HXY6). For druggability and pocketome analysis crystal and homology structures of these proteins were retrieved and developed. A sequence-based search was performed in different databases (ChEMBL, Drug Bank, PubChem and Pseudomonas database) for the availability of reported ligands and tested drugs for the screened targets. These predicted targets may provide a basis for the development of reliable antibacterial preventive and therapeutic options against P. aeruginosa.
Collapse
|
10
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
11
|
Fakoor MH, Mousavi Gargari SL, Owlia P, Sabokbar A. Protective Efficacy of the OprF/OprI/PcrV Recombinant Chimeric Protein Against Pseudomonas aeruginosa in the Burned BALB/c Mouse Model. Infect Drug Resist 2020; 13:1651-1661. [PMID: 32606816 PMCID: PMC7294051 DOI: 10.2147/idr.s244081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa infection is the major cause of death in burn patients. Thus, in this study, a chimeric vaccine harboring the OprF185–350–OprI22–83–PcrV was designed and expressed in Escherichia coli. The immunogenicity of the recombinant chimer, OprI, OprF, and PcrV was studied in a burned mouse model. Methodology Recombinant proteins including the proposed chimer, OprF, OprI, and PcrV were expressed in the E.coli. Mice were immunized with the purified recombinant proteins, and the antibody titre was estimated in the sera obtained from immunized mice. Immunized and control mice were challenged with 2, 5, and 10xLD50 of the P. aeruginosa strains (PAO1, PAK, and R5), and microbial counts were measured in the skin, liver, spleen, and kidney of the studied mice. Results Results showed that the antibody titre (total IgG) was significantly increased by injection of 10 μg of chimeric protein in the experimental groups compared to the control groups. The antibody survival titre was high until 235 days after administration of the second booster. The survival rate of the mice infected with 10xLD50 was significantly increased and the number of bacteria was reduced, especially in the internal organs (kidney, spleen, and liver) compared to the mice immunized with any of the OprF, OprI, and PcrV proteins alone. Conclusion The findings of our study revealed that the chimeric protein is a promising vaccine candidate for control of the P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
12
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 545] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Hospital-acquired pneumonia (HAP) is the leading cause of death from hospital-acquired infection. Little work has been done on strategies for prevention of HAP. This review aims to describe potential HAP prevention strategies and the evidence supporting them. Oral care and aspiration precautions may attenuate some risk for HAP. Oral and digestive decontamination with antibiotics may be effective but could increase risk for resistant organisms. Other preventive measures, including isolation practices, remain theoretical or experimental. RECENT FINDINGS Hospital-acquired pneumonia occurs because of pharyngeal colonization with pathogenic organisms and subsequent aspiration of these pathogens. SUMMARY Most potential HAP prevention strategies remain unproven.
Collapse
|
14
|
Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 2019; 55:394-405. [PMID: 30937696 DOI: 10.1007/s11262-019-01660-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection has imposed a great threat to patients with cystic fibrosis. With the emergence of multidrug-resistant P. aeruginosa, developing an alternative anti-microbial strategy is indispensable and more urgent than ever. In this study, a lytic P. aeruginosa phage was isolated from the sewage of a hospital, and one protein was predicted as the depolymerase-like protein by genomic sequence analysis, it includes two catalytic regions, the Pectate lyase_3 super family and Glycosyl hydrolase_28 super family. Further analysis demonstrated that recombinant depolymerase-like protein degraded P. aeruginosa exopolysaccharide and enhanced bactericidal activity mediated by serum in vitro. Additionally, this protein disrupted host bacterial biofilms. All of these results showed that the phage-derived depolymerase-like protein has the potential to be developed into an anti-microbial agent that targets P. aeruginosa.
Collapse
|
15
|
Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:909-924. [PMID: 30936684 PMCID: PMC6431001 DOI: 10.2147/dddt.s189847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines for Pseudomonas aeruginosa have been of longstanding interest to immunologists, bacteriologists, and clinicians, due to the widespread prevalence of hospital-acquired infection. As P. aeruginosa becomes increasingly antibiotic resistant, there is a dire need for novel treatments and preventive vaccines. Despite intense efforts, there currently remains no vaccine on the market to combat this dangerous pathogen. This article summarizes current and past vaccines under development that target various constituents of P. aeruginosa. Targeting lipopolysaccharides and O-antigens have shown some promise in preventing infection. Recombinant flagella and pili that target TLR5 have been utilized to combat P. aeruginosa by blocking its motility and adhesion. The type 3 secretion system components, such as needle-like structure PcrV or exotoxin PopB, are also potential vaccine targets. Outer membrane proteins including OprF and OprI are newer representatives of vaccine candidates. Live attenuated vaccines are a focal point in this review, and are also considered for novel vaccines. In addition, phage therapy is revived as an effective option for treating refractory infections after failure with antibiotic treatment. Many of the aforementioned vaccines act on a single target, thus lacking a broad range of protection. Recent studies have shown that mixtures of vaccines and combination approaches may significantly augment immunogenicity, thereby increasing their preventive and therapeutic potential.
Collapse
Affiliation(s)
- Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Andrew Weaver
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Ting Huang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA, .,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jacob Schettler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Feng Chen
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Xiefang Yuan
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| |
Collapse
|
16
|
Naito Y, Hamaoka S, Kinoshita M, Kainuma A, Shimizu M, Katoh H, Moriyama K, Ishii KJ, Sawa T. The protective effects of nasal PcrV-CpG oligonucleotide vaccination against Pseudomonas aeruginosa pneumonia. Microbiol Immunol 2019; 62:774-785. [PMID: 30378708 DOI: 10.1111/1348-0421.12658] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/13/2018] [Accepted: 10/27/2018] [Indexed: 01/15/2023]
Abstract
An effective vaccine against Pseudomonas aeruginosa would be hugely beneficial to people who are susceptible to the serious infections it can cause. Vaccination against PcrV of the P. aeruginosa type III secretion system is a potential prophylactic strategy for improving the incidence and prognosis of P. aeruginosa pneumonia. Here, the effect of nasal PcrV adjuvanted with CpG oligodeoxynucleotide (CpG) was compared with a nasal PcrV/aluminum hydroxide gel (alum) vaccine. Seven groups of mice were vaccinated intranasally with one of the following: 1, PcrV-CpG; 2, PcrV-alum; 3, PcrV alone; 4, CpG alone; 5, alum alone; 6 and 7, saline control. Fifty days after the first immunization, anti-PcrV IgG, IgA and IgG isotype titers were measured; significant increases in these titers were detected only in the PcrV-CpG vaccinated mice. The vaccinated mice were then intratracheally infected with a lethal dose of P. aeruginosa and their body temperatures and survival monitored for 24 hr, edema, bacteria, myeloperoxidase activity and lung histology also being evaluated at 24 hr post-infection. It was found that 73% of the PcrV-CpG-vaccinated mice survived, whereas fewer than 30% of the mice vaccinated with PcrV-alum or adjuvant alone survived. Lung edema and other inflammation-related variables were less severe in the PcrV-CpG group. The significant increase in PcrV-specific IgA titers detected following PcrV-CpG vaccination is probably a component of the disease protection mechanism. Overall, our data show that intranasal PcrV-CpG vaccination has potential efficacy for clinical application against P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Yoshifumi Naito
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Saeko Hamaoka
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Atsushi Kainuma
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Masaru Shimizu
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Hideya Katoh
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi, Saito, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| |
Collapse
|
17
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1167] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
18
|
Maria de Souza Morais S, Ferreira Rodigues N, Ingrid Oliveira da Silva N, Aparecido Salvador E, Rodrigues Franco I, Augusto Pires de Souza G, Henrique Cruvinel da Silva P, Gustavo Nogueira de Almeida L, Prado Rocha R, Carolina Toledo da Cunha Pereira A, Portela Ferreira G, Veras Quelemes P, Pereira de Araújo M, Fornias Sperandio F, Júnia de Souza Santos L, Assis Martins Filho O, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Serum albumin nanoparticles vaccine provides protection against a lethal Pseudomonas aeruginosa challenge. Vaccine 2018; 36:6408-6415. [DOI: 10.1016/j.vaccine.2018.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
|
19
|
Yang F, Gu J, Zou J, Lei L, Jing H, Zhang J, Zeng H, Zou Q, Lv F, Zhang J. PA0833 Is an OmpA C-Like Protein That Confers Protection Against Pseudomonas aeruginosa Infection. Front Microbiol 2018; 9:1062. [PMID: 29875759 PMCID: PMC5974059 DOI: 10.3389/fmicb.2018.01062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is a formidable pathogen that causes infections with high mortality rates. Because of its ability to form biofilms and rapidly acquire resistance to many first-line antibiotics, P. aeruginosa-related infections are typically difficult to cure by traditional antibiotic treatment regimes. Thus, new strategies to prevent and treat such infections are urgently required. PA0833 is a newly identified protective antigen of P. aeruginosa that was identified in a screen using a reverse vaccine strategy in our laboratory. In this study, we further confirmed its protective efficacy in murine sepsis and pneumonia models. Immunization with PA0833 induced strong immune responses and resulted in reduced bacterial loads; decreased pathology, inflammatory cytokine expression and inflammatory cell infiltration; and improved survival. Furthermore, PA0833 was identified as an OmpA C-like protein by bioinformatics analysis and biochemical characterization and shown to contribute to bacterial environmental stress resistance and virulence. These results demonstrate that PA0833 is an OmpA C-like protein that induces a protective immune response in mice, indicating that PA0833 is a promising antigen for vaccine development.
Collapse
Affiliation(s)
- Feng Yang
- College of Bioengineering, Chongqing University, Chongqing, China.,National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jintao Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Langhuan Lei
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fenglin Lv
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Gagneux-Brunon A, Lucht F, Launay O, Berthelot P, Botelho-Nevers E. Vaccines for healthcare-associated infections: present, future, and expectations. Expert Rev Vaccines 2018; 17:421-433. [DOI: 10.1080/14760584.2018.1470507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amandine Gagneux-Brunon
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
| | - Frédéric Lucht
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
| | - Odile Launay
- Inserm CIC 1417, I-REIVAC, University of Paris-Descartes, University Hospital of Cochin-Broca-Hôtel-Dieu, Paris, France
| | - Philippe Berthelot
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
- Infection control unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
| |
Collapse
|
21
|
Gagneux-Brunon A, Lucht F, Launay O, Berthelot P, Botelho-Nevers E. Les vaccins dans la prévention des infections associées aux soins. JOURNAL DES ANTI-INFECTIEUX 2017. [PMCID: PMC7148680 DOI: 10.1016/j.antinf.2017.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Les infections associées aux soins (IAS) constituent un véritable problème de santé publique. Escherichia coli, Staphylococcus aureus, Clostridium difficile sont les plus souvent à l’origine des IAS. L’antibiorésistance fréquente complique encore la prise en charge et des impasses thérapeutiques existent à présent. Les mesures d’hygiène hospitalière bien qu’essentielles sont insuffisantes pour diminuer drastiquement les IAS. Ainsi, des stratégies alternatives à l’antibiothérapie s’avèrent nécessaires pour prévenir et traiter les IAS. Parmi celles-ci, la vaccination et l’immunisation passive sont probablement les plus prometteuses. Nous avons fait une mise au point sur les vaccins disponibles et en développement clinique pour lutter contre les IAS, chez les patients à risque d’IAS et les soignants. L’intérêt de la vaccination grippale et rotavirus chez les patients pour prévenir ces IAS virales a été examiné. Le développement d’un vaccin anti-S. aureus, déjà émaillé de 2 échecs est complexe. Toutefois, ces échecs ont permis d’améliorer les connaissances sur l’immunité anti-S. aureus. La mise à disposition d’un vaccin préventif anti-C. difficile semble plus proche. Pour les autres bactéries gram négatif responsables d’IAS, le développement est moins avancé. La vaccination des patients à risques d’IAS pose également des problèmes de réponse vaccinale qu’il faudra résoudre pour utiliser cette stratégie. Ainsi, la vaccination des soignants, de par l’effet de groupe permet également de prévenir les IAS. Nous faisons ici le point sur l’intérêt de la vaccination des soignants contre la rougeole, la coqueluche, la grippe, la varicelle, l’hépatite B pour réduire les IAS avec des vaccins déjà disponibles.
Collapse
|
22
|
Maraolo AE, Cascella M, Corcione S, Cuomo A, Nappa S, Borgia G, De Rosa FG, Gentile I. Management of multidrug-resistant Pseudomonas aeruginosa in the intensive care unit: state of the art. Expert Rev Anti Infect Ther 2017; 15:861-871. [PMID: 28803496 DOI: 10.1080/14787210.2017.1367666] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA) is one of the most important causes of healthcare-related infections among Gram-negative bacteria. The best therapeutic approach is controversial, especially for multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains as well as in the setting of most severe patients, such as in the intensive care unit (ICU). Areas covered: This article addresses several points. First, the main microbiological aspects of PA, focusing on its wide array of resistance mechanisms. Second, risk factors and the worse outcome linked to MDR-PA infection. Third, the pharmacological peculiarity of ICU patients, that makes the choice of a proper antimicrobial therapy difficult. Eventually, the current therapeutic options against MDR-PA are reviewed, taking into account the main variables that drive antimicrobial optimization in critically ill patients. Literature search was carried out using Pubmed and Web of Science. Expert commentary: Methodologically rigorous studies are urgently needed to clarify crucial aspects of the treatment against MDR-PA, namely monotherapy versus combination therapy in empiric and targeted settings. In the meanwhile, useful options are represented by newly approved drugs, such as ceftolozane/tazobactam and ceftazidime/avibactam. In critically ill patients, at least as empirical approach, a combination therapy is a prudent choice when a MDR-PA strain is suspected.
Collapse
Affiliation(s)
- Alberto Enrico Maraolo
- a Department of Clinical Medicine and Surgery, Section of Infectious Diseases , University of Naples Federico II , Naples , Italy
| | - Marco Cascella
- b Division of Anesthesia, Department of Anesthesia and Pain Medicine , Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale , Naples , Italy
| | - Silvia Corcione
- c Department of Medical Sciences , University of Turin , Turin , Italy
| | - Arturo Cuomo
- b Division of Anesthesia, Department of Anesthesia and Pain Medicine , Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale , Naples , Italy
| | - Salvatore Nappa
- a Department of Clinical Medicine and Surgery, Section of Infectious Diseases , University of Naples Federico II , Naples , Italy
| | - Guglielmo Borgia
- a Department of Clinical Medicine and Surgery, Section of Infectious Diseases , University of Naples Federico II , Naples , Italy
| | | | - Ivan Gentile
- a Department of Clinical Medicine and Surgery, Section of Infectious Diseases , University of Naples Federico II , Naples , Italy
| |
Collapse
|
23
|
Protective Efficacy of the Trivalent Pseudomonas aeruginosa Vaccine Candidate PcrV-OprI-Hcp1 in Murine Pneumonia and Burn Models. Sci Rep 2017. [PMID: 28638106 PMCID: PMC5479855 DOI: 10.1038/s41598-017-04029-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is a formidable pathogen that is responsible for a diverse spectrum of human infectious diseases, resulting in considerable annual mortality rates. Because of biofilm formation and its ability of rapidly acquires of resistance to many antibiotics, P. aeruginosa related infections are difficult to treat, and therefore, developing an effective vaccine is the most promising method for combating infection. In the present study, we designed a novel trivalent vaccine, PcrV28-294-OprI25-83-Hcp11-162 (POH), and evaluated its protective efficacy in murine pneumonia and burn models. POH existed as a dimer in solution, it induced better protection efficacy in P. aeruginosa lethal pneumonia and murine burn models than single components alone when formulated with Al(OH)3 adjuvant, and it showed broad immune protection against several clinical isolates of P. aeruginosa. Immunization with POH induced strong immune responses and resulted in reduced bacterial loads, decreased pathology, inflammatory cytokine expression and inflammatory cell infiltration. Furthermore, in vitro opsonophagocytic killing assay and passive immunization studies indicated that the protective efficacy mediated by POH vaccination was largely attributed to POH-specific antibodies. Taken together, these data provided evidence that POH is a potentially promising vaccine candidate for combating P. aeruginosa infection in pneumonia and burn infections.
Collapse
|
24
|
Hamaoka S, Naito Y, Katoh H, Shimizu M, Kinoshita M, Akiyama K, Kainuma A, Moriyama K, Ishii KJ, Sawa T. Efficacy comparison of adjuvants in PcrV vaccine against Pseudomonas aeruginosa pneumonia. Microbiol Immunol 2017; 61:64-74. [PMID: 28370521 DOI: 10.1111/1348-0421.12467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/27/2022]
Abstract
Vaccination against the type III secretion system of P. aeruginosa is a potential prophylactic strategy for reducing the incidence and improving the poor prognosis of P. aeruginosa pneumonia. In this study, the efficacies of three different adjuvants, Freund's adjuvant (FA), aluminum hydroxide (alum) and CpG oligodeoxynucleotide (ODN), were examined from the viewpoint of inducing PcrV-specific immunity against virulent P. aeruginosa. Mice that had been immunized intraperitoneally with recombinant PcrV formulated with one of the above adjuvants were challenged intratracheally with a lethal dose of P. aeruginosa. The PcrV-FA immunized group attained a survival rate of 91%, whereas the survival rates of the PcrV-alum and PcrV-CpG groups were 73% and 64%, respectively. In terms of hypothermia recovery after bacterial instillation, PcrV-alum was the most protective, followed by PcrV-FA and PcrV-CpG. The lung edema index was lower in the PcrV-CpG vaccination group than in the other groups. PcrV-alum immunization was associated with the greatest decrease in myeloperoxidase in infected lungs, and also decreased the number of lung bacteria to a similar number as in the PcrV-FA group. There was less neutrophil recruitment in the lungs of mice vaccinated with PcrV-alum or PcrV-CpG than in those of mice vaccinated with PcrV-FA or PcrV alone. Overall, in terms of mouse survival the PcrV-CpG vaccine, which could be a relatively safe next-generation vaccine, showed a comparable effect to the PcrV-alum vaccine.
Collapse
Affiliation(s)
- Saeko Hamaoka
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshifumi Naito
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideya Katoh
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masaru Shimizu
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Koichi Akiyama
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Kainuma
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Mitaka 181-8611, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
25
|
Rello J, Bunsow E, Perez A. What if there were no new antibiotics? A look at alternatives. Expert Rev Clin Pharmacol 2016; 9:1547-1555. [DOI: 10.1080/17512433.2016.1241141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
The SAATELLITE and EVADE Clinical Studies Within the COMBACTE Consortium: A Public–Private Collaborative Effort in Designing and Performing Clinical Trials for Novel Antibacterial Drugs to Prevent Nosocomial Pneumonia: Table 1. Clin Infect Dis 2016; 63 Suppl 2:S46-51. [DOI: 10.1093/cid/ciw245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Rello J, Perez A. Precision medicine for the treatment of severe pneumonia in intensive care. Expert Rev Respir Med 2016; 10:297-316. [PMID: 26789703 DOI: 10.1586/17476348.2016.1144477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite advances in its management, community-acquired pneumonia (CAP) remains the most important cause of sepsis-related mortality and the reason for many ICU admissions. Severity assessment is the cornerstone of CAP patient management and the attempts to ensure the best site of care and therapy. Survival depends on a combination of host factors (genetic, age, comorbidities, defenses), pathogens (virulence, serotypes) and drugs. To reduce CAP mortality, early adequate antibiotic therapy is fundamental. The use of combination therapy with a macrolide seems to improve the clinical outcome in the subset of patients with high inflammation due to immunomodulation. Guidelines on antibiotic therapy have been associated with beneficial effects, and studies of newer adjunctive drugs have produced promising results. This paper discusses the current state of knowledge regarding of precision medicine and the treatment of severe CAP patients.
Collapse
Affiliation(s)
- Jordi Rello
- a CIBERES , Barcelona , Spain.,b School of Medicine , Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Antonio Perez
- a CIBERES , Barcelona , Spain.,b School of Medicine , Universitat Autonoma de Barcelona , Barcelona , Spain
| |
Collapse
|
28
|
Vaccines for Antibiotic-Resistant Bacteria: Possibility or Pipe Dream? Trends Pharmacol Sci 2016; 37:143-152. [DOI: 10.1016/j.tips.2015.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022]
|
29
|
Michalik M, Djahanshiri B, Leo JC, Linke D. Reverse Vaccinology: The Pathway from Genomes and Epitope Predictions to Tailored Recombinant Vaccines. Methods Mol Biol 2016; 1403:87-106. [PMID: 27076126 DOI: 10.1007/978-1-4939-3387-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the technology of reverse vaccinology. We focus here on bacterial infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway.,Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Bardya Djahanshiri
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.,Department for Applied Bioinformatics, Goethe-University, 60438, Frankfurt, Germany
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway. .,Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
30
|
Grimwood K, Kyd JM, Owen SJ, Massa HM, Cripps AW. Vaccination against respiratory Pseudomonas aeruginosa infection. Hum Vaccin Immunother 2014; 11:14-20. [PMID: 25483510 PMCID: PMC4514401 DOI: 10.4161/hv.34296] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Respiratory infections caused by Pseudomonas aeruginosa are a major clinical problem globally, particularly for patients with chronic pulmonary disorders, such as those with cystic fibrosis (CF), non-CF bronchiectasis (nCFB) and severe chronic obstructive pulmonary disease (COPD). In addition, critically ill and immunocompromised patients are also at significant risk of P. aeruginosa infection. For almost half a century, research efforts have focused toward development of a vaccine against infections caused by P. aeruginosa, but a licensed vaccine is not yet available. Significant advances in identifying potential vaccine antigens have been made. Immunisations via both the mucosal and systemic routes have been trialled in animal models and their effectiveness in clearing acute infections demonstrated. The challenge for translation of this research to human applications remains, since P. aeruginosa infections in the human respiratory tract can present both as an acute or chronic infection. In addition, immunisation prior to infection may not be possible for many patients with CF, nCFB or COPD. Therefore, development of a therapeutic vaccine provides an alternative approach for treatment of chronic infection. Preliminary animal and human studies suggest that mucosal immunisation may be effective as a therapeutic vaccine against P. aeruginosa respiratory infections. Nevertheless, more research is needed to improve our understanding of the basic biology of P. aeruginosa and the mechanisms needed to upregulate the induction of host immune pathways to prevent infection. Recognition of variability in the host immune responses for a range of patient health conditions at risk from P. aeruginosa infection is also required to support development of a successful vaccine delivery strategy and vaccine. Activation of mucosal immune responses may provide improved efficacy of vaccination for P. aeruginosa during both acute exacerbations and chronic infection.
Collapse
Affiliation(s)
- Keith Grimwood
- a School of Medicine; Griffith University; Gold Coast, Queensland Australia
| | | | | | | | | |
Collapse
|