1
|
Wu B, Qi Z, Qian X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023; 15:813. [PMID: 37112794 PMCID: PMC10143207 DOI: 10.3390/v15040813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lately, the global incidence of flavivirus infection has been increasing dramatically and presents formidable challenges for public health systems around the world. Most clinically significant flaviviruses are mosquito-borne, such as the four serotypes of dengue virus, Zika virus, West Nile virus, Japanese encephalitis virus and yellow fever virus. Until now, no effective antiflaviviral drugs are available to fight flaviviral infection; thus, a highly immunogenic vaccine would be the most effective weapon to control the diseases. In recent years, flavivirus vaccine research has made major breakthroughs with several vaccine candidates showing encouraging results in preclinical and clinical trials. This review summarizes the current advancement, safety, efficacy, advantages and disadvantages of vaccines against mosquito-borne flaviviruses posing significant threats to human health.
Collapse
Affiliation(s)
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| |
Collapse
|
2
|
Shartova N, Mironova V, Zelikhina S, Korennoy F, Grishchenko M. Spatial patterns of West Nile virus distribution in the Volgograd region of Russia, a territory with long-existing foci. PLoS Negl Trop Dis 2022; 16:e0010145. [PMID: 35100289 PMCID: PMC8803152 DOI: 10.1371/journal.pntd.0010145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
Southern Russia remains affected by West Nile virus (WNV). In the current study, we identified the spatial determinants of WNV distribution in an area with endemic virus transmission, with special reference to the urban settings, by mapping probable points of human infection acquisition and points of virus detection in mosquitoes, ticks, birds, and mammals during 1999-2016. The suitability of thermal conditions for extrinsic virus replication was assessed based on the approach of degree-day summation and their changes were estimated by linear trend analysis. A generalized linear model was used to analyze the year-to-year variation of human cases versus thermal conditions. Environmental suitability was determined by ecological niche modelling using MaxEnt software. Human population density was used as an offset to correct for possible bias. Spatial analysis of virus detection in the environment showed significant contributions from surface temperature, altitude, and distance from water bodies. When indicators of location and mobility of the human population were included, the relative impact of factors changed, with roads becoming most important. When the points of probable human case infection were added, the percentage of leading factors changed only slightly. The urban environment significantly increased the epidemic potential of the territory and created quite favorable conditions for virus circulation. The private building sector with low-storey houses and garden plots located in the suburbs provided a connection between urban and rural transmission cycles.
Collapse
Affiliation(s)
- Natalia Shartova
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Varvara Mironova
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | | | - Fedor Korennoy
- FGBI Federal Center for Animal Health (FGBI ARRIAH), Vladimir, Russia
| | - Mikhail Grishchenko
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Geography and Geoinformatics, HSE University, Moscow, Russia
| |
Collapse
|
3
|
Khan MT, Islam R, Jerin TJ, Mahmud A, Khatun S, Kobir A, Islam MN, Akter A, Mondal SI. Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS One 2021; 16:e0253393. [PMID: 34138958 PMCID: PMC8211291 DOI: 10.1371/journal.pone.0253393] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
West Nile Virus (WNV) is a life threatening flavivirus that causes significant morbidity and mortality worldwide. No preventive therapeutics including vaccines against WNV are available for human use. In this study, immunoinformatics approach was performed to design a multi epitope-based subunit vaccine against this deadly pathogen. Human (HLA) and Mice (H-2) allele specific potential T-cell and B-cell epitopes were shortlisted through a stringent procedure. Molecular docking showed selected epitopes that have stronger binding affinity with human TLR-4. Molecular dynamics simulation confirmed the stable nature of the docked complex. Furthermore, in silico cloning analysis ensures efficient expression of desired gene in the microbial system. Interestingly, previous studies showed that two of our selected epitopes have strong immune response against WNV. Therefore, selected epitopes could be strong vaccine candidates to prevent WNV infections in human. However, further in vitro and in vivo investigations could be strengthening the validation of the vaccine candidate against WNV.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tarhima Jahan Jerin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sahara Khatun
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ahasanul Kobir
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Md Nahidul Islam
- Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- * E-mail: (SIM); (AA)
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- * E-mail: (SIM); (AA)
| |
Collapse
|
4
|
West Nile Virus Vaccine Design by T Cell Epitope Selection: In Silico Analysis of Conservation, Functional Cross-Reactivity with the Human Genome, and Population Coverage. J Immunol Res 2020; 2020:7235742. [PMID: 32258174 PMCID: PMC7106935 DOI: 10.1155/2020/7235742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
West Nile Virus (WNV) causes a debilitating and life-threatening neurological disease in humans. Since its emergence in Africa 50 years ago, new strains of WNV and an expanding geographical distribution have increased public health concerns. There are no licensed therapeutics against WNV, limiting effective infection control. Vaccines represent the most efficacious and efficient medical intervention known. Epitope-based vaccines against WNV remain significantly underexploited. Here, we use a selection protocol to identify a set of conserved prevalidated immunogenic T cell epitopes comprising a putative WNV vaccine. Experimentally validated immunogenic WNV epitopes and WNV sequences were retrieved from the IEDB and West Nile Virus Variation Database. Clustering and multiple sequence alignment identified a smaller subset of representative sequences. Protein variability analysis identified evolutionarily conserved sequences, which were used to select a diverse set of immunogenic candidate T cell epitopes. Cross-reactivity and human leukocyte antigen-binding affinities were assessed to eliminate unsuitable epitope candidates. Population protection coverage (PPC) quantified individual epitopes and epitope combinations against the world population. 3 CD8+ T cell epitopes (ITYTDVLRY, TLARGFPFV, and SYHDRRWCF) and 1 CD4+ epitope (VTVNPFVSVATANAKVLI) were selected as a putative WNV vaccine, with an estimated PPC of 97.14%.
Collapse
|
5
|
Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 2020; 15:333-348. [DOI: 10.1080/17460441.2020.1714586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Abstract
West Nile virus (WNV) is a widely spread human pathogenic arthropod-borne virus. It can lead to severe, sometimes fatal, neurological disease. Over the last two decades, several vaccine candidates for the protection of humans from WNV have been developed. Some technologies were transferred into clinical testing, but these approaches have not yet led to a licensed product. This review summarizes the current status of a human WNV vaccine and discusses reasons for the lack of clinically advanced product candidates. It also discusses the problem of immunological cross-reactivity between flaviviruses and how it can be addressed during vaccine development.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology , Leipzig , Germany
| |
Collapse
|
7
|
Atkinson B, Hewson R. Emerging arboviruses of clinical importance in Central Asia. J Gen Virol 2018; 99:1172-1184. [PMID: 30067170 DOI: 10.1099/jgv.0.001125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Arboviruses are viral pathogens that are transmitted from an animal reservoir to humans via an arthropod vector. These viruses result in a large burden of disease worldwide and show a propensity for establishing new endemic foci in geographically distant regions. The potential impact of arboviruses in Central Asia is unclear due to the scarcity of reports available in English; however, the collation of available data shows that numerous important human viruses are circulating in the region. Pathogens such as Crimean-Congo haemorrhagic fever virus, tick-borne encephalitis virus and Tahyna virus are likely to be responsible for numerous cases of human disease in Central Asia on an annual basis. There is evidence that pathogens such as West Nile virus and sandfly fever virus have resulted in sporadic outbreaks of human disease across the region; these events appear to be triggered by a significant change in the abundance of local arthropod vectors or events altering the contact between humans and local arthropod populations, such as conflict or natural disasters. In addition, there are several under-researched arboviruses that could result in a significant disease, including Karshi virus, Issyk-Kul virus and Syr-Darya Valley fever virus. This review provides the first comprehensive assessment of emerging arboviruses in Central Asia. Further research is required to assess the full impact of arboviruses on human health in the region and to monitor potential spread. Up-to-date information regarding arbovirus endemicity will allow for the development and distribution of rapid diagnostics, the implementation of bite-prevention strategies in at-risk areas and improved travel recommendations.
Collapse
Affiliation(s)
- Barry Atkinson
- †Present address: The Pirbright Institute, Pirbright, Woking GU24 0NF, UK.,National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
8
|
Collins MH, Metz SW. Progress and Works in Progress: Update on Flavivirus Vaccine Development. Clin Ther 2017; 39:1519-1536. [PMID: 28754189 DOI: 10.1016/j.clinthera.2017.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
Most areas of the globe are endemic for at least one flavivirus, putting billions at risk for infection. This diverse group of viral pathogens causes a range of manifestations in humans from asymptomatic infection to hemorrhagic fever to encephalitis to birth defects and even death. Many flaviviruses are transmitted by mosquitos and have expanded in geographic distribution in recent years, with dengue virus being the most prevalent, infecting approximately 400 million people each year. The explosive emergence of Zika virus in Latin America in 2014 refocused international attention on this medically important group of viruses. Meanwhile, yellow fever has caused major outbreaks in Africa and South America since 2015 despite a reliable vaccine. There is no vaccine for Zika yet, and the only licensed dengue vaccine performs suboptimally in certain contexts. Further lessons are found when considering the experience with Japanese encephalitis virus, West Nile virus, and tickborne encephalitis virus, all of which now have protective vaccination in human or veterinary populations. Thus, vaccination is a mainstay of public health strategy for combating flavivirus infections; however, numerous challenges exist along the path from development to delivery of a tolerable and effective vaccine. Nevertheless, intensification of investment and effort in this area holds great promise for significantly reducing the global burden of disease attributable to flavivirus infection.
Collapse
Affiliation(s)
- Matthew H Collins
- Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina.
| | - Stefan W Metz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Saiz JC, Vázquez-Calvo Á, Blázquez AB, Merino-Ramos T, Escribano-Romero E, Martín-Acebes MA. Zika Virus: the Latest Newcomer. Front Microbiol 2016; 7:496. [PMID: 27148186 PMCID: PMC4835484 DOI: 10.3389/fmicb.2016.00496] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/27/2016] [Indexed: 12/20/2022] Open
Abstract
Since the beginning of this century, humanity has been facing a new emerging, or re-emerging, virus threat almost every year: West Nile, Influenza A, avian flu, dengue, Chikungunya, SARS, MERS, Ebola, and now Zika, the latest newcomer. Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, was identified in 1947 in a sentinel monkey in Uganda, and later on in humans in Nigeria. The virus was mainly confined to the African continent until it was detected in south-east Asia the 1980's, then in the Micronesia in 2007 and, more recently in the Americas in 2014, where it has displayed an explosive spread, as advised by the World Health Organization, which resulted in the infection of hundreds of thousands of people. ZIKV infection was characterized by causing a mild disease presented with fever, headache, rash, arthralgia, and conjunctivitis, with exceptional reports of an association with Guillain-Barre syndrome (GBS) and microcephaly. However, since the end of 2015, an increase in the number of GBS associated cases and an astonishing number of microcephaly in fetus and new-borns in Brazil have been related to ZIKV infection, raising serious worldwide public health concerns. Clarifying such worrisome relationships is, thus, a current unavoidable goal. Here, we extensively review what is currently known about ZIKV, from molecular biology, transmission routes, ecology, and epidemiology, to clinical manifestations, pathogenesis, diagnosis, prophylaxis, and public health.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Volz A, Lim S, Kaserer M, Lülf A, Marr L, Jany S, Deeg CA, Pijlman GP, Koraka P, Osterhaus ADME, Martina BE, Sutter G. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens. Vaccine 2016; 34:1915-26. [PMID: 26939903 DOI: 10.1016/j.vaccine.2016.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/30/2022]
Abstract
West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans.
Collapse
Affiliation(s)
- Asisa Volz
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Stephanie Lim
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Martina Kaserer
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Anna Lülf
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Lisa Marr
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Sylvia Jany
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Cornelia A Deeg
- Institute for Animal Physiology, LMU University of Munich, Munich, Germany
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Penelope Koraka
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Byron E Martina
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany.
| |
Collapse
|
11
|
Barzon L, Pacenti M, Sinigaglia A, Berto A, Trevisan M, Palù G. West Nile virus infection in children. Expert Rev Anti Infect Ther 2015; 13:1373-86. [PMID: 26325613 DOI: 10.1586/14787210.2015.1083859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus responsible for an increasing number of outbreaks of neuroinvasive disease in North America, Europe, and neighboring countries. Almost all WNV infections in humans are transmitted through the bite of infected mosquitoes. Transmission during pregnancy and through breastfeeding has been reported, but the risk seems to be very low. West Nile disease in children is less common (1-5% of all WNV cases) and associated with milder symptoms and better outcome than in elderly individuals, even though severe neuroinvasive disease and death have been reported also among children. However, the incidence of WNV infection and disease in children is probably underestimated and the disease spectrum is not fully understood because of lack of reporting and underdiagnosis in children. Infection is diagnosed by detection of WNV-specific antibodies in serum and WNV RNA in plasma and urine. Since no effective WNV-specific drugs are available, therapy is mainly supportive.
Collapse
Affiliation(s)
- Luisa Barzon
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Monia Pacenti
- b 2 Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, 35128 Padova, Italy
| | | | - Alessandro Berto
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Marta Trevisan
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Giorgio Palù
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
12
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|