1
|
Araiza-Olivera D, Prudnikova TY, Uribe-Alvarez C, Cai KQ, Franco-Barraza J, Dones JM, Raines RT, Chernoff J. Identifying and Targeting Key Driver Genes for Collagen Production within the 11q13/14 Breast Cancer Amplicon. Mol Cancer Res 2025; 23:405-415. [PMID: 39836438 PMCID: PMC12048276 DOI: 10.1158/1541-7786.mcr-24-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Breast cancers of the Integrative Cluster 2 (IntClust-2) type, characterized by amplification of a small portion of chromosome 11, have a median survival of only 5 years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study, we used a gene editing method to knock out, one by one, each of the 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells. In addition to well-known drivers such as CCND1 and PAK1, we identified two different genes (SERPINH1 and P4HA3) that encode proteins involved in collagen synthesis and organization. Using both in vitro and in vivo functional analyses, we determined that P4HA3 and/or SERPINH1 provide a critical driver function for IntClust-2 basic processes, such as viability, proliferation, and migration. Inhibiting these enzymes via genetic or pharmacologic means reduced collagen synthesis and impeded oncogenic signaling transduction in cell culture models, and a small-molecule inhibitor of P4HA3 was effective in treating 11q13 tumor growth in an animal model. As collagen has a well-known association with tissue stiffness and aggressive forms of breast cancer, we believe that the two genes we identified provide an opportunity for a new therapeutic strategy in IntClust-2 breast cancers. Implications: Breast cancers with 11q13/14 chromosomal amplifications may be vulnerable to inhibitors of collagen synthesis.
Collapse
Affiliation(s)
- Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tatiana Y. Prudnikova
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q. Cai
- Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jesús M. Dones
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Varzaru VB, Vlad T, Popescu R, Vlad CS, Moatar AE, Cobec IM. Triple-Negative Breast Cancer: Molecular Particularities Still a Challenge. Diagnostics (Basel) 2024; 14:1875. [PMID: 39272660 PMCID: PMC11393996 DOI: 10.3390/diagnostics14171875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Worldwide, breast cancer (BC) is one of the most common cancers in women and is responsible for the highest number of cancer-related deaths among women, with a special clinical behavior and therapy response. Triple-negative breast cancer (TNBC) is seen as a highly invasive BC, characterized by a short survival, higher mortality, recurrence, and metastasis when it is compared to the other BC subtypes. The molecular subtyping of TNBC based on mRNA expression levels does not accurately reflect protein expression levels, which impacts targeted therapy effectiveness and prognostic predictions. Most TNBC cases exhibit a high frequency of homologous recombination (HR) DNA repair deficiency (HRD) signatures and are associated with a complex genomic profile. Biomarker research in TNBC includes investigating genetic mutations, gene expression patterns, immune system-related markers, and other factors that can provide valuable information for diagnosis, treatment selection, and patient outcomes. Additionally, these biomarkers are often crucial in the development of personalized and precision medicine approaches, where treatments are customized to each patient's unique characteristics. This ongoing research is essential for improving the management and outcomes of TNBC, which is a challenging and heterogeneous form of breast cancer. The findings of this research have practical implications for refining treatment strategies, particularly in selecting appropriate systemic therapies and integrating traditional treatment modalities like surgery and radiotherapy into comprehensive care plans for TNBC patients.
Collapse
Affiliation(s)
- Vlad Bogdan Varzaru
- Doctoral School, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Tania Vlad
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Pharmacology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Aurica Elisabeta Moatar
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Internal Medicine-Cardiology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| | - Ionut Marcel Cobec
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| |
Collapse
|
3
|
Araiza-Olivera D, Prudnikova TY, Uribe-Alvarez C, Cai KQ, Franco-Barraza J, Dones JM, Raines RT, Chernoff J. Identifying and targeting key driver genes for collagen production within the 11q13/14 breast cancer amplicon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587019. [PMID: 38586042 PMCID: PMC10996585 DOI: 10.1101/2024.03.27.587019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Genetic studies indicate that breast cancer can be divided into several basic molecular groups. One of these groups, termed IntClust-2, is characterized by amplification of a small portion of chromosome 11 and has a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells. In addition to well-known drivers such as CCND1 and PAK1 , we identified two different genes ( SERPINH1 and P4HA3 ), that encode proteins involved in collagen synthesis and organization. Using both in vitro and in vivo functional analyses, we determined that P4HA3 and/or SERPINH1 provide a critical driver function on IntClust-2 basic processes, such as viability, proliferation, and migration. Inhibiting these enzymes via genetic or pharmacologic means reduced collagen synthesis and impeded oncogenic signaling transduction in cell culture models, and a small-molecule inhibitor of P4HA3 was effective in treating 11q13 tumor growth in an animal model. As collagen has a well-known association with tissue stiffness and aggressive forms of breast cancer, we believe that the two genes we identified provide an opportunity for a new therapeutic strategy in IntClust-2 breast cancers.
Collapse
|
4
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
5
|
Gan S, Dai H, Li R, Liu W, Ye R, Ha Y, Di X, Hu W, Zhang Z, Sun Y. Identification of key differentially expressed genes between ER-positive/HER2-negative breast cancer and ER-negative/HER2-negative breast cancer using integrated bioinformatics analysis. Gland Surg 2020; 9:661-675. [PMID: 32775256 DOI: 10.21037/gs.2020.03.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Treatment strategies for various subtypes of breast cancer (BC) are different based on their distinct molecular characteristics. Therefore, it is very important to identify key differentially expressed genes (DEGs) between ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Methods Gene expression profiles of GSE22093 and GSE23988 were obtained from the Gene Expression Omnibus database. There were 74 ER-positive/HER2-negative BC tissues and 85 ER-negative/HER2-negative BC tissues in the two profile datasets. DEGs between ER-positive/HER2-negative tissues and ER-negative/HER2-negative BC tissues were identified by the GEO2R tool. The common DEGs among the two datasets were detected with Venn software online. Next, we made use of the Database for Annotation, Visualization and Integrated Discovery to analyze enriched Kyoto Encyclopedia of Gene and Genome (KEGG) pathways and gene ontology terms. Then, the protein-protein interactions (PPIs) of these DEGs were visualized by Cytoscape with the Search Tool for the Retrieval of Interacting Genes. Of the proteins in the PPI network, Molecular Complex Detection plug-in analysis identified nine core upregulated genes and one core downregulated gene. UALCAN and Gene Expression Profiling Interactive Analysis were applied to determine the expression of these 10 genes in BC. Furthermore, for the analysis of overall survival among those genes, the Kaplan-Meier method was implemented. Results Ninety-three common DEGs (63 upregulated and 30 downregulated) were identified. KEGG pathway enrichment analysis showed that upregulated DEGs were particularly enriched in the progesterone-mediated oocyte maturation pathway. In addition, PGR might be a prognostic biomarker for ER-positive/HER2-negative BC. CCND1 is a poor prognostic biomarker for ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Moreover, TFF1, AGR2 and EGFR might be predictive biomarkers of node metastasis in ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Conclusions CCND1, AGR2, PGR, TFF1 and EGFR are the key DEGs between ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Further studies are required to confirm the functions of the identified genes.
Collapse
Affiliation(s)
- Siyuan Gan
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Haixia Dai
- Department of Ultrasound, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Wang Liu
- Department of Respiratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Ruifang Ye
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yanping Ha
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoqing Di
- Department of Pathology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Wenhua Hu
- Department of Pathology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Zhi Zhang
- Department of Thyroid and Mammary Vascular Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
6
|
Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer 2016; 2:16036. [PMID: 28721389 PMCID: PMC5515338 DOI: 10.1038/npjbcancer.2016.36] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/31/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancers (TNBCs), defined by lack of expression of estrogen receptor, progesterone receptor and HER2, account for 12–17% of breast cancers and are clinically perceived as a discrete breast cancer subgroup. Nonetheless, TNBC has been shown to constitute a vastly heterogeneous disease encompassing a wide spectrum of entities with marked genetic, transcriptional, histological and clinical differences. Although most TNBCs are high-grade tumors, there are well-characterized low-grade TNBCs that have an indolent clinical course, whose natural history, molecular features and optimal therapy vastly differ from those of high-grade TNBCs. Secretory and adenoid cystic carcinomas are two histologic types of TNBCs underpinned by specific fusion genes; these tumors have an indolent clinical behavior and lack all of the cardinal molecular features of high-grade triple-negative disease. Recent studies of rare entities, including lesions once believed to constitute mere benign breast disease (e.g., microglandular adenosis), have resulted in the identification of potential precursors of TNBC and suggested the existence of a family of low-grade triple-negative lesions that, despite having low-grade morphology and indolent clinical behavior, have been shown to harbor the complex genomic landscape of common forms of TNBC, and may progress to high-grade disease. In this review, we describe the heterogeneity of TNBC and focus on the histologic and molecular features of low-grade forms of TNBC. Germane to addressing the challenges posed by the so-called triple-negative disease is the realization that TNBC is merely a descriptive term, and that low-grade types of TNBC may be driven by distinct sets of genetic alterations.
Collapse
|
7
|
Arsuaga J, Borrman T, Cavalcante R, Gonzalez G, Park C. Identification of Copy Number Aberrations in Breast Cancer Subtypes Using Persistence Topology. MICROARRAYS (BASEL, SWITZERLAND) 2015; 4:339-69. [PMID: 27600228 PMCID: PMC4996377 DOI: 10.3390/microarrays4030339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Abstract
DNA copy number aberrations (CNAs) are of biological and medical interest because they help identify regulatory mechanisms underlying tumor initiation and evolution. Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task, because they are frequently hidden by CNAs that are the product of random events that take place during tumor evolution. Experimental detection of CNAs is commonly accomplished through array comparative genomic hybridization (aCGH) assays followed by supervised and/or unsupervised statistical methods that combine the segmented profiles of all patients to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for the identification of CNAs that is based on a topological representation of the data. Our method associates a two-dimensional (2D) point cloud with each aCGH profile and generates a sequence of simplicial complexes, mathematical objects that generalize the concept of a graph. This representation of the data permits segmenting the data at different resolutions and identifying CNAs by interrogating the topological properties of these simplicial complexes. We tested our approach on a published dataset with the goal of identifying specific breast cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated with each subtype was performed by analyzing each subtype separately from the others and by taking the rest of the subtypes as the control. Our results found a new amplification in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations in the Luminal B subtype were found only upon removal of the basal-like subtype from the control set. Under those conditions, all regions found in the original publication, except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and 12q were confirmed in the basal-like subtype. These two chromosome arms, however, were detected only upon removal of three patients with exceedingly large copy number values. More importantly, we detected 10 and 21 additional regions in the Luminal B and basal-like subtypes, respectively. Most of the additional regions were either validated on an independent dataset and/or using GISTIC. Furthermore, we found three new CNAs in the basal-like subtype: a combination of gains and losses in 1p, a gain in 2p and a loss in 14q. Based on these results, we suggest that topological approaches that incorporate multiresolution analyses and that interrogate topological properties of the data can help in the identification of copy number changes in cancer.
Collapse
Affiliation(s)
- Javier Arsuaga
- Department of Mathematics, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA.
- Department of Molecular and Cellular Biology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Raymond Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Georgina Gonzalez
- Department of Mathematics, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 96132, USA.
| | - Catherine Park
- Helen Diller Comprehensive Cancer Center,University of California San Francisco, 1600 Divisadero Street, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Ng CKY, Martelotto LG, Gauthier A, Wen HC, Piscuoglio S, Lim RS, Cowell CF, Wilkerson PM, Wai P, Rodrigues DN, Arnould L, Geyer FC, Bromberg SE, Lacroix-Triki M, Penault-Llorca F, Giard S, Sastre-Garau X, Natrajan R, Norton L, Cottu PH, Weigelt B, Vincent-Salomon A, Reis-Filho JS. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol 2015; 16:107. [PMID: 25994018 PMCID: PMC4440518 DOI: 10.1186/s13059-015-0657-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/20/2015] [Indexed: 01/08/2023] Open
Abstract
Background HER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases. Results We separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers. Conclusions Our results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Arnaud Gauthier
- Department of Tumor Biology, Institut Curie, 75248, Paris, France.
| | - Huei-Chi Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Catherine F Cowell
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Patty Wai
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Daniel N Rodrigues
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Laurent Arnould
- Department of Pathology and CRB Ferdinand Cabanne, Centre Georges Francois Leclerc, 21000, Dijon, France.
| | - Felipe C Geyer
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Silvio E Bromberg
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Magali Lacroix-Triki
- Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, 31059, Toulouse, France.
| | - Frederique Penault-Llorca
- Department of Pathology, Centre Jean Perrin, and University of Auvergne, 63000, Clermont Ferrand, France.
| | - Sylvia Giard
- Department of Pathology, Centre Oscar Lambret, 59000, Lille, France.
| | | | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul H Cottu
- Department of Medical Oncology, Institut Curie, 75248, Paris, France.
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Wanitchakool P, Wolf L, Koehl GE, Sirianant L, Schreiber R, Kulkarni S, Duvvuri U, Kunzelmann K. Role of anoctamins in cancer and apoptosis. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130096. [PMID: 24493744 PMCID: PMC3917350 DOI: 10.1098/rstb.2013.0096] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anoctamin 1 (TMEM16A, Ano1) is a recently identified Ca(2+)-activated chloride channel and a member of a large protein family comprising 10 paralogues. Before Ano1 was identified as a chloride channel protein, it was known as the cancer marker DOG1. DOG1/Ano1 is expressed in gastrointestinal stromal tumours (GIST) and particularly in head and neck squamous cell carcinoma, at very high levels never detected in other tissues. It is now emerging that Ano1 is part of the 11q13 locus, amplified in several types of tumour, where it is thought to augment cell proliferation, cell migration and metastasis. Notably, Ano1 is upregulated through histone deacetylase (HDAC), corresponding to the known role of HDAC in HNSCC. As Ano1 does not enhance proliferation in every cell type, its function is perhaps modulated by cell-specific factors, or by the abundance of other anoctamins. Thus Ano6, by regulating Ca(2+)-induced membrane phospholipid scrambling and annexin V binding, supports cellular apoptosis rather than proliferation. Current findings implicate other cellular functions of anoctamins, apart from their role as Ca(2+)-activated Cl(-) channels.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Luisa Wolf
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Gudrun E. Koehl
- Department of Surgery, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Sucheta Kulkarni
- Ear & Eye Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Umamaheswar Duvvuri
- Ear & Eye Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| |
Collapse
|
10
|
Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, Andersen CL, Thorsen K, Ørntoft TF, Mu D, Karni R. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol 2013; 229:630-9. [PMID: 23132731 DOI: 10.1002/path.4129] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Abstract
An increasing body of evidence connects alterations in the process of alternative splicing with cancer development and progression. However, a direct role of splicing factors as drivers of cancer development is mostly unknown. We analysed the gene copy number of several splicing factors in colon and lung tumours, and found that the gene encoding for the splicing factor SRSF6 is amplified and over-expressed in these cancers. Moreover, over-expression of SRSF6 in immortal lung epithelial cells enhanced proliferation, protected them from chemotherapy-induced cell death and converted them to be tumourigenic in mice. In contrast, knock-down of SRSF6 in lung and colon cancer cell lines inhibited their tumourigenic abilities. SRSF6 up- or down-regulation altered the splicing of several tumour suppressors and oncogenes to generate the oncogenic isoforms and reduce the tumour-suppressive isoforms. Our data suggest that the splicing factor SRSF6 is an oncoprotein that regulates the proliferation and survival of lung and colon cancer cells.
Collapse
Affiliation(s)
- Michal Cohen-Eliav
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers. Oncogene 2013; 33:966-76. [PMID: 23474757 DOI: 10.1038/onc.2013.41] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 01/07/2023]
Abstract
The gene encoding the receptor tyrosine kinase ERBB2, also known as HER2, is amplified and/or overexpressed in up to 15% of breast cancers. These tumours are characterised by an aggressive phenotype and poor clinical outcome. Although therapies targeted at ERBB2 have proven effective, many patients fail to respond to treatment or become resistant and the reasons for this are still largely unknown. Using a high-throughput functional screen we assessed whether genes found to be recurrently amplified and overexpressed in ERBB2+ve breast cancers mediate resistance to the ERBB2-targeted agent lapatinib. Lapatinib-resistant ERBB2-amplified breast cancer cell lines were screened, in the presence or absence of lapatinib, with an RNA interference library targeting 369 genes recurrently amplified and overexpressed in both ERBB2-amplified breast cancer tumours and cell lines. Small interfering RNAs targeting a number of genes caused sensitivity to lapatinib in this context. The mechanisms of resistance conferred by the identified genes were further investigated and in the case of NIBP (TRAPPC9), lapatinib resistance was found to be mediated through NF-κB signalling. Our results indicate that specific amplified and/ or overexpressed genes found in ERBB2-amplified breast cancer may mediate response to ERBB2-targeting agents.
Collapse
|
12
|
Shiu KK, Wetterskog D, Mackay A, Natrajan R, Lambros M, Sims D, Bajrami I, Brough R, Frankum J, Sharpe R, Marchio C, Horlings H, Reyal F, van der Vijver M, Turner N, Reis-Filho JS, Lord CJ, Ashworth A. Integrative molecular and functional profiling of ERBB2-amplified breast cancers identifies new genetic dependencies. Oncogene 2013; 33:619-31. [PMID: 23334330 DOI: 10.1038/onc.2012.625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/04/2012] [Accepted: 11/14/2012] [Indexed: 12/30/2022]
Abstract
Overexpression of the receptor tyrosine kinase ERBB2 (also known as HER2) occurs in around 15% of breast cancers and is driven by amplification of the ERBB2 gene. ERBB2 amplification is a marker of poor prognosis, and although anti-ERBB2-targeted therapies have shown significant clinical benefit, de novo and acquired resistance remains an important problem. Genomic profiling has demonstrated that ERBB2+ve breast cancers are distinguished from ER+ve and 'triple-negative' breast cancers by harbouring not only the ERBB2 amplification on 17q12, but also a number of co-amplified genes on 17q12 and amplification events on other chromosomes. Some of these genes may have important roles in influencing clinical outcome, and could represent genetic dependencies in ERBB2+ve cancers and therefore potential therapeutic targets. Here, we describe an integrated genomic, gene expression and functional analysis to determine whether the genes present within amplicons are critical for the survival of ERBB2+ve breast tumour cells. We show that only a fraction of the ERBB2-amplified breast tumour lines are truly addicted to the ERBB2 oncogene at the mRNA level and display a heterogeneous set of additional genetic dependencies. These include an addiction to the transcription factor gene TFAP2C when it is amplified and overexpressed, suggesting that TFAP2C represents a genetic dependency in some ERBB2+ve breast cancer cells.
Collapse
Affiliation(s)
- K-K Shiu
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - D Wetterskog
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - A Mackay
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - R Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - M Lambros
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - D Sims
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - I Bajrami
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - R Brough
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - J Frankum
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - R Sharpe
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - C Marchio
- Department of Biomedical Sciences and Human Oncology, University of Turin, Turin, Italy
| | - H Horlings
- Department of Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - F Reyal
- Department of Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - M van der Vijver
- Department of Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - N Turner
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - J S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - C J Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - A Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
13
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|
14
|
Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R, Bubendorf L, Kunzelmann K. Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 2012; 7:e43265. [PMID: 22912841 PMCID: PMC3422276 DOI: 10.1371/journal.pone.0043265] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/18/2012] [Indexed: 12/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has the potential for early metastasis and is associated with poor survival. Ano1 (Dog1) is an established and sensitive marker for the diagnosis of gastrointestinal stromal tumors (GIST) and has recently been identified as a Ca2+ activated Cl− channel. Although the ANO1 gene is located on the 11q13 locus, a region which is known to be amplified in different types of human carcinomas, a detailed analysis of Ano1 amplification and expression in HNSCC has not been performed. It is thus still unclear how Ano1 contributes to malignancy in HNSCC. We analyzed genomic amplification of the 11q13 locus and Ano1 together with Ano1-protein expression in a large collection of HNSCC samples. We detected a highly significant correlation between amplification and expression of Ano1 and showed that HNSCC patients with Ano1 protein expression have a poor overall survival. We further analyzed the expression of the Ano1 protein in more than 4′000 human samples from 80 different tumor types and 76 normal tissue types and detected that besides HNSCC and GISTs, Ano1 was rarely expressed in other tumor samples or healthy human tissues. In HNSCC cell lines, expression of Ano1 caused Ca2+ activated Cl− currents, which induced cell motility and cell migration in wound healing and in real time migration assays, respectively. In contrast, knockdown of Ano1 did not affect intracellular Ca2+ signaling and surprisingly did not reduce cell proliferation in BHY cells. Further, expression and activity of Ano1 strongly correlated with the ability of HNSCC cells to regulate their volume. Thus, poor survival in HNSCC patients is correlated with the presence of Ano1. Our results further suggest that Ano1 facilitates regulation of the cell volume and causes cell migration, which both can contribute to metastatic progression in HNSCC.
Collapse
Affiliation(s)
- Christian Ruiz
- Institute for Pathology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells in which information regarding genetic heterogeneity is lost. Here we present a protocol that allows for the genome-wide copy number analysis of single nuclei isolated from mixed populations of cells. Single-nucleus sequencing (SNS), combines flow sorting of single nuclei on the basis of DNA content and whole-genome amplification (WGA); this is followed by next-generation sequencing to quantize genomic intervals in a genome-wide manner. Multiplexing of single cells is discussed. In addition, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ∼3 d from flow cytometry to sequence-ready DNA libraries.
Collapse
|
16
|
Geyer FC, Lacroix-Triki M, Colombo PE, Patani N, Gauthier A, Natrajan R, Lambros MBK, Khalifeh I, Albarracin C, Orru S, Marchiò C, Sapino A, Mackay A, Weigelt B, Schmitt FC, Wesseling J, Sneige N, Reis-Filho JS. Molecular evidence in support of the neoplastic and precursor nature of microglandular adenosis. Histopathology 2012; 60:E115-30. [PMID: 22486256 DOI: 10.1111/j.1365-2559.2012.04207.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Microglandular adenosis (MGA) is a proliferative breast lesion, which has been proposed to be a potential precursor of triple-negative breast cancers. The aims of this study were to determine whether MGAs harbour genetic alterations and if any such genetic aberrations found in MGAs are similar to those found in matched invasive carcinomas. METHODS AND RESULTS Twelve cases of MGA and/or atypical MGA (AMGA), 10 of which were associated with invasive carcinoma, were evaluated. Immunohistochemical profiling revealed that all invasive carcinomas were of triple-negative phenotype and expressed S100, cytokeratins 8/18 and 'basal' markers. The morphologically distinct components of each case (MGA, AMGA and/or invasive carcinoma) were microdissected and subjected to microarray comparative genomic hybridization. Apart from three typical MGAs, all samples harboured genetic alterations. The percentage of the genome affected by copy number aberrations in MGA/AMGA ranged from 0.5 to 61.9%, indicating varying levels of genetic instability. In three cases, MGA/AMGA displayed copy number aberrations similar to those found in matched invasive components, providing strong circumstantial evidence that MGA may constitute the substrate for the invasive carcinoma development. CONCLUSIONS Our results support the contention that MGA can be a clonal lesion and non-obligate precursor of triple-negative breast cancer.
Collapse
Affiliation(s)
- Felipe C Geyer
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Natrajan R, Mackay A, Wilkerson PM, Lambros MB, Wetterskog D, Arnedos M, Shiu KK, Geyer FC, Langerød A, Kreike B, Reyal F, Horlings HM, van de Vijver MJ, Palacios J, Weigelt B, Reis-Filho JS. Functional characterization of the 19q12 amplicon in grade III breast cancers. Breast Cancer Res 2012; 14:R53. [PMID: 22433433 PMCID: PMC3446387 DOI: 10.1186/bcr3154] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/04/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The 19q12 locus is amplified in a subgroup of oestrogen receptor (ER)-negative grade III breast cancers. This amplicon comprises nine genes, including cyclin E1 (CCNE1), which has been proposed as its 'driver'. The aim of this study was to identify the genes within the 19q12 amplicon whose expression is required for the survival of cancer cells harbouring their amplification. METHODS We investigated the presence of 19q12 amplification in a series of 313 frozen primary breast cancers and 56 breast cancer cell lines using microarray comparative genomic hybridisation (aCGH). The nine genes mapping to the smallest region of amplification on 19q12 were silenced using RNA interference in phenotypically matched breast cancer cell lines with (MDA-MB-157 and HCC1569) and without (Hs578T, MCF7, MDA-MB-231, ZR75.1, JIMT1 and BT474) amplification of this locus. Genes whose silencing was selectively lethal in amplified cells were taken forward for further validation. The effects of cyclin-dependent kinase 2 (CDK2) silencing and chemical inhibition were tested in cancer cells with and without CCNE1 amplification. RESULTS 19q12 amplification was identified in 7.8% of ER-negative grade III breast cancer. Of the nine genes mapping to this amplicon, UQCRFS1, POP4, PLEKHF1, C19ORF12, CCNE1 and C19ORF2 were significantly over-expressed when amplified in primary breast cancers and/or breast cancer cell lines. Silencing of POP4, PLEKHF1, CCNE1 and TSZH3 selectively reduced cell viability in cancer cells harbouring their amplification. Cancer cells with CCNE1 amplification were shown to be dependent on CDK2 expression and kinase activity for their survival. CONCLUSIONS The 19q12 amplicon may harbour more than a single 'driver', given that expression of POP4, PLEKHF1, CCNE1 and TSZH3 is required for the survival of cancer cells displaying their amplification. The observation that cancer cells harbouring CCNE1 gene amplification are sensitive to CDK2 inhibitors provides a rationale for the testing of these chemical inhibitors in a subgroup of patients with ER-negative grade III breast cancers.
Collapse
Affiliation(s)
- Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Alan Mackay
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Daniel Wetterskog
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Monica Arnedos
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Kai-Keen Shiu
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Felipe C Geyer
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anita Langerød
- Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausèen 70, Montebello, Oslo, 0310, Norway
| | - Bas Kreike
- Institute for Radiation Oncology Arnhem, Wagnerlaan 47, Arnhem 6815 AD, The Netherlands
| | - Fabien Reyal
- Department of Surgery, Institut Curie, 26 rue d'Ulm, Paris, 75005, France
| | - Hugo M Horlings
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Marc J van de Vijver
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Jose Palacios
- Servicio de Anatomia Patologica, HHUU Virgen del Rocío, Avda. Manuel Siurot, s/n, Seville, 41013, Spain
| | - Britta Weigelt
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Jorge S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
18
|
Ross JS. Update on HER2 testing for breast and upper gastrointestinal tract cancers. Biomark Med 2011; 5:307-18. [PMID: 21657840 DOI: 10.2217/bmm.11.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With the regulatory approvals in Europe and the USA of trastuzumab-based anti-HER2 targeted therapy for upper gastrointestinal cancers in 2010, HER2 testing has now become universal for newly diagnosed cases of both breast cancer and adenocarcinomas of esophagus, stomach and gastroesophageal origin. In the 12 years or more since the approval of trastuzumab for breast cancer, general refinements in approaches to HER2 testing, including a greater understanding of the implications of preanalytic factors impacting the test results and the application of standardization of reporting of HER2 test results, have taken place. There has also been continuing development in breast cancer with the introduction of new HER2 tests, including non-FISH tests, dimerization assays, phosphorylated HER2 receptor tests, mRNA-based tests, HER2 gene sequencing tests and the application of HER2 testing to circulating tumor cells. Most recently, the introduction of HER2 testing for upper gastrointentinal malignancies has emphasized the need for performing and interpreting slide-based assays in a manner unique to these specimens and not to apply the breast cancer testing protocols to esophageal and gastric adenocarcinomas.
Collapse
|
19
|
Wilkerson PM, Dedes KJ, Wetterskog D, Mackay A, Lambros MB, Mansour M, Frankum J, Lord CJ, Natrajan R, Ashworth A, Reis-Filho JS. Functional characterization of EMSY
gene amplification in human cancers. J Pathol 2011; 225:29-42. [DOI: 10.1002/path.2944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022]
|
20
|
Sriram KB, Relan V, Clarke BE, Duhig EE, Yang IA, Bowman RV, Lee YCG, Fong KM. Diagnostic molecular biomarkers for malignant pleural effusions. Future Oncol 2011; 7:737-52. [DOI: 10.2217/fon.11.45] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural effusions (MPEs) are a common and important cause of cancer-related mortality and morbidity. Prompt diagnosis using minimally invasive tests is important because the median survival after diagnosis is only 4–9 months. Pleural fluid cytology is pivotal to current MPE diagnostic algorithms but has limited sensitivity (30–60%). Consequently, many patients need to undergo invasive diagnostic tests such as thoracoscopic pleural biopsy. Recent genomic, transcriptomic, methylation and proteomic studies on cells within pleural effusions have identified novel molecular diagnostic biomarkers that demonstrate potential in complementing cytology in the diagnosis of MPEs. Several challenges will need to be addressed prior to the incorporation of these molecular tests into routine clinical diagnosis, including validation of molecular diagnostic markers in well-designed prospective, comparative and cost–effectiveness studies. Ultimately, minimally invasive diagnostic tests that can be performed quickly will enable clinicians to provide the most effective therapies for patients with MPEs in a timely fashion.
Collapse
Affiliation(s)
| | - Vandana Relan
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - Belinda E Clarke
- Department of Anatomical Pathology, The Prince Charles Hospital, Queensland, Australia
| | - Edwina E Duhig
- Department of Anatomical Pathology, The Prince Charles Hospital, Queensland, Australia
| | - Ian A Yang
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - Rayleen V Bowman
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - YC Gary Lee
- School of Medicine & Pharmacology & CAARR, University of Western Australia, Perth, Australia
- Respiratory Department, Sir Charles Gairdner Hospital, Perth, Australia
- Pleural Disease Unit, Lung Institute of Western Australia, Perth, Australia
| | - Kwun M Fong
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| |
Collapse
|