1
|
Cao Y, Wang W. Expression of Tailored α-N-Acetylglucosaminidase in Escherichia coli for Synthesizing Mannose-6-Phosphate on N-Linked Oligosaccharides of Lysosomal Enzymes. Bioengineering (Basel) 2025; 12:425. [PMID: 40281785 PMCID: PMC12024695 DOI: 10.3390/bioengineering12040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Lysosomal enzymes are synthesized as N-glycosylated glycoproteins with mannose-6-phosphate (M6P) moieties, which are responsible for their binding to M6P receptors and transporting to the lysosome. In the M6P biosynthetic pathway, a Man8GlcNAc2 glycoform is converted to M6P groups through two consecutive enzymatic reactions, including N-acetylglucosamine (GlcNAc)-1-phosphotransferase (GNPT), transferring GlcNAc-1-phosphate from UDP-GlcNAc to the C6 hydroxyl groups of mannose residues, and then, removal of the covering GlcNAc moiety from the GlcNAc-P-mannose phosphodiester was carried out using an α-N-acetylglucosaminidase (referred to as 'uncovering enzyme', UCE) in the trans-Golgi network (TGN). Here, we expressed differently tailored versions of the UCE, including four truncated variants, in Escherichia coli. The four variants with the signal peptide, transmembrane domain, propiece and cytoplasmic tail truncated, respectively, were purified by affinity chromatography, and their enzymatic activities were assayed using a UDP-Glo kit. By fusing a maltose-binding protein (MBP) in the N-terminus of the UCE variants, the fusion proteins could be soluble when expressed in E. coli. The highest concentration of the purified enzyme was 80.5 mg/L of fermentation broth. Furthermore, the UCE with the core catalytic domain exhibited the highest uncovering activity.
Collapse
Affiliation(s)
- Yunsong Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Pimentel-Vera LN, Rodríguez-López A, Espejo-Mojica AJ, Ramírez AM, Cardona C, Reyes LH, Tomatsu S, Jaroentomeechai T, DeLisa MP, Sánchez OF, Alméciga-Díaz CJ. Novel human recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in a glyco-engineered Escherichia coli strain. Heliyon 2024; 10:e32555. [PMID: 38952373 PMCID: PMC11215262 DOI: 10.1016/j.heliyon.2024.e32555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in the accumulation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). Previously, it was reported the production of an active human recombinant GALNS (rGALNS) in E. coli BL21(DE3). However, this recombinant enzyme was not taken up by HEK293 cells or MPS IVA skin fibroblasts. Here, we leveraged a glyco-engineered E. coli strain to produce a recombinant human GALNS bearing the eukaryotic trimannosyl core N-glycan, Man3GlcNAc2 (rGALNSoptGly). The N-glycosylated GALNS was produced at 100 mL and 1.65 L scales, purified and characterized with respect to pH stability, enzyme kinetic parameters, cell uptake, and KS clearance. The results showed that the addition of trimannosyl core N-glycans enhanced both protein stability and substrate affinity. rGALNSoptGly was capture through a mannose receptor-mediated process. This enzyme was delivered to the lysosome, where it reduced KS storage in human MPS IVA fibroblasts. This study demonstrates the potential of a glyco-engineered E. coli for producing a fully functional GALNS enzyme. It may offer an economic approach for the biosynthesis of a therapeutic glycoprotein that could prove useful for MPS IVA treatment. This strategy could be extended to other lysosomal enzymes that rely on the presence of mannose N-glycans for cell uptake.
Collapse
Affiliation(s)
- Luisa N. Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada GIBGA, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá, D.C., Colombia
| | - Luis H. Reyes
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, D.C., Colombia
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, 19144, USA
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| |
Collapse
|
3
|
Hsu YP, Verma D, Sun S, McGregor C, Mangion I, Mann BF. Successive remodeling of IgG glycans using a solid-phase enzymatic platform. Commun Biol 2022; 5:328. [PMID: 35393560 PMCID: PMC8990068 DOI: 10.1038/s42003-022-03257-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
The success of glycoprotein-based drugs in various disease treatments has become widespread. Frequently, therapeutic glycoproteins exhibit a heterogeneous array of glycans that are intended to mimic human glycopatterns. While immunogenic responses to biologic drugs are uncommon, enabling exquisite control of glycosylation with minimized microheterogeneity would improve their safety, efficacy and bioavailability. Therefore, close attention has been drawn to the development of glycoengineering strategies to control the glycan structures. With the accumulation of knowledge about the glycan biosynthesis enzymes, enzymatic glycan remodeling provides a potential strategy to construct highly ordered glycans with improved efficiency and biocompatibility. In this study, we quantitatively evaluate more than 30 enzymes for glycoengineering immobilized immunoglobulin G, an impactful glycoprotein class in the pharmaceutical field. We demonstrate successive glycan remodeling in a solid-phase platform, which enabled IgG glycan harmonization into a series of complex-type N-glycoforms with high yield and efficiency while retaining native IgG binding affinity. A solid-phase glycan remodeling (SPGR) platform is presented. Over thirty enzymes were evaluated for successive glycoengineering of immobilized antibodies with outstanding performance in several SPGR reactions.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.,Exploratory Science Center, Merck & Co., Inc, Cambridge, MA, 02141, USA
| | - Deeptak Verma
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Shuwen Sun
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Caroline McGregor
- Process Research & Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Ian Mangion
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Benjamin F Mann
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.
| |
Collapse
|
4
|
Edwards E, Livanos M, Krueger A, Dell A, Haslam SM, Mark Smales C, Bracewell DG. Strategies to Control Therapeutic Antibody Glycosylation during Bioprocessing: Synthesis and Separation. Biotechnol Bioeng 2022; 119:1343-1358. [PMID: 35182428 PMCID: PMC9310845 DOI: 10.1002/bit.28066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Glycosylation can be a critical quality attribute in biologic manufacturing. In particular, it has implications on the half‐life, immunogenicity, and pharmacokinetics of therapeutic monoclonal antibodies (mAbs), and must be closely monitored throughout drug development and manufacturing. To address this, advances have been made primarily in upstream processing, including mammalian cell line engineering, to yield more predictably glycosylated mAbs and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation. A more robust approach would be a conjoined upstream–downstream processing strategy. This could include implementing novel downstream technologies, such as the use of Fc γ‐based affinity ligands for the separation of mAb glycovariants. This review highlights the importance of controlling therapeutic antibody glycosylation patterns, the challenges faced in terms of glycosylation during mAb biosimilar development, current efforts both upstream and downstream to control glycosylation and their limitations, and the need for research in the downstream space to establish holistic and consistent manufacturing processes for the production of antibody therapies.
Collapse
Affiliation(s)
- Elizabeth Edwards
- Department of Biochemical Engineering, University College London, London, UK
| | - Maria Livanos
- Department of Biochemical Engineering, University College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - C Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, UK.,National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Kulagina N, Besseau S, Godon C, Goldman GH, Papon N, Courdavault V. Yeasts as Biopharmaceutical Production Platforms. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733492. [PMID: 37744146 PMCID: PMC10512354 DOI: 10.3389/ffunb.2021.733492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 09/26/2023]
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Sébastien Besseau
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Charlotte Godon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Gustavo H. Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nicolas Papon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| |
Collapse
|
6
|
Moesslacher CS, Kohlmayr JM, Stelzl U. Exploring absent protein function in yeast: assaying post translational modification and human genetic variation. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:164-183. [PMID: 34395585 PMCID: PMC8329848 DOI: 10.15698/mic2021.08.756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| |
Collapse
|
7
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Pekarsky A, Mihalyi S, Weiss M, Limbeck A, Spadiut O. Depletion of Boric Acid and Cobalt from Cultivation Media: Impact on Recombinant Protein Production with Komagataella phaffii. Bioengineering (Basel) 2020; 7:bioengineering7040161. [PMID: 33322107 PMCID: PMC7763993 DOI: 10.3390/bioengineering7040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
The REACH regulation stands for “Registration, Evaluation, Authorization and Restriction of Chemicals” and defines certain substances as harmful to human health and the environment. This urges manufacturers to adapt production processes. Boric acid and cobalt dichloride represent such harmful ingredients, but are commonly used in yeast cultivation media. The yeast Komagataella phaffii (Pichia pastoris) is an important host for heterologous protein production and compliance with the REACH regulation is desirable. Boric acid and cobalt dichloride are used as boron and cobalt sources, respectively. Boron and cobalt support growth and productivity and a number of cobalt-containing enzymes exist. Therefore, depletion of boric acid and cobalt dichloride could have various negative effects, but knowledge is currently scarce. Herein, we provide an insight into the impact of boric acid and cobalt depletion on recombinant protein production with K. phaffii and additionally show how different vessel materials affect cultivation media compositions through leaking elements. We found that boric acid could be substituted through boron leakiness from borosilicate glassware. Furthermore, depletion of boric acid and cobalt dichloride neither affected high cell density cultivation nor cell morphology and viability on methanol. However, final protein quality of three different industrially relevant enzymes was affected in various ways.
Collapse
Affiliation(s)
- Alexander Pekarsky
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (A.P.); (S.M.)
| | - Sophia Mihalyi
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (A.P.); (S.M.)
| | - Maximilian Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-I2AC, 1060 Vienna, Austria; (M.W.); (A.L.)
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-I2AC, 1060 Vienna, Austria; (M.W.); (A.L.)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (A.P.); (S.M.)
- Correspondence: ; Tel.: +43-1-58801-166473
| |
Collapse
|
9
|
Espejo-Mojica AJ, Rodríguez-López A, Li R, Zheng W, Alméciga-Díaz CJ, Dulcey-Sepúlveda C, Combariza G, Barrera LA. Human recombinant lysosomal β-Hexosaminidases produced in Pichia pastoris efficiently reduced lipid accumulation in Tay-Sachs fibroblasts. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:885-895. [PMID: 33111489 PMCID: PMC8045741 DOI: 10.1002/ajmg.c.31849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/11/2022]
Abstract
GM2 gangliosidosis, Tay-Sachs and Sandhoff diseases, are lysosomal storage disorders characterized by the lysosomal accumulation of GM2 gangliosides. This accumulation is due to deficiency in the activity of the β-hexosaminidases Hex-A or Hex-B, which are dimeric hydrolases formed by αβ or ββ subunits, respectively. These disorders show similar clinical manifestations that range from mild systemic symptoms to neurological damage and premature death. There is still no effective therapy for GM2 gangliosidoses, but some therapeutic alternatives, as enzyme replacement therapy, have being evaluated. Previously, we reported the production of active human recombinant β-hexosaminidases (rhHex-A and rhHex-B) in the methylotrophic yeast Pichia pastoris. In this study, we evaluated in vitro the cellular uptake, intracellular delivery to lysosome, and reduction of stored substrates. Both enzymes were taken-up via endocytic pathway mediated by mannose and mannose-6-phosphate receptors and delivered to lysosomes. Noteworthy, rhHex-A diminished the levels of stored lipids and lysosome mass in fibroblasts from Tay-Sachs patients. Overall, these results confirm the potential of P. pastoris as host to produce recombinant β-hexosaminidases intended to be used in the treatment of GM2 gangliosidosis.
Collapse
Affiliation(s)
- Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Cindy Dulcey-Sepúlveda
- Department of Mathematics. Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Germán Combariza
- Department of Mathematics. Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
10
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Laukens B, Jacobs PP, Geysens K, Martins J, De Wachter C, Ameloot P, Morelle W, Haustraete J, Renauld JC, Samyn B, Contreras R, Devos S, Callewaert N. Off-target glycans encountered along the synthetic biology route toward humanized N-glycans in Pichia pastoris. Biotechnol Bioeng 2020; 117:2479-2488. [PMID: 32374435 DOI: 10.1002/bit.27375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 11/06/2022]
Abstract
The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5 GlcNAc2 N-glycans, glycan profiling revealed two major species: Man5 GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5 GlcNAc2 modified with a Glcα-1,2-Manβ-1,2-Manβ-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5 GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.
Collapse
Affiliation(s)
- Bram Laukens
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Pieter P Jacobs
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Katelijne Geysens
- NMR and Structural Analysis Unit, Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jose Martins
- NMR and Structural Analysis Unit, Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Charlot De Wachter
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Paul Ameloot
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Willy Morelle
- Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq, France
| | | | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Bart Samyn
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Roland Contreras
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Simon Devos
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Koskela EV, Gonzalez Salcedo A, Piirainen MA, Iivonen HA, Salminen H, Frey AD. Mining Data From Plasma Cell Differentiation Identified Novel Genes for Engineering of a Yeast Antibody Factory. Front Bioeng Biotechnol 2020; 8:255. [PMID: 32296695 PMCID: PMC7136540 DOI: 10.3389/fbioe.2020.00255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces cerevisiae is a common platform for production of therapeutic proteins, but it is not intrinsically suited for the manufacturing of antibodies. Antibodies are naturally produced by plasma cells (PCs) and studies conducted on PC differentiation provide a comprehensive blueprint for the cellular transformations needed to create an antibody factory. In this study we mined transcriptomics data from PC differentiation to improve antibody secretion by S. cerevisiae. Through data exploration, we identified several new target genes. We tested the effects of 14 genetic modifications belonging to different cellular processes on protein production. Four of the tested genes resulted in improved antibody expression. The ER stress sensor IRE1 increased the final titer by 1.8-fold and smaller effects were observed with PSA1, GOT1, and HUT1 increasing antibody titers by 1. 6-, 1. 4-, and 1.4-fold. When testing combinations of these genes, the highest increases were observed when co-expressing IRE1 with PSA1, or IRE1 with PSA1 and HUT1, resulting in 3.8- and 3.1-fold higher antibody titers. In contrast, strains expressing IRE1 alone or in combination with the other genes produced similar or lower levels of recombinantly expressed endogenous yeast acid phosphatase compared to the controls. Using a genetic UPR responsive GFP reporter construct, we show that IRE1 acts through constitutive activation of the unfolded protein response. Moreover, the positive effect of IRE1 expression was transferable to other antibody molecules. We demonstrate how data exploration from an evolutionary distant, but highly specialized cell type can pinpoint new genetic targets and provide a novel concept for rationalized cell engineering.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi A Iivonen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi Salminen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
13
|
Rodríguez-López A, Pimentel-Vera LN, Espejo-Mojica AJ, Van Hecke A, Tiels P, Tomatsu S, Callewaert N, Alméciga-Díaz CJ. Characterization of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase Produced in Pichia pastoris as Potential Enzyme for Mucopolysaccharidosis IVA Treatment. J Pharm Sci 2019; 108:2534-2541. [PMID: 30959056 DOI: 10.1016/j.xphs.2019.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
Abstract
Mucopolysaccharidosis IVA (MPS IVA or Morquio A syndrome) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to lysosomal storage of keratan sulfate and chondroitin-6-sulfate. Currently, enzyme replacement therapy using an enzyme produced in CHO cells represents the main treatment option for MPS IVA patients. As an alternative, we reported the production of an active GALNS enzyme produced in the yeast Pichia pastoris (prGALNS), which showed internalization by cultured cells through a potential receptor-mediated process and similar post-translational processing as human enzyme. In this study, we further studied the therapeutic potential of prGALNS through the characterization of the N-glycosylation structure, in vitro cell uptake and keratan sulfate reduction, and in vivo biodistribution and generation of anti-prGALNS antibodies. Taken together, these results represent an important step in the development of a P. pastoris-based platform for production of a therapeutic GALNS for MPS IVA enzyme replacement therapy.
Collapse
Affiliation(s)
- Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia; Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Luisa N Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Annelies Van Hecke
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Tiels
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Shunji Tomatsu
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Departments of Orthopedics and BioMedical, Skeletal Dysplasia, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
14
|
Li S, Sun P, Gong X, Chang S, Li E, Xu Y, Wu J, Liu B. Engineering O-glycosylation in modified N-linked oligosaccharide (Man 12GlcNAc 2∼Man 16GlcNAc 2) Pichia pastoris strains. RSC Adv 2019; 9:8246-8252. [PMID: 35518704 PMCID: PMC9061240 DOI: 10.1039/c8ra08121b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
Yeast have been engineered for the production of therapeutic glycoproteins with humanized N-linked oligosaccharides. Both N- and O-linked oligosaccharides engineered yeast have been attractive prospects, since yeast-specific O-mannosylated proteins were reported to induce an aberrant immune response and alter pharmacokinetics in vivo. In the present study, we genetically manipulated O-glycosylation by disrupting O-mannosyltransferase PMT1 and PMT5 in a low-mannose type N-linked oligosaccharide (Man12GlcNAc2∼Man16GlcNAc2) engineered Pichia pastoris strain to produce therapeutic glycoproteins. The O-mannosyltransferase PMT1 mutant produces anti-Her-2 antibodies with reduced O-linked oligosaccharides and protein degradation, but this strain exhibited growth defects. However, the deletion of O-mannosyltransferase PMT5 individually has a minimal effect on O-glycosylation, degradation of the anti-Her-2 antibody, and strain growth. Thus, by disrupting O-mannosyltransferase PMT1 in an N-glycosylation engineered Pichia pastoris strain, we generated an effective glycoengineered Pichia pastoris strain to effectively produce therapeutic glycoproteins with both engineered N- and O-linked oligosaccharides.
Collapse
Affiliation(s)
- Siqiang Li
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
- School of Biological and Food Engineering, Huanghuai University Zhumadian 463000 China
| | - Peng Sun
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Xin Gong
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Shaohong Chang
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Enzhong Li
- School of Biological and Food Engineering, Huanghuai University Zhumadian 463000 China
| | - Yuanhong Xu
- School of Biological and Food Engineering, Huanghuai University Zhumadian 463000 China
| | - Jun Wu
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Bo Liu
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| |
Collapse
|
15
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Schulz MA, Tian W, Mao Y, Van Coillie J, Sun L, Larsen JS, Chen YH, Kristensen C, Vakhrushev SY, Clausen H, Yang Z. Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology 2018; 28:542-549. [PMID: 29596681 DOI: 10.1093/glycob/cwy022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Precise gene editing technologies are providing new opportunities to stably engineer host cells for recombinant production of therapeutic glycoproteins with different glycan structures. The glycosylation of recombinant therapeutics has long been a focus for both quality and consistency of products and for optimizing and improving pharmacokinetic properties as well as bioactivity. Structures of glycans on therapeutic glycoproteins are important for circulation, biodistribution and bioactivity. In particular, the latter has been demonstrated for therapeutic IgG1 antibodies where the core α1,6Fucose on the conserved N-glycan at Asn297 have remarkable dampening effects on antibody effector functions. We previously explored precise gene engineering and design options for N-glycosylation in CHO cells, and here we focus on engineering options possible for N-glycans on human IgG1. We demonstrate stable precise gene engineering of rather homogenous biantennary N-glycans with and without galactose (G0F, G2F) as well as the α2,6-linked monosialylated (G2FS1) glycoform. We were unable to introduce substantial disialylated glycoforms. Instead we engineered a novel monoantennary homogeneous N-glycan design with complete α2,6-linked sialic acid capping. All N-glycoforms may be engineered with and without core α1,6Fucose. The stably engineered design options enable production of human IgG antibodies with an array of distinct glycoforms for testing and selection of optimal design for different therapeutic applications.
Collapse
Affiliation(s)
- Morten A Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yang Mao
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Joachim S Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Claus Kristensen
- GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark.,GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| |
Collapse
|
17
|
Gupta SK, Shukla P. Glycosylation control technologies for recombinant therapeutic proteins. Appl Microbiol Biotechnol 2018; 102:10457-10468. [DOI: 10.1007/s00253-018-9430-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
|
18
|
Metabolic engineering of Pichia pastoris. Metab Eng 2018; 50:2-15. [PMID: 29704654 DOI: 10.1016/j.ymben.2018.04.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Besides its use for efficient production of recombinant proteins the methylotrophic yeast Pichia pastoris (syn. Komagataella spp.) has been increasingly employed as a platform to produce metabolites of varying origin. We summarize here the impressive methodological developments of the last years to model and analyze the metabolism of P. pastoris, and to engineer its genome and metabolic pathways. Efficient methods to insert, modify or delete genes via homologous recombination and CRISPR/Cas9, supported by modular cloning techniques, have been reported. An outstanding early example of metabolic engineering in P. pastoris was the humanization of protein glycosylation. More recently the cell metabolism was engineered also to enhance the productivity of heterologous proteins. The last few years have seen an increased number of metabolic pathway design and engineering in P. pastoris, mainly towards the production of complex (secondary) metabolites. In this review, we discuss the potential role of P. pastoris as a platform for metabolic engineering, its strengths, and major requirements for future developments of chassis strains based on synthetic biology principles.
Collapse
|
19
|
Pimentel N, Rodríguez-Lopez A, Díaz S, Losada JC, Díaz-Rincón DJ, Cardona C, Espejo-Mojica ÁJ, Ramírez AM, Ruiz F, Landázuri P, Poutou-Piñales RA, Cordoba-Ruiz HA, Alméciga-Díaz CJ, Barrera-Avellaneda LA. Production and characterization of a human lysosomal recombinant iduronate-2-sulfatase produced in Pichia pastoris. Biotechnol Appl Biochem 2018; 65:655-664. [DOI: 10.1002/bab.1660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/24/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Alexander Rodríguez-Lopez
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
- Chemical Department; Faculty of Science; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Sergio Díaz
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Juan C. Losada
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Dennis J. Díaz-Rincón
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Ángela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Aura M. Ramírez
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Fredy Ruiz
- Control; Power Electronics and Management of Technological Innovation (CEPIT); Electronic Engineering Department; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Patricia Landázuri
- Research Group on Cardiovascular and Metabolic Diseases (GECAVYME); Faculty of Health Sciences; University of Quindío; Armenia-Quindío Colombia
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI); Faculty of Science; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Henry A. Cordoba-Ruiz
- Chemical Department; Faculty of Science; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Luis A. Barrera-Avellaneda
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| |
Collapse
|
20
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
21
|
Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus. Enzyme Res 2017; 2017:6980565. [PMID: 28951785 PMCID: PMC5603120 DOI: 10.1155/2017/6980565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 11/28/2022] Open
Abstract
Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.
Collapse
|
22
|
Koskela EV, de Ruijter JC, Frey AD. Following nature's roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnol J 2017; 12. [PMID: 28429845 DOI: 10.1002/biot.201600631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Therapeutic protein production in yeast is a reality in industry with an untapped potential to expand to more complex proteins, such as full-length antibodies. Despite numerous engineering approaches, cellular limitations are preventing the use of Saccharomyces cerevisiae as the titers of recombinant antibodies are currently not competitive. Instead of a host specific approach, the possibility of adopting the features from native producers of antibodies, plasma cells, to improve antibody production in yeast. A subset of mammalian folding factors upregulated in plasma cells for expression in yeast and screened for beneficial effects on antibody secretion using a high-throughput ELISA platform was selected. Co-expression of the mammalian chaperone BiP, the co-chaperone GRP170, or the peptidyl-prolyl isomerase FKBP2, with the antibody improved specific product yields up to two-fold. By comparing strains expressing FKBP2 or the yeast PPIase Cpr5p, the authors demonstrate that speeding up peptidyl-prolyl isomerization by upregulation of catalyzing enzymes is a key factor to improve antibody titers in yeast. The findings show that following the route of plasma cells can improve product titers and contribute to developing an alternative yeast-based antibody factory.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Jorg C de Ruijter
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Current address: Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Craigavon, Northern Ireland, United Kingdom
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
23
|
Adelantado N, Tarazona P, Grillitsch K, García-Ortega X, Monforte S, Valero F, Feussner I, Daum G, Ferrer P. The effect of hypoxia on the lipidome of recombinant Pichia pastoris. Microb Cell Fact 2017; 16:86. [PMID: 28526017 PMCID: PMC5437588 DOI: 10.1186/s12934-017-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 01/17/2023] Open
Abstract
Background Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. Results To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. Conclusions Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Adelantado
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain.,Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Pablo Tarazona
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Xavier García-Ortega
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Sergi Monforte
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria. .,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes. Appl Microbiol Biotechnol 2017; 101:2979-2989. [DOI: 10.1007/s00253-017-8101-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 01/15/2023]
|
25
|
Wells E, Robinson AS. Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600105] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Evan Wells
- Department of Chemical and Biomolecular Engineering; Tulane University; New Orleans USA
| | - Anne Skaja Robinson
- Department of Chemical and Biomolecular Engineering; Tulane University; New Orleans USA
| |
Collapse
|
26
|
Diethard M, Gasser B, Egermeier M, Marx H, Sauer M. Industrial Microorganisms: Saccharomyces cerevisiaeand other Yeasts. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mattanovich Diethard
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| | - Brigitte Gasser
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| | - Michael Egermeier
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- BOKU - University of Natural Resources and Life Sciences; CD-Laboratory for Biotechnology of Glycerol; Muthgasse 18 1190 Vienna Austria
| | - Hans Marx
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
| | - Michael Sauer
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
- BOKU - University of Natural Resources and Life Sciences; CD-Laboratory for Biotechnology of Glycerol; Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
27
|
Rodríguez-López A, Alméciga-Díaz CJ, Sánchez J, Moreno J, Beltran L, Díaz D, Pardo A, Ramírez AM, Espejo-Mojica AJ, Pimentel L, Barrera LA. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep 2016; 6:29329. [PMID: 27378276 PMCID: PMC4932491 DOI: 10.1038/srep29329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A.
Collapse
Affiliation(s)
- Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltran
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea Pardo
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luisa Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
28
|
Gombert AK, Madeira JV, Cerdán ME, González-Siso MI. Kluyveromyces marxianus as a host for heterologous protein synthesis. Appl Microbiol Biotechnol 2016; 100:6193-6208. [PMID: 27260286 DOI: 10.1007/s00253-016-7645-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/22/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023]
Abstract
The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.
Collapse
Affiliation(s)
- Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - José Valdo Madeira
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
29
|
Analytical detection and characterization of biopharmaceutical glycosylation by MS. Bioanalysis 2016; 8:711-27. [PMID: 26964748 DOI: 10.4155/bio.16.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation plays an important role in ensuring the proper structure and function of most biotherapeutic proteins. Even small changes in glycan composition, structure, or location can have a drastic impact on drug safety and efficacy. Recently, glycosylation has become the subject of increased focus as biopharmaceutical companies rush to create not only biosimilars, but also biobetters based on existing biotherapeutic proteins. Against this backdrop of ongoing biopharmaceutical innovation, updated methods for accurate and detailed analysis of protein glycosylation are critical for biopharmaceutical companies and government regulatory agencies alike. This review summarizes current methods of characterizing biopharmaceutical glycosylation, including compositional mass profiling, isomer-specific profiling and structural elucidation by MS and hyphenated techniques.
Collapse
|
30
|
Dai M, Yu C, Fang T, Fu L, Wang J, Zhang J, Ren J, Xu J, Zhang X, Chen W. Identification and Functional Characterization of Glycosylation of Recombinant Human Platelet-Derived Growth Factor-BB in Pichia pastoris. PLoS One 2015; 10:e0145419. [PMID: 26701617 PMCID: PMC4689512 DOI: 10.1371/journal.pone.0145419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Yeast Pichia pastoris is a widely used system for heterologous protein expression. However, post-translational modifications, especially glycosylation, usually impede pharmaceutical application of recombinant proteins because of unexpected alterations in protein structure and function. The aim of this study was to identify glycosylation sites on recombinant human platelet-derived growth factor-BB (rhPDGF-BB) secreted by P. pastoris, and investigate possible effects of O-linked glycans on PDGF-BB functional activity. PDGF-BB secreted by P. pastoris is very heterogeneous and contains multiple isoforms. We demonstrated that PDGF-BB was O-glycosylated during the secretion process and detected putative O-glycosylation sites using glycosylation staining and immunoblotting. By site-directed mutagenesis and high-resolution LC/MS analysis, we, for the first time, identified two threonine residues at the C-terminus as the major O-glycosylation sites on rhPDGF-BB produced in P. pastoris. Although O-glycosylation resulted in heterogeneous protein expression, the removal of glycosylation sites did not affect rhPDGF-BB mitogenic activity. In addition, the unglycosylated PDGF-BBΔGly mutant exhibited the immunogenicity comparable to that of the wild-type form. Furthermore, antiserum against PDGF-BBΔGly also recognized glycosylated PDGF-BB, indicating that protein immunogenicity was unaltered by glycosylation. These findings elucidate the effect of glycosylation on PDGF-BB structure and biological activity, and can potentially contribute to the design and production of homogeneously expressed unglycosylated or human-type glycosylated PDGF-BB in P. pastoris for pharmaceutical applications.
Collapse
Affiliation(s)
- Mengmeng Dai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- Clinical Laboratory, The 148th Hospital of PLA, Zibo, China
| | - Changming Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ting Fang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Ren
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopeng Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- * E-mail: (WC); (XZ)
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- * E-mail: (WC); (XZ)
| |
Collapse
|
31
|
Anyaogu DC, Mortensen UH. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins. Curr Opin Biotechnol 2015; 36:122-8. [DOI: 10.1016/j.copbio.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/07/2015] [Accepted: 08/09/2015] [Indexed: 11/16/2022]
|
32
|
Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, Díaz S, Pimentel N, Moreno J, Sánchez J, Sánchez OF, Córdoba H, Poutou-Piñales RA, Barrera LA. Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 2015; 116:13-23. [PMID: 26071627 DOI: 10.1016/j.ymgme.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.
Collapse
Affiliation(s)
- Ángela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Alexander Rodríguez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia; Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ángela Mosquera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltrán
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sergio Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Oscar F Sánchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Henry Córdoba
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
33
|
Fidan O, Zhan J. Recent advances in engineering yeast for pharmaceutical protein production. RSC Adv 2015. [DOI: 10.1039/c5ra13003d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently available systems and synthetic biology tools can be applied to yeast engineering for improved biopharmaceutical protein production.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| | - Jixun Zhan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| |
Collapse
|