1
|
Yaffe E, Dethlefsen L, Patankar AV, Gui C, Holmes S, Relman DA. Brief antibiotic use drives human gut bacteria towards low-cost resistance. Nature 2025; 641:182-191. [PMID: 40269166 DOI: 10.1038/s41586-025-08781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2025] [Indexed: 04/25/2025]
Abstract
Understanding the relationship between antibiotic use and the evolution of antimicrobial resistance is vital for effective antibiotic stewardship. Yet, animal models and in vitro experiments poorly replicate real-world conditions1. To explain how resistance evolves in vivo, we exposed 60 human participants to ciprofloxacin and used longitudinal stool samples and a new computational method to assemble the genomes of 5,665 populations of commensal bacterial species within participants. Analysis of 2.3 million polymorphic sequence variants revealed 513 populations that underwent selective sweeps. We found convergent evolution focused on DNA gyrase and evidence of dispersed selective pressure at other genomic loci. Roughly 10% of susceptible bacterial populations evolved towards resistance through sweeps that involved substitutions at a specific amino acid in gyrase. The evolution of gyrase was associated with large populations that decreased in relative abundance during exposure. Sweeps persisted for more than 10 weeks in most cases and were not projected to revert within a year. Targeted amplification showed that gyrase mutations arose de novo within the participants and exhibited no measurable fitness cost. These findings revealed that brief ciprofloxacin exposure drives the evolution of resistance in gut commensals, with mutations persisting long after exposure. This study underscores the capacity of the human gut to promote the evolution of resistance and identifies key genomic and ecological factors that shape bacterial adaptation in vivo.
Collapse
Affiliation(s)
- Eitan Yaffe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Les Dethlefsen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arati V Patankar
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Chen Gui
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Bai H, Liu T, Wang H, Wang Z. Antibacterial characteristics and mechanistic insights of combined tea polyphenols, Nisin, and epsilon-polylysine against feline oral pathogens: a comprehensive transcriptomic and metabolomic analysis. J Appl Microbiol 2024; 135:lxae189. [PMID: 39066499 DOI: 10.1093/jambio/lxae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
AIMS This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals. METHODS AND RESULTS Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens. TP showed significant resistance against S. minor, and Nisin against S. mutans. The combination treatment (Comb) of TP, Nisin, and PL in a ratio of 13:5:1 demonstrated broad-spectrum antibacterial activity, maintaining low MIC values, forming large inhibition zones, prolonging the bacterial lag phase, reducing growth rates, and inhibiting biofilm formation. RNA sequencing and metabolomic analysis indicated that TP, Nisin, and PL inhibited various membrane-bound carbohydrate-specific transferases through the phosphoenolpyruvate-dependent phosphotransferase system in S. canis, disrupting carbohydrate uptake. They also downregulated glycolysis and the citric acid cycle, inhibiting cellular energy metabolism. Additionally, they modulated the activities of peptidoglycan glycosyltransferases and d-alanyl-d-alanine carboxypeptidase, interfering with peptidoglycan cross-linking and bacterial cell wall stability. CONCLUSIONS The Comb therapy significantly enhances antibacterial efficacy by targeting multiple bacterial pathways, offering potential applications in food and pharmaceutical antimicrobials.
Collapse
Affiliation(s)
- Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| | - Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| | - Hengyan Wang
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| | - Zhanzhong Wang
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| |
Collapse
|
3
|
Lewin GR, Kapur A, Cornforth DM, Duncan RP, Diggle FL, Moustafa DA, Harrison SA, Skaar EP, Chazin WJ, Goldberg JB, Bomberger JM, Whiteley M. Application of a quantitative framework to improve the accuracy of a bacterial infection model. Proc Natl Acad Sci U S A 2023; 120:e2221542120. [PMID: 37126703 PMCID: PMC10175807 DOI: 10.1073/pnas.2221542120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Laboratory models are critical to basic and translational microbiology research. Models serve multiple purposes, from providing tractable systems to study cell biology to allowing the investigation of inaccessible clinical and environmental ecosystems. Although there is a recognized need for improved model systems, there is a gap in rational approaches to accomplish this goal. We recently developed a framework for assessing the accuracy of microbial models by quantifying how closely each gene is expressed in the natural environment and in various models. The accuracy of the model is defined as the percentage of genes that are similarly expressed in the natural environment and the model. Here, we leverage this framework to develop and validate two generalizable approaches for improving model accuracy, and as proof of concept, we apply these approaches to improve models of Pseudomonas aeruginosa infecting the cystic fibrosis (CF) lung. First, we identify two models, an in vitro synthetic CF sputum medium model (SCFM2) and an epithelial cell model, that accurately recapitulate different gene sets. By combining these models, we developed the epithelial cell-SCFM2 model which improves the accuracy of over 500 genes. Second, to improve the accuracy of specific genes, we mined publicly available transcriptome data, which identified zinc limitation as a cue present in the CF lung and absent in SCFM2. Induction of zinc limitation in SCFM2 resulted in accurate expression of 90% of P. aeruginosa genes. These approaches provide generalizable, quantitative frameworks for microbiological model improvement that can be applied to any system of interest.
Collapse
Affiliation(s)
- Gina R. Lewin
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| | - Ananya Kapur
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Daniel M. Cornforth
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| | - Rebecca P. Duncan
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA30322
| | - Frances L. Diggle
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| | - Dina A. Moustafa
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA30322
| | - Simone A. Harrison
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
- Department of Chemistry, Vanderbilt University, Nashville, TN37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN37232
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
- Department of Chemistry, Vanderbilt University, Nashville, TN37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN37232
| | - Joanna B. Goldberg
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA30322
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| |
Collapse
|
4
|
Woods RJ, Barbosa C, Koepping L, Raygoza JA, Mwangi M, Read AF. The evolution of antibiotic resistance in an incurable and ultimately fatal infection: A retrospective case study. Evol Med Public Health 2023; 11:163-173. [PMID: 37325804 PMCID: PMC10266578 DOI: 10.1093/emph/eoad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objectives The processes by which pathogens evolve within a host dictate the efficacy of treatment strategies designed to slow antibiotic resistance evolution and influence population-wide resistance levels. The aim of this study is to describe the underlying genetic and phenotypic changes leading to antibiotic resistance within a patient who died as resistance evolved to available antibiotics. We assess whether robust patterns of collateral sensitivity and response to combinations existed that might have been leveraged to improve therapy. Methodology We used whole-genome sequencing of nine isolates taken from this patient over 279 days of a chronic infection with Enterobacter hormaechei, and systematically measured changes in resistance against five of the most relevant drugs considered for treatment. Results The entirety of the genetic change is consistent with de novo mutations and plasmid loss events, without acquisition of foreign genetic material via horizontal gene transfer. The nine isolates fall into three genetically distinct lineages, with early evolutionary trajectories being supplanted by previously unobserved multi-step evolutionary trajectories. Importantly, although the population evolved resistance to all the antibiotics used to treat the infection, no single isolate was resistant to all antibiotics. Evidence of collateral sensitivity and response to combinations therapy revealed inconsistent patterns across this diversifying population. Conclusions Translating antibiotic resistance management strategies from theoretical and laboratory data to clinical situations, such as this, will require managing diverse population with unpredictable resistance trajectories.
Collapse
Affiliation(s)
- Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Infectious Diseases Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Camilo Barbosa
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Laura Koepping
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Juan A Raygoza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Mwangi
- Machine Learning Modeling Working Group, Synopsys, Mountain View, CA, USA
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Glasgow AMA, Greene CM. Epithelial damage in the cystic fibrosis lung: the role of host and microbial factors. Expert Rev Respir Med 2022; 16:737-748. [PMID: 35833354 DOI: 10.1080/17476348.2022.2100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The airway epithelium is a key system within the lung. It acts as a physical barrier to inhaled factors, and can actively remove unwanted microbes and particles from the lung via the mucociliary escalator. On a physiological level, it senses the presence of pathogens and initiates innate immune responses to combat their effects. Hydration of the airways is also controlled by the epithelium. Within the cystic fibrosis (CF) lung, these properties are suboptimal and contribute to the pulmonary manifestations of CF. AREAS COVERED In this review, we discuss how various host and microbial factors can contribute to airway epithelium dysfunction in the CF lung focusing on mechanisms relating to the mucociliary escalator and protease expression and function. We also explore how alterations in microRNA expression can impact the behavior of the airway epithelium. EXPERT OPINION Notwithstanding the unprecedented benefits that CFTR modulator drugs now provide to the health of CF sufferers, it will be important to delve more deeply into additional mechanisms underpinning CF lung disease such as those illustrated here in an attempt to counteract these aberrant processes and further enhance quality of life for people with CF.
Collapse
Affiliation(s)
- Arlene M A Glasgow
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland (RCSI), Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland (RCSI), Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Persistence and genetic adaptation of Pseudomonas aeruginosa in patients with chronic obstructive pulmonary disease. Clin Microbiol Infect 2022; 28:990-995. [DOI: 10.1016/j.cmi.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022]
|
7
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Reece E, Bettio PHDA, Renwick J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10070827. [PMID: 34356747 PMCID: PMC8300716 DOI: 10.3390/antibiotics10070827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF) airway disease and contributes to significant inflammation, airway damage, and poorer disease outcomes. The CF airway is now known to be host to a complex community of microorganisms, and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering the CF airway is host to a diverse community of microorganisms or 'microbiome' and that these microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa infection is likely influenced by these microbial relationships. This review combines the literature to date on interactions between P. aeruginosa and other airway microorganisms and the influence of these interactions on P. aeruginosa tolerance to antimicrobials.
Collapse
|
10
|
Gabrielaite M, Nielsen FC, Johansen HK, Marvig RL. Achromobacter spp. genetic adaptation in cystic fibrosis. Microb Genom 2021; 7:000582. [PMID: 34232117 PMCID: PMC8477396 DOI: 10.1099/mgen.0.000582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Achromobacter spp. are emerging pathogens in patients with cystic fibrosis (CF) and Achromobacter spp. caused infections are associated with more severe disease outcomes and high intrinsic antibiotic resistance. While conventional CF pathogens are studied extensively, little is known about the genetic determinants leading to antibiotic resistance and the genetic adaptation in Achromobacter spp. infections. Here, we analysed 101 Achromobacter spp. genomes from 51 patients with CF isolated during the course of up to 20 years of infection to identify within-host adaptation, mutational signatures and genetic variation associated with increased antibiotic resistance. We found that the same regulatory and inorganic ion transport genes were frequently mutated in persisting clone types within and between Achromobacter species, indicating convergent genetic adaptation. Genome-wide association study of six antibiotic resistance phenotypes revealed the enrichment of associated genes involved in inorganic ion transport, transcription gene enrichment in β-lactams, and energy production and translation gene enrichment in the trimethoprim/sulfonamide group. Overall, we provide insights into the pathogenomics of Achromobacter spp. infections in patients with CF airways. Since emerging pathogens are increasingly recognized as an important healthcare issue, our findings on evolution of antibiotic resistance and genetic adaptation can facilitate better understanding of disease progression and how mutational changes have implications for patients with CF.
Collapse
Affiliation(s)
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Heterogenous Susceptibility to R-Pyocins in Populations of Pseudomonas aeruginosa Sourced from Cystic Fibrosis Lungs. mBio 2021; 12:mBio.00458-21. [PMID: 33947755 PMCID: PMC8262887 DOI: 10.1128/mbio.00458-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacteriocins are proteinaceous antimicrobials produced by bacteria that are active against other strains of the same species. R-type pyocins are phage tail-like bacteriocins produced by Pseudomonas aeruginosa Due to their antipseudomonal activity, R-pyocins have potential as therapeutics in infection. P. aeruginosa is a Gram-negative opportunistic pathogen and is particularly problematic for individuals with cystic fibrosis (CF). P. aeruginosa organisms from CF lung infections develop increasing resistance to antibiotics, making new treatment approaches essential. P. aeruginosa populations become phenotypically and genotypically diverse during infection; however, little is known of the efficacy of R-pyocins against heterogeneous populations. R-pyocins vary by subtype (R1 to R5), distinguished by binding to different residues on the lipopolysaccharide (LPS). Each type varies in killing spectrum, and each strain produces only one R-type. To evaluate the prevalence of different R-types, we screened P. aeruginosa strains from the International Pseudomonas Consortium Database (IPCD) and from our biobank of CF strains. We found that (i) R1-types were the most prevalent R-type among strains from respiratory sources, (ii) a large number of strains lack R-pyocin genes, and (iii) isolates collected from the same patient have the same R-type. We then assessed the impact of intrastrain diversity on R-pyocin susceptibility and found a heterogenous response to R-pyocins within populations, likely due to differences in the LPS core. Our work reveals that heterogeneous populations of microbes exhibit variable susceptibility to R-pyocins and highlights that there is likely heterogeneity in response to other types of LPS-binding antimicrobials, including phage.IMPORTANCE R-pyocins have potential as alternative therapeutics against Pseudomonas aeruginosa in chronic infection; however, little is known about the efficacy of R-pyocins in heterogeneous bacterial populations. P. aeruginosa is known to become resistant to multiple antibiotics and to evolve phenotypic and genotypic diversity over time; thus, it is particularly difficult to eradicate in chronic cystic fibrosis (CF) lung infections. In this study, we found that P. aeruginosa populations from CF lungs maintain the same R-pyocin genotype but exhibit heterogeneity in susceptibility to R-pyocins from other strains. Our findings suggest there is heterogeneity in response to other types of LPS-binding antimicrobials, such as phage, highlighting the necessity of further studying the potential of LPS-binding antimicrobial particles as alternative therapies in chronic infections.
Collapse
|
12
|
Camus L, Briaud P, Vandenesch F, Moreau K. How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 2021; 12:617784. [PMID: 33746915 PMCID: PMC7966511 DOI: 10.3389/fmicb.2021.617784] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the two most prevalent bacteria species in the lungs of cystic fibrosis (CF) patients and are associated with poor clinical outcomes. Co-infection by the two species is a frequent situation that promotes their interaction. The ability of P. aeruginosa to outperform S. aureus has been widely described, and this competitive interaction was, for a long time, the only one considered. More recently, several studies have described that the two species are able to coexist. This change in relationship is linked to the evolution of bacterial strains in the lungs. This review attempts to decipher how bacterial adaptation to the CF environment can induce a change in the type of interaction and promote coexisting interaction between P. aeruginosa and S. aureus. The impact of coexistence on the establishment and maintenance of a chronic infection will also be presented, by considering the latest research on the subject.
Collapse
Affiliation(s)
- Laura Camus
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| |
Collapse
|
13
|
Lienard A, Hosny M, Jneid J, Schuldiner S, Cellier N, Sotto A, La Scola B, Lavigne JP, Pantel A. Escherichia coli Isolated from Diabetic Foot Osteomyelitis: Clonal Diversity, Resistance Profile, Virulence Potential, and Genome Adaptation. Microorganisms 2021; 9:microorganisms9020380. [PMID: 33668594 PMCID: PMC7918245 DOI: 10.3390/microorganisms9020380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
This study assessed the clonal diversity, the resistance profile and the virulence potential of Escherichia coli strains isolated from diabetic foot infection (DFI) and diabetic foot osteomyelitis (DFOM). A retrospective single-centre study was conducted on patients diagnosed with E. coli isolated from deep DFI and DFOM at Clinique du Pied Diabétique Gard-Occitanie (France) over a two-year period. Phylogenetic backgrounds, virulence factors (VFs) and antibiotic resistance profiles were determined. Whole-genome analysis of E. coli strains isolated from same patients at different periods were performed. From the two-years study period, 35 E. coli strains isolated from 33 patients were analysed; 73% were isolated from DFOM. The majority of the strains belonged to the virulent B2 and D phylogenetic groups (82%). These isolates exhibited a significant higher average of VFs number than strains belonging to other groups (p < 0.001). papG2 gene was significantly more detected in strains belonging to B2 phylogroup isolated from DFI compared to DFOM (p = 0.003). The most prevalent antibiotic resistance pattern was observed for ampicillin (82%), cotrimoxazole (45%), and ciprofloxacin (33%). The genome analysis of strains isolated at two periods in DFOM showed a decrease of the genome size, and this decrease was more important for the strain isolated at nine months (vs. four months). A shared mutation on the putative acyl-CoA dehydrogenase-encoding gene aidB was observed on both strains. E. coli isolates from DFOM were highly genetically diverse with different pathogenicity traits. Their adaptation in the bone structure could require genome reduction and some important modifications in the balance virulence/resistance of the bacteria.
Collapse
Affiliation(s)
- Alexi Lienard
- VBIC, INSERM U1047, Université de Montpellier, UFR de Médecine, 30908 Nîmes CEDEX 2, France;
| | - Michel Hosny
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France; (M.H.); (J.J.); (B.L.S.)
| | - Joanne Jneid
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France; (M.H.); (J.J.); (B.L.S.)
| | - Sophie Schuldiner
- VBIC, INSERM U1047, Université de Montpellier, Service des Maladies Métaboliques et Endocriniennes, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| | - Nicolas Cellier
- Service d’Orthopédie, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| | - Albert Sotto
- VBIC, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| | - Bernard La Scola
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France; (M.H.); (J.J.); (B.L.S.)
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
- Correspondence:
| | - Alix Pantel
- VBIC, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| |
Collapse
|
14
|
Cottalorda A, Leoz M, Dahyot S, Gravey F, Grand M, Froidure T, Aujoulat F, Le Hello S, Jumas-Bilak E, Pestel-Caron M. Within-Host Microevolution of Pseudomonas aeruginosa Urinary Isolates: A Seven-Patient Longitudinal Genomic and Phenotypic Study. Front Microbiol 2021; 11:611246. [PMID: 33519766 PMCID: PMC7840598 DOI: 10.3389/fmicb.2020.611246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Background Pseudomonas aeruginosa is responsible for up to 10% of healthcare associated urinary tract infections (UTI), which can be difficult to treat and can lead to bacterial persistence. While numerous whole genome sequencing (WGS) analyses have explored within-host genomic adaptation and microevolution of P. aeruginosa during cystic fibrosis (CF) infections, little is known about P. aeruginosa adaptation to the urinary tract. Results Whole genome sequencing was performed on 108 P. aeruginosa urinary isolates, representing up to five isolates collected from 2 to 5 successive urine samples from seven patients hospitalized in a French hospital over 48–488 days. Clone type single nucleotide polymorphisms (ctSNPs) analysis revealed that each patient was colonized by a single clone type (<6000 SNPs between two isolates) at a given time and over time. However, 0–126 SNPs/genome/year were detected over time. Furthermore, large genomic deletions (1–5% of the genome) were identified in late isolates from three patients. For 2 of them, a convergent deletion of 70 genes was observed. Genomic adaptation (SNPs and deletion) occurred preferentially in genes encoding transcriptional regulators, two-component systems, and carbon compound catabolism. This genomic adaptation was significantly associated with a reduced fitness, particularly in artificial urine medium, but no strict correlation was identified between genomic adaptation and biofilm formation. Conclusion This study provides the first insight into P. aeruginosa within-host evolution in the urinary tract. It was driven by mutational mechanisms and genomic deletions and could lead to phenotypic changes in terms of fitness and biofilm production. Further metabolomic and phenotypic analyses are needed to describe in-depth genotype-phenotype associations in this complex and dynamic host-environment.
Collapse
Affiliation(s)
- Agnès Cottalorda
- Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France
| | - Marie Leoz
- Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France
| | - Sandrine Dahyot
- Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France.,Department of Bacteriology, Rouen University Hospital, Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France
| | - François Gravey
- Normandie Université, UNICAEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Caen, France
| | - Maxime Grand
- Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France
| | - Thomas Froidure
- Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France
| | - Fabien Aujoulat
- Team Pathogènes Hydriques Santé Environnement, UMR 5569 HydroSciences Montpellier, Unité de Bactériologie, UFR Pharmacie, University of Montpellier, Montpellier, France
| | - Simon Le Hello
- Normandie Université, UNICAEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Caen, France
| | - Estelle Jumas-Bilak
- Team Pathogènes Hydriques Santé Environnement, UMR 5569 HydroSciences Montpellier, Unité de Bactériologie, UFR Pharmacie, University of Montpellier, Montpellier, France
| | - Martine Pestel-Caron
- Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France.,Department of Bacteriology, Rouen University Hospital, Normandie Université, UNIROUEN, Groupe de Recherche sur l'Adapatation Microbienne (GRAM 2.0 EA2656), Rouen, France
| |
Collapse
|
15
|
Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J Clin Med 2020; 9:jcm9123800. [PMID: 33255354 PMCID: PMC7760986 DOI: 10.3390/jcm9123800] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous and opportunistic microorganism and is considered one of the most significant pathogens that produce chronic colonization and infection of the lower respiratory tract, especially in people with chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and bronchiectasis. From a microbiological viewpoint, the presence and persistence of P. aeruginosa over time are characterized by adaptation within the host that precludes any rapid, devastating injury to the host. Moreover, this microorganism usually develops antibiotic resistance, which is accelerated in chronic infections especially in those situations where the frequent use of antimicrobials facilitates the selection of “hypermutator P. aeruginosa strain”. This phenomenon has been observed in people with bronchiectasis, CF, and the “exacerbator” COPD phenotype. From a clinical point of view, a chronic bronchial infection of P. aeruginosa has been related to more severity and poor prognosis in people with CF, bronchiectasis, and probably in COPD, but little is known on the effect of this microorganism infection in people with asthma. The relationship between the impact and treatment of P. aeruginosa infection in people with airway diseases emerges as an important future challenge and it is the most important objective of this review.
Collapse
Affiliation(s)
- Marta Garcia-Clemente
- Pneumology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - David de la Rosa
- Pneumology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Luis Máiz
- Servicio de Neumología, Unidad de Fibrosis Quística, Bronquiectasias e Infección Bronquial Crónica, Hospital Ramón y Cajal, 28034 Madrid, Spain;
| | - Rosa Girón
- Pneumology Department, Hospital Univesitario la Princesa, 28006 Madrid, Spain;
| | - Marina Blanco
- Servicio de Neumología, Hospital Universitario A Coruña, 15006 A Coruña, Spain;
| | - Casilda Olveira
- Servicio de Neumología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain;
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Miguel Angel Martinez-García
- Pneumology Department, Universitary and Polytechnic La Fe Hospital, 46012 Valencia, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-609865934
| |
Collapse
|
16
|
Ahmed MN, Abdelsamad A, Wassermann T, Porse A, Becker J, Sommer MOA, Høiby N, Ciofu O. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. NPJ Biofilms Microbiomes 2020; 6:28. [PMID: 32709907 PMCID: PMC7381665 DOI: 10.1038/s41522-020-00138-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Ciprofloxacin (CIP) is used to treat Pseudomonas aeruginosa biofilm infections. We showed that the pathways of CIP-resistance development during exposure of biofilms and planktonic P. aeruginosa populations to subinhibitory levels of CIP depend on the mode of growth. In the present study, we analyzed CIP-resistant isolates obtained from previous evolution experiments, and we report a variety of evolved phenotypic and genotypic changes that occurred in parallel with the evolution of CIP-resistance. Cross-resistance to beta-lactam antibiotics was associated with mutations in genes involved in cell-wall recycling (ftsZ, murG); and could also be explained by mutations in the TCA cycle (sdhA) genes and in genes involved in arginine catabolism. We found that CIP-exposed isolates that lacked mutations in quorum-sensing genes and acquired mutations in type IV pili genes maintained swarming motility and lost twitching motility, respectively. Evolved CIP-resistant isolates showed high fitness cost in planktonic competition experiments, yet persisted in the biofilm under control conditions, compared with ancestor isolates and had an advantage when exposed to CIP. Their persistence in biofilm competition experiments in spite of their fitness cost in planktonic growth could be explained by their prolonged lag-phase. Interestingly, the set of mutated genes that we identified in these in vitro-evolved CIP-resistant colonies, overlap with a large number of patho-adaptive genes previously reported in P. aeruginosa isolates from cystic fibrosis (CF) patients. This suggests that the antibiotic stress is contributing to the bacterial evolution in vivo, and that adaptive laboratory evolution can be used to predict the in vivo evolutionary trajectories.
Collapse
Affiliation(s)
- Marwa N Ahmed
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Abdelsamad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Tina Wassermann
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Porse
- Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark
| | - Janna Becker
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark
| | - Niels Høiby
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Hornischer K, Khaledi A, Pohl S, Schniederjans M, Pezoldt L, Casilag F, Muthukumarasamy U, Bruchmann S, Thöming J, Kordes A, Häussler S. BACTOME-a reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates. Nucleic Acids Res 2020; 47:D716-D720. [PMID: 30272193 PMCID: PMC6324029 DOI: 10.1093/nar/gky895] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
Extensive use of next-generation sequencing (NGS) for pathogen profiling has the potential to transform our understanding of how genomic plasticity contributes to phenotypic versatility. However, the storage of large amounts of NGS data and visualization tools need to evolve to offer the scientific community fast and convenient access to these data. We introduce BACTOME as a database system that links aligned DNA- and RNA-sequencing reads of clinical Pseudomonas aeruginosa isolates with clinically relevant pathogen phenotypes. The database allows data extraction for any single isolate, gene or phenotype as well as data filtering and phenotypic grouping for specific research questions. With the integration of statistical tools we illustrate the usefulness of a relational database structure for the identification of phenotype-genotype correlations as an essential part of the discovery pipeline in genomic research. Furthermore, the database provides a compilation of DNA sequences and gene expression values of a plethora of clinical isolates to give a consensus DNA sequence and consensus gene expression signature. Deviations from the consensus thereby describe the genomic landscape and the transcriptional plasticity of the species P. aeruginosa. The database is available at https://bactome.helmholtz-hzi.de.
Collapse
Affiliation(s)
- Klaus Hornischer
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany.,Molecular Health GmbH, D-69115 Heidelberg, Germany
| | - Ariane Khaledi
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Sarah Pohl
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Monika Schniederjans
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Lorena Pezoldt
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Fiordiligie Casilag
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Uthayakumar Muthukumarasamy
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Sebastian Bruchmann
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany.,Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Janne Thöming
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Adrian Kordes
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| | - Susanne Häussler
- Institute of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, D-30625 Hannover, Germany
| |
Collapse
|
18
|
Sommer LM, Johansen HK, Molin S. Antibiotic resistance in Pseudomonas aeruginosa and adaptation to complex dynamic environments. Microb Genom 2020; 6:e000370. [PMID: 32375975 PMCID: PMC7371113 DOI: 10.1099/mgen.0.000370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become a serious threat to human health (WHO Antibacterial Agents in Clinical Development: an Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis. Geneva: World Health Organization; 2017), and the ability to predict antibiotic resistance from genome sequencing has become a focal point for the medical community. With this genocentric prediction in mind, we were intrigued about two particular findings for a collection of clinical Pseudomonas aeruginosa isolates (Marvig et al. Nature Genetics 2015;47:57-64; Frimodt-Møller et al. Scientific Reports 2018;8:12512; Bartell et al. Nature Communications 2019;10:629): (i) 15 out of 52 genes found to be frequently targeted by adaptive mutations during the initial infection stage of cystic fibrosis airways ('candidate pathoadaptive genes') (Marvig et al. Nature Genetics 2015;47:57-64) were associated with antibiotic resistance (López-Causapé et al. Fronters in Microbiology 2018;9:685; López-Causapé et al. Antimicrobal Agents and Chemotherapy 2018;62:e02583-17); (ii) there was a parallel lack of resistance development and linkage to the genetic changes in these antibiotic-resistance-associated genes (Frimodt-Møller et al. Scientific Reports 2018;8:12512; Bartell et al. Nature Communications 2019;10:629). In this review, we highlight alternative selective forces that potentially enhance the infection success of P. aeruginosa and focus on the linkage to the 15 pathoadaptive antibiotic-resistance-associated genes, thereby showing the problems we may face when using only genomic information to predict and inform about relevant antibiotic treatment.
Collapse
Affiliation(s)
- Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen Ø, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Clark ST, Guttman DS, Hwang DM. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 2019; 365:4834010. [PMID: 29401362 DOI: 10.1093/femsle/fny026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The evolution and diversification of bacterial pathogens within human hosts represent potential barriers to the diagnosis and treatment of life-threatening infections. Tremendous genetic and phenotypic diversity is characteristic of host adaptation in strains of Pseudomonas aeruginosa that infect the airways of individuals with chronic lung diseases and prove to be extremely difficult to eradicate. In this MiniReview, we examine recent advances in understanding within-host diversity and antimicrobial resistance in P. aeruginosa populations from the lower airways of individuals with the fatal genetic disease cystic fibrosis and the potential impacts that this diversity may have on detecting and interpreting antimicrobial susceptibility within these populations.
Collapse
Affiliation(s)
- Shawn T Clark
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.,Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - David M Hwang
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Winstanley C, Brockhurst MA. Can We Manipulate the Evolutionary Biology of Pathogens for Clinical Benefit? Am J Respir Cell Mol Biol 2019; 59:143-144. [PMID: 29708392 DOI: 10.1165/rcmb.2018-0113ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Craig Winstanley
- 1 Institute of Infection and Global Health University of Liverpool Liverpool, United Kingdom and
| | - Michael A Brockhurst
- 2 Department of Animal and Plant Sciences University of Sheffield Sheffield, United Kingdom
| |
Collapse
|
21
|
Lorenz A, Preuße M, Bruchmann S, Pawar V, Grahl N, Pils MC, Nolan LM, Filloux A, Weiss S, Häussler S. Importance of flagella in acute and chronicPseudomonas aeruginosainfections. Environ Microbiol 2018; 21:883-897. [DOI: 10.1111/1462-2920.14468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Anne Lorenz
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Matthias Preuße
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Sebastian Bruchmann
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
- Wellcome Sanger Institute Cambridge UK
| | - Vinay Pawar
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Immunology, Medical School Hannover Hannover Germany
| | - Nora Grahl
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Marina C. Pils
- Mouse PathologyAnimal Experimental Unit, Helmholtz Centre for Infection Research Braunschweig Germany
| | - Laura M. Nolan
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life SciencesImperial College London London UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life SciencesImperial College London London UK
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover Hannover Germany
| | - Susanne Häussler
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| |
Collapse
|
22
|
Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018; 31:e00019-18. [PMID: 30158299 PMCID: PMC6148191 DOI: 10.1128/cmr.00019-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lower airway infection with Pseudomonas aeruginosa is a major contributor to morbidity and mortality in individuals suffering from the genetic disease cystic fibrosis (CF). Whereas it was long presumed that each patient independently acquired unique strains of P. aeruginosa present in their living environment, multiple studies have since demonstrated that shared strains of P. aeruginosa exist among individuals with CF. Many of these shared strains, often referred to as clonal or epidemic strains, can be transmitted from one CF individual to another, potentially reaching epidemic status. Numerous epidemic P. aeruginosa strains have been described from different parts of the world and are often associated with an antibiotic-resistant phenotype. Importantly, infection with these strains often portends a worse prognosis than for infection with nonclonal strains, including an increased pulmonary exacerbation rate, exaggerated lung function decline, and progression to end-stage lung disease. This review describes the global epidemiology of clonal P. aeruginosa strains in CF and summarizes the current literature regarding the underlying biology and clinical impact of globally important CF clones. Mechanisms associated with patient-to-patient transmission are discussed, and best-evidence practices to prevent infections are highlighted. Preventing new infections with epidemic P. aeruginosa strains is of paramount importance in mitigating CF disease progression.
Collapse
Affiliation(s)
- Michael D Parkins
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Valerie J Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin. Antimicrob Agents Chemother 2018; 62:AAC.00320-18. [PMID: 29760140 DOI: 10.1128/aac.00320-18] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
The opportunistic Gram-negative pathogen Pseudomonas aeruginosa, known for its intrinsic and acquired antibiotic resistance, has a notorious ability to form biofilms, which often facilitate chronic infections. The evolutionary paths to antibiotic resistance have mainly been investigated in planktonic cultures and are less studied in biofilms. We experimentally evolved P. aeruginosa PAO1 colony biofilms and stationary-phase planktonic cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of ciprofloxacin (CIP) and performed a genotypic (whole-bacterial population sequencing) and phenotypic assessment of the populations. We observed a higher proportion of CIP resistance in the CIP-evolved biofilm populations than in planktonic populations exposed to the same drug concentrations. However, the MICs of ciprofloxacin were lower in CIP-resistant isolates selected from the biofilm population than the MICs of CIP-resistant isolates from the planktonic cultures. We found common evolutionary trajectories between the different lineages, with mutations in known CIP resistance determinants as well as growth condition-dependent adaptations. We observed a general trend toward a reduction in type IV-pilus-dependent motility (twitching) in CIP-evolved populations and a loss of virulence-associated traits in the populations evolved in the absence of antibiotic. In conclusion, our data indicate that biofilms facilitate the development of low-level mutational resistance, probably due to the lower effective drug exposure than in planktonic cultures. These results provide a framework for the selection process of resistant variants and the evolutionary mechanisms involved under the two different growth conditions.
Collapse
|
24
|
Price EP, Viberg LT, Kidd TJ, Bell SC, Currie BJ, Sarovich DS. Transcriptomic analysis of longitudinal Burkholderia pseudomallei infecting the cystic fibrosis lung. Microb Genom 2018; 4. [PMID: 29989529 PMCID: PMC6159556 DOI: 10.1099/mgen.0.000194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The melioidosis bacterium, Burkholderia pseudomallei, is increasingly being recognised as a pathogen in patients with cystic fibrosis (CF). We have recently catalogued genome-wide variation of paired, isogenic B. pseudomallei isolates from seven Australasian CF cases, which were collected between 4 and 55 months apart. Here, we extend this investigation by documenting the transcriptomic changes in B. pseudomallei in five cases. Following growth in an artificial CF sputum medium, four of the five paired isolates exhibited significant differential gene expression (DE) that affected between 32 and 792 genes. The greatest number of DE events was observed between the strains from patient CF9, consistent with the hypermutator status of the latter strain, which is deficient in the DNA mismatch repair protein MutS. Two patient isolates harboured duplications that concomitantly increased expression of the β-lactamase-encoding gene penA, and a 35 kb deletion in another abolished expression of 29 genes. Convergent expression profiles in the chronically-adapted isolates identified two significantly downregulated and 17 significantly upregulated loci, including the resistance-nodulation-division (RND) efflux pump BpeEF-OprC, the quorum-sensing hhqABCDE operon, and a cyanide- and pyocyanin-insensitive cytochrome bd quinol oxidase. These convergent pathoadaptations lead to increased expression of pathways that may suppress competing bacterial and fungal pathogens, and that enhance survival in oxygen-restricted environments, the latter of which may render conventional antibiotics less effective in vivo. Treating chronically adapted B. pseudomallei infections with antibiotics designed to target anaerobic infections, such as the nitroimidazole class of antibiotics, may significantly improve pathogen eradication attempts by exploiting this Achilles heel.
Collapse
Affiliation(s)
- Erin P Price
- 1Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Linda T Viberg
- 2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Timothy J Kidd
- 3Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,4School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Scott C Bell
- 3Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,5QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,6Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Bart J Currie
- 2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,7Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- 1Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
25
|
Three Substrains of the Cyanobacterium Anabaena sp. Strain PCC 7120 Display Divergence in Genomic Sequences and hetC Function. J Bacteriol 2018; 200:JB.00076-18. [PMID: 29686139 DOI: 10.1128/jb.00076-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Anabaena sp. strain PCC 7120 is a model strain for molecular studies of cell differentiation and patterning in heterocyst-forming cyanobacteria. Subtle differences in heterocyst development have been noticed in different laboratories working on the same organism. In this study, 360 mutations, including single nucleotide polymorphisms (SNPs), small insertion/deletions (indels; 1 to 3 bp), fragment deletions, and transpositions, were identified in the genomes of three substrains. Heterogeneous/heterozygous bases were also identified due to the polyploidy nature of the genome and the multicellular morphology but could be completely segregated when plated after filament fragmentation by sonication. hetC is a gene upregulated in developing cells during heterocyst formation in Anabaena sp. strain PCC 7120 and found in approximately half of other heterocyst-forming cyanobacteria. Inactivation of hetC in 3 substrains of Anabaena sp. PCC 7120 led to different phenotypes: the formation of heterocysts, differentiating cells that keep dividing, or the presence of both heterocysts and dividing differentiating cells. The expression of P hetZ -gfp in these hetC mutants also showed different patterns of green fluorescent protein (GFP) fluorescence. Thus, the function of hetC is influenced by the genomic background and epistasis and constitutes an example of evolution under way.IMPORTANCE Our knowledge about the molecular genetics of heterocyst formation, an important cell differentiation process for global N2 fixation, is mostly based on studies with Anabaena sp. strain PCC 7120. Here, we show that rapid microevolution is under way in this strain, leading to phenotypic variations for certain genes related to heterocyst development, such as hetC This study provides an example for ongoing microevolution, marked by multiple heterogeneous/heterozygous single nucleotide polymorphisms (SNPs), in a multicellular multicopy-genome microorganism.
Collapse
|
26
|
Williams D, Fothergill JL, Evans B, Caples J, Haldenby S, Walshaw MJ, Brockhurst MA, Winstanley C, Paterson S. Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. Microb Genom 2018; 4. [PMID: 29547097 PMCID: PMC5885019 DOI: 10.1099/mgen.0.000167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa chronic infections of cystic fibrosis (CF) airways are a paradigm for within-host evolution with abundant evidence for rapid evolutionary adaptation and diversification. Recently emerged transmissible strains have spread globally, with the Liverpool Epidemic Strain (LES) the most common strain infecting the UK CF population. Previously we have shown that highly divergent lineages of LES can be found within a single infection, consistent with super-infection among a cross-sectional cohort of patients. However, despite its clinical importance, little is known about the impact of transmission on the genetic structure of these infections over time. To characterize this, we longitudinally sampled a meta-population of 15 genetic lineages within the LES over 13 months among seven chronically infected CF patients by genome sequencing. Comparative genome analyses of P. aeruginosa populations revealed that the presence of coexisting lineages contributed more to genetic diversity within an infection than diversification in situ. We observed rapid and substantial shifts in the relative abundance of lineages and replacement of dominant lineages, likely to represent super-infection by repeated transmissions. Lineage dynamics within patients led to rapid changes in the frequencies of mutations across suites of linked loci carried by each lineage. Many loci were associated with important infection phenotypes such as antibiotic resistance, mucoidy and quorum sensing, and were repeatedly mutated in different lineages. These findings suggest that transmission leads to rapid shifts in the genetic structure of CF infections, including in clinically important phenotypes such as antimicrobial resistance, and is likely to impede accurate diagnosis and treatment.
Collapse
Affiliation(s)
- David Williams
- 1Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- 2Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Benjamin Evans
- 1Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jessica Caples
- 2Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Sam Haldenby
- 1Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Martin J Walshaw
- 3Liverpool Heart and Chest Hospital, NHS Foundation Trust, Liverpool, UK
| | | | - Craig Winstanley
- 2Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- 1Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Valentini M, Gonzalez D, Mavridou DA, Filloux A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol 2017; 41:15-20. [PMID: 29166621 DOI: 10.1016/j.mib.2017.11.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
Abstract
Pseudomonas aeruginosa acute and chronic infections are of great concern to human health, especially in hospital settings. It is currently assumed that P. aeruginosa has two antagonistic pathogenic strategies that parallel two different lifestyles; free-living cells are predominantly cytotoxic and induce an acute inflammatory reaction, while biofilm-forming communities cause refractory chronic infections. Recent findings suggest that the planktonic-to-sessile transition is a complex, reversible and overall dynamic differentiation process. Here, we examine how the Gac/Rsm regulatory cascade, a key player in this lifestyle switch, endows P. aeruginosa with both a permissive lifecycle in nature and flexible virulence strategy during infection.
Collapse
Affiliation(s)
- Martina Valentini
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom.
| | - Diego Gonzalez
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Despoina Ai Mavridou
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom.
| |
Collapse
|
28
|
Abstract
The versatile and ubiquitous
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections in predisposed human subjects. Here we review recent progress in understanding
P. aeruginosa population biology and virulence, its cyclic di-GMP-mediated switches of lifestyle, and its interaction with the mammalian host as well as the role of the type III and type VI secretion systems in
P. aeruginosa infection.
Collapse
Affiliation(s)
- Jens Klockgether
- Molecular Pathology of Cystic Fibrosis Clinical Research Group, Clinic for Paediatric Pneumology, Allergology, and Neonatology, OE 6710, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Molecular Pathology of Cystic Fibrosis Clinical Research Group, Clinic for Paediatric Pneumology, Allergology, and Neonatology, OE 6710, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hannover, Germany
| |
Collapse
|
29
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
30
|
Hilliam Y, Moore MP, Lamont IL, Bilton D, Haworth CS, Foweraker J, Walshaw MJ, Williams D, Fothergill JL, De Soyza A, Winstanley C. Pseudomonas aeruginosa adaptation and diversification in the non-cystic fibrosis bronchiectasis lung. Eur Respir J 2017; 49:49/4/1602108. [PMID: 28446558 PMCID: PMC5898933 DOI: 10.1183/13993003.02108-2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/21/2017] [Indexed: 11/05/2022]
Abstract
To characterise Pseudomonas aeruginosa populations during chronic lung infections of non-cystic fibrosis bronchiectasis patients, we used whole-genome sequencing to 1) assess the diversity of P. aeruginosa and the prevalence of multilineage infections; 2) seek evidence for cross-infection or common source acquisition; and 3) characterise P. aeruginosa adaptations.189 isolates, obtained from the sputa of 91 patients attending 16 adult bronchiectasis centres in the UK, were whole-genome sequenced.Bronchiectasis isolates were representative of the wider P. aeruginosa population. Of 24 patients from whom multiple isolates were examined, there were seven examples of multilineage infections, probably arising from multiple infection events. The number of nucleotide variants between genomes of isolates from different patients was in some cases similar to the variations observed between isolates from individual patients, implying the possible occurrence of cross-infection or common source acquisition.Our data indicate that during infections of bronchiectasis patients, P. aeruginosa populations adapt by accumulating loss-of-function mutations, leading to changes in phenotypes including different modes of iron acquisition and variations in biofilm-associated polysaccharides. The within-population diversification suggests that larger scale longitudinal surveillance studies will be required to capture cross-infection or common source acquisition events at an early stage.
Collapse
Affiliation(s)
- Yasmin Hilliam
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,These authors contributed equally
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,These authors contributed equally
| | - Iain L Lamont
- Dept of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Diana Bilton
- Dept of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Juliet Foweraker
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Martin J Walshaw
- Dept of Respiratory Medicine, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - David Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Anthony De Soyza
- Institute for Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK.,These authors contributed equally
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK .,These authors contributed equally
| |
Collapse
|
31
|
The use of targeted genomic capture and massively parallel sequencing in diagnosis of Chinese Leukoencephalopathies. Sci Rep 2016; 6:35936. [PMID: 27779215 PMCID: PMC5078786 DOI: 10.1038/srep35936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
Leukoencephalopathies are diseases with high clinical heterogeneity. In clinical work, it’s difficult for doctors to make a definite etiological diagnosis. Here, we designed a custom probe library which contains the known pathogenic genes reported to be associated with Leukoencephalopathies, and performed targeted gene capture and massively parallel sequencing (MPS) among 49 Chinese patients who has white matter damage as the main imaging changes, and made the validation by Sanger sequencing for the probands’ parents. As result, a total of 40.8% (20/49) of the patients identified pathogenic mutations, including four associated with metachromatic leukodystrophy, three associated with vanishing white matter leukoencephalopathy, three associated with mitochondrial complex I deficiency, one associated with Globoid cell leukodystrophy (or Krabbe diseases), three associated with megalencephalic leukoencephalopathy with subcortical cysts, two associated with Pelizaeus-Merzbacher disease, two associated with X-linked adrenoleukodystrophy, one associated with Zellweger syndrome and one associated with Alexander disease. Targeted capture and MPS enables to identify mutations of all classes causing leukoencephalopathy. Our study combines targeted capture and MPS technology with clinical and genetic diagnosis and highlights its usefulness for rapid and comprehensive genetic testing in the clinical setting. This method will also expand our knowledge of the genetic and clinical spectra of leukoencephalopathy.
Collapse
|
32
|
Sommer LM, Alanin MC, Marvig RL, Nielsen KG, Høiby N, von Buchwald C, Molin S, Johansen HK. Bacterial evolution in PCD and CF patients follows the same mutational steps. Sci Rep 2016; 6:28732. [PMID: 27349973 PMCID: PMC4923847 DOI: 10.1038/srep28732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/08/2016] [Indexed: 11/25/2022] Open
Abstract
Infections with Pseudomonas aeruginosa increase morbidity in primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) patients. Both diseases are associated with a defect of the mucociliary clearance; in PCD caused by non-functional cilia, in CF by changed mucus. Whole genome sequencing of P. aeruginosa isolates from CF patients has shown that persistence of clonal lineages in the airways is facilitated by genetic adaptation. It is unknown whether this also applies to P. aeruginosa airway infections in PCD. We compared within-host evolution of P. aeruginosa in PCD and CF patients. P. aeruginosa isolates from 12 PCD patients were whole genome sequenced and phenotypically characterised. Ten out of 12 PCD patients were infected with persisting clone types. We identified convergent evolution in eight genes, which are also important for persistent infections in CF airways: genes related to antibiotic resistance, quorum sensing, motility, type III secretion and mucoidity. We document phenotypic and genotypic parallelism in the evolution of P. aeruginosa across infected patients with different genetic disorders. The parallel changes and convergent adaptation and evolution may be caused by similar selective forces such as the intensive antibiotic treatment and the inflammatory response, which drive the evolutionary processes.
Collapse
Affiliation(s)
- Lea M Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Mikkel Christian Alanin
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Rasmus L Marvig
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kim Gjerum Nielsen
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Helle Krogh Johansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
33
|
Within-Host Evolution of the Dutch High-Prevalent Pseudomonas aeruginosa Clone ST406 during Chronic Colonization of a Patient with Cystic Fibrosis. PLoS One 2016; 11:e0158106. [PMID: 27337151 PMCID: PMC4918941 DOI: 10.1371/journal.pone.0158106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/12/2016] [Indexed: 01/01/2023] Open
Abstract
This study investigates adaptation of ST406, a prevalent P. aeruginosa clone, present in 15% of chronically infected cystic fibrosis (CF) patients in the Netherlands, in a newly infected CF patient during three years using whole genome sequencing (WGS), transcriptomics, and phenotypic assays, including biofilm formation. WGS-based phylogeny demonstrates that ST406 is genetically distinct from other reported CF related strains or epidemic clones. Comparative genomic analysis of the early (S1) and late (S2) isolate yielded 42 single nucleotide polymorphisms (SNPs) and 10 indels and a single 7 kb genomic fragment only found in S2. Most SNPs and differentially expressed genes encoded proteins involved in metabolism, secretion and signal transduction or transcription. SNPs were identified in regulator genes mexT and exsA and coincided with differential gene expression of mexE and mexF, encoding the MexE/F efflux pump, genes encoding the type six secretion system (T6SS) and type three secretion system (T3SS), which have also been previously implicated in adaptation of other P. aeruginosa strains during chronic infection of CF lungs. The observation that genetically different strains from different patients have accumulated similar genetic adaptations supports the concept of adaptive parallel evolution of P. aeruginosa in chronically infected CF patients. Phenotypically, there was loss of biofilm maturation coinciding with a significant lower level of transcription of both bfmR and bfmS during chronic colonization. These data suggest that the high-prevalent Dutch CF clone ST406 displays adaptation to the CF lung niche, which involves a limited number of mutations affecting regulators controlling biofilm formation and secretion and genes involved in metabolism. These genes could provide good targets for anti-pseudomonal therapy.
Collapse
|
34
|
Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol 2016; 24:327-337. [PMID: 26946977 PMCID: PMC4854172 DOI: 10.1016/j.tim.2016.01.008] [Citation(s) in RCA: 467] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 12/02/2022]
Abstract
Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification. During chronic lung infections of CF patients common genetic adaptations occur in P. aeruginosa, such as conversion to mucoidy, loss of virulence factors, and resistance to antibiotics. Although pathoadaptive mutations in regulatory proteins are common, the actual regulators affected vary between populations. P. aeruginosa populations in CF lungs exhibit high levels of phenotypic diversity. Fine-scale population genomics approaches reveal that divergent sublineages can coexist, with evidence for regional isolation in the spatially structured and heterogeneous lung environment. Experimental evolution is beginning to provide insights into the selective drivers of evolution in P. aeruginosa infection, including the role of social interactions.
Collapse
Affiliation(s)
- Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Ronald Ross Building, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.
| | - Siobhan O'Brien
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
35
|
Molina L, Udaondo Z, Duque E, Fernández M, Bernal P, Roca A, de la Torre J, Ramos JL. Specific Gene Loci of Clinical Pseudomonas putida Isolates. PLoS One 2016; 11:e0147478. [PMID: 26820467 PMCID: PMC4731212 DOI: 10.1371/journal.pone.0147478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host’s immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- * E-mail:
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Estrella Duque
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Matilde Fernández
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Patricia Bernal
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Imperial College London, South Kensington Campus, London, United Kingdom
| | - Amalia Roca
- Bio-Iliberis R&D, C/ Capileira 7, 18210 Peligros, Granada, Spain
| | - Jesús de la Torre
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Juan Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| |
Collapse
|
36
|
Marvig RL, Dolce D, Sommer LM, Petersen B, Ciofu O, Campana S, Molin S, Taccetti G, Johansen HK. Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiol 2015; 15:218. [PMID: 26482905 PMCID: PMC4612410 DOI: 10.1186/s12866-015-0563-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Chronic infection with Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis (CF) patients, and a more complete understanding of P. aeruginosa within-host genomic evolution, transmission, and population genomics may provide a basis for improving intervention strategies. Here, we report the first genomic analysis of P. aeruginosa isolates sampled from Italian CF patients. RESULTS By genome sequencing of 26 isolates sampled over 19 years from four patients, we elucidated the within-host evolution of clonal lineages in each individual patient. Many of the identified mutations were located in pathoadaptive genes previously associated with host adaptation, and we correlated mutations with changes in CF-relevant phenotypes such as antibiotic resistance. In addition, the genomic analysis revealed that three patients shared the same clone. Furthermore, we compared the genomes of the Italian CF isolates to a panel of genome sequenced strains of P. aeruginosa from other countries. Isolates from two of the Italian lineages belonged to clonal complexes of P. aeruginosa that have previously been identified in Danish CF patients, and our genomic comparison showed that clonal isolates from the same country may be more distantly related than clonal isolates from different countries. CONCLUSIONS This is the first whole-genome analysis of P. aeruginosa isolated from Italian CF patients, and together with both phenotypic and clinical information this dataset facilitates a more detailed understanding of P. aeruginosa within-host genomic evolution, transmission, and population genomics. We conclude that the evolution of the Italian lineages resembles what has been found in other countries.
Collapse
Affiliation(s)
- Rasmus Lykke Marvig
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark.
| | - Daniela Dolce
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Lea M Sommer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. .,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Bent Petersen
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Silvia Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Søren Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. .,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Giovanni Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Helle Krogh Johansen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
37
|
Freschi L, Jeukens J, Kukavica-Ibrulj I, Boyle B, Dupont MJ, Laroche J, Larose S, Maaroufi H, Fothergill JL, Moore M, Winsor GL, Aaron SD, Barbeau J, Bell SC, Burns JL, Camara M, Cantin A, Charette SJ, Dewar K, Déziel É, Grimwood K, Hancock REW, Harrison JJ, Heeb S, Jelsbak L, Jia B, Kenna DT, Kidd TJ, Klockgether J, Lam JS, Lamont IL, Lewenza S, Loman N, Malouin F, Manos J, McArthur AG, McKeown J, Milot J, Naghra H, Nguyen D, Pereira SK, Perron GG, Pirnay JP, Rainey PB, Rousseau S, Santos PM, Stephenson A, Taylor V, Turton JF, Waglechner N, Williams P, Thrane SW, Wright GD, Brinkman FSL, Tucker NP, Tümmler B, Winstanley C, Levesque RC. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol 2015; 6:1036. [PMID: 26483767 PMCID: PMC4586430 DOI: 10.3389/fmicb.2015.01036] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022] Open
Abstract
The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.
Collapse
Affiliation(s)
- Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | | | - Brian Boyle
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Marie-Josée Dupont
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Jérôme Laroche
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Stéphane Larose
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Halim Maaroufi
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Matthew Moore
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University Vancouver, BC, Canada
| | - Shawn D Aaron
- Ottawa Hospital Research Institute Ottawa, ON, Canada
| | - Jean Barbeau
- Faculté de Médecine Dentaire, Université de Montréal Montréal, QC, Canada
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| | - Jane L Burns
- Seattle Children's Research Institute, University of Washington School of Medicine Seattle, WA, USA
| | - Miguel Camara
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - André Cantin
- Département de Médecine, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Steve J Charette
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec, QC, Canada ; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval Quebec, QC, Canada
| | - Ken Dewar
- Department of Human Genetics, McGill University Montreal, QC, Canada
| | - Éric Déziel
- INRS Institut Armand Frappier Laval, QC, Canada
| | - Keith Grimwood
- School of Medicine, Griffith University Gold Coast, QLD, Australia
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada
| | - Joe J Harrison
- Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Lyngby, Denmark
| | - Baofeng Jia
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Dervla T Kenna
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England London, UK
| | - Timothy J Kidd
- Child Health Research Centre, The University of Queensland Brisbane, QLD, Australia ; Centre for Infection and Immunity, Queen's University Belfast Belfast, UK
| | - Jens Klockgether
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Germany
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago Dunedin, New Zealand
| | - Shawn Lewenza
- Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Nick Loman
- Institute for Microbiology and Infection, University of Birmingham Birmingham, UK
| | - François Malouin
- Département de Médecine, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Jim Manos
- Department of Infectious Diseases and Immunology, The University of Sydney Sydney, NSW, Australia
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Josie McKeown
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Julie Milot
- Department of Pneumology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval Quebec, QC, Canada
| | - Hardeep Naghra
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Dao Nguyen
- Department of Human Genetics, McGill University Montreal, QC, Canada ; Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University Montreal, QC, Canada
| | - Sheldon K Pereira
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-On-Hudson NY, USA
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital Brussels, Belgium
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University Albany, New Zealand ; Max Planck Institute for Evolutionary Biology Plön, Germany
| | - Simon Rousseau
- Department of Human Genetics, McGill University Montreal, QC, Canada
| | - Pedro M Santos
- Department of Biology, University of Minho Braga, Portugal
| | | | - Véronique Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England London, UK
| | - Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Paul Williams
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Sandra W Thrane
- Department of Systems Biology, Technical University of Denmark Lyngby, Denmark
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University Vancouver, BC, Canada
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | - Burkhard Tümmler
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Germany
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Roger C Levesque
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| |
Collapse
|