1
|
Rodemann MM, Dreschmann V, Dörner E, Sommer A, Kraetzschmar J, Klein-Hitpass L, Nagae G, Hiyama E, von Schweinitz D, Kappler R, Vokuhl C, Pietsch T. Identification of a Growth-Promoting Gene Cluster in the Region 2q24 as a Driver of Tumorigenesis in Childhood Hepatoblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00147-6. [PMID: 40316217 DOI: 10.1016/j.ajpath.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025]
Abstract
Hepatoblastoma (HB) represents the most common primary malignancy of the liver in childhood. Cytogenetic studies uncovered characteristic copy number alterations in HB. The frequent gain of chromosome 2q and particularly the recurrent 2q24 amplification suggest the presence of a so far unidentified oncogenic driver within this amplicon. High-resolution copy number profiles from 76 patients with HB were generated by using molecular inversion probe array technology. 2q gain was present in 63.2%, and 2q24 high-gain/amplification was present in 14.5% of patients analyzed. In the smallest overlapping region at 2q24.2q24.3, spanning >5.2 Mbp, 22 protein-coding genes, 2 long noncoding RNA genes, and one miRNA gene were mapped. RNA expression analysis of these smallest overlapping region genes identified RBMS1, BAZ2B, MARCH7, DPP4, FIGN, and TANK as overexpressed in 2q24 high-gain/amplified HB cases. Accordingly, these six genes were selected for further investigation. In situ, immunohistochemical staining showed higher protein expression of these genes in 2q24 high-gain HB tissue sections. In vitro, functional analyses were performed in established human HB cell lines carrying a 2q (high-)gain. Knockdown of these genes by specific siRNAs resulted in reduced proliferation and marked reduction of Wnt pathway activity. These genes located within the 2q24 amplicon might collaborate in driving cellular growth by interaction with the Wnt pathway that is known to be activated pathologically in HB.
Collapse
Affiliation(s)
- Martin M Rodemann
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Verena Dreschmann
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Evelyn Dörner
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan; Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | | - Roland Kappler
- Department of Pediatric Surgery, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Christian Vokuhl
- Pediatric Pathology, Department of Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
2
|
Liu X, Hu X, Jing M, Huang L, You Y, Zhang Y, Li K, Tu Y, Liu Y, Chen X, Su J, Hejtmancik JF, Hou L, Ma X. Death associated protein like 1 acts as a novel tumor suppressor in melanoma by increasing the stability of P21 protein. Mol Cell Biochem 2025; 480:1595-1610. [PMID: 38980592 PMCID: PMC11842415 DOI: 10.1007/s11010-024-05067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Melanoma is a primary malignant tumor with high lethality, which occurs in the skin and eye tissues, while the molecular mechanisms of melanomagenesis remain largely unknown. Here, we show that death-associated protein-like 1 (DAPL1) expression is lower in melanoma tissues than in paracancerous tissues or nevus tissues, and Uveal melanoma patients with lower DAPL1 expression have a poorer survival rate than those with higher expression of DAPL1. Overexpression of DAPL1 inhibits proliferation of cultured melanoma cells, whereas knockdown of DAPL1 increases cell proliferation. Tumor transplantation experiment results also demonstrate that DAPL1 inhibits tumorigenesis of melanoma cells both in subretinal and subcutaneous tissues of nude mice in vivo. Finally, DAPL1 inhibits proliferation of melanoma cells by increasing the protein level of P21 via decreasing the ubiquitin mediated degradation of P21 and promoting its stability. Conversely, knockdown of P21 neutralizes the effects of inhibition of DAPL1 on melanoma cell proliferation and enhances the severity of melanoma tumorigenesis. These results suggest that DAPL1 is a novel melanoma tumor suppressor gene and thus a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojuan Hu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meiyu Jing
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lijin Huang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaqi You
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaru Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ke Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunhai Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Youjia Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaogang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Zheng Y, Lu Y, Yuan F, Kong Y, Mao Y, Wang S. GALNT5 promotes migration and invasion of pancreatic ductal adenocarcinoma cells by activating Erk signaling pathway. Biochim Biophys Acta Gen Subj 2025; 1869:130769. [PMID: 39870120 DOI: 10.1016/j.bbagen.2025.130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Aberrant glycosylation has been implicated in promoting the progression and metastasis of pancreatic ductal adenocarcinoma (PDAC). However, the contribution of different glycosylation-related genes in PDAC remains to be clarified. In this study, we performed a differential analysis of RNA-Seq data from TCGA and GTEx and found GALNT5 as the most significant upregulated glycosylation-related gene in PDAC. Using publicly available single-cell sequencing data, we further revealed that GALNT5 is predominantly expressed in malignant ductal epithelial cells of PDAC. Correlation analysis indicated that GALNT5 is the essential member of the GALNT family associated with poor prognosis of PDAC. Overexpression of GALNT5 in PANC-1 or MIAPaCa-2 cells with low endogenous GALNT5 enhances migration and invasion. Conversely, knockdown of GALNT5 in AsPC-1 cells with high endogenous GALNT5 inhibits migration and invasion. Mechanistically, we discovered that GALNT5 activates the Erk signaling pathway in PDAC. Our findings suggest GALNT5 is a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Yongjia Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuxing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Yuan
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yun Kong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| | - Shengjun Wang
- School of Health and Life Sciences, University of Health and Rehabilitation, Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Aguiar TFM, Rivas MP, de Andrade Silva EM, Pires SF, Dangoni GD, Macedo TC, Defelicibus A, Barros BDDF, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, da Cunha IW, da Costa CML, Carraro DM, Tojal I, de Oliveira Mendes TA, Krepischi ACV. First Transcriptome Analysis of Hepatoblastoma in Brazil: Unraveling the Pivotal Role of Noncoding RNAs and Metabolic Pathways. Biochem Genet 2024:10.1007/s10528-024-10764-y. [PMID: 38649558 DOI: 10.1007/s10528-024-10764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
- Columbia University Irving Medical Center, New York, NY, USA
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Edson Mario de Andrade Silva
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Minas Gerais, Brazil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | - Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Gustavo Dib Dangoni
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Taiany Curdulino Macedo
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | | | | | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Herreros-Pomares A, Hervás D, Bagan-Debon L, Proaño A, Garcia D, Sandoval J, Bagan J. Oral cancers preceded by proliferative verrucous leukoplakia exhibit distinctive molecular features. Oral Dis 2024; 30:1072-1083. [PMID: 36892444 DOI: 10.1111/odi.14550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE Proliferative verrucous leukoplakia (PVL) has high rates of malignant transformation into oral squamous cell carcinoma (OSCC), but the clinical and evolutionary pattern of OSCC from PVL (PVL-OSCC) is more favorable than that of OSCC not preceded by PVL (OSCC). Here, we aimed to explore the pathophysiologic differences between PVL-OSCC and OSCC through transcriptomic and DNA methylation analyses. MATERIALS AND METHODS In this case-control study, oral biopsies from 8 PVL-OSCC and 10 OSCC patients were obtained for global sequencing using RNAseq and a genome-wide DNA methylation analysis via the Infinium EPIC Platform (graphical abstract). RESULTS One hundred and thirty-three differentially expressed genes (DEGs) were detected, 94 of them upregulated in OSCC. Most of these genes were previously described in cancer and associated with prognosis. The integrative analysis revealed 26 DEGs, corresponding to 37 CpGs, whose promoters were regulated by DNA methylation. Twenty-nine of the CpGs were found as hypermethylated in PVL-OSCC. Only 5 of the genes that were aberrantly methylated and differentially expressed were upregulated in PVL-OSCC patients, whereas 21 were underexpressed. CONCLUSIONS PVL-OSCC patients presented lower expression of cancer-related genes. Hypermethylation of the promoter region of many genes was also noticed, indicating that DNA methylation could be a regulatory mechanism.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
| | - David Hervás
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Leticia Bagan-Debon
- Medicina Oral Unit, Stomatology Department, Valencia University, Valencia, Spain
| | - Alex Proaño
- Medicina Oral Unit, Stomatology Department, Valencia University, Valencia, Spain
| | - Diana Garcia
- Epigenomics Unit, Health Research Institute La Fe, Valencia, Spain
| | - Juan Sandoval
- Epigenomics Unit, Health Research Institute La Fe, Valencia, Spain
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Valencia, Spain
| | - Jose Bagan
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
- Medicina Oral Unit, Stomatology Department, Valencia University, Valencia, Spain
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain
- Precancer and oral cancer research group of Valencia University, Valencia, Spain
| |
Collapse
|
6
|
Barros JS, Aguiar TFM, Costa SS, Rivas MP, Cypriano M, Toledo SRC, Novak EM, Odone V, Cristofani LM, Carraro DM, Werneck da Cunha I, Costa CML, Vianna-Morgante AM, Rosenberg C, Krepischi ACV. Copy Number Alterations in Hepatoblastoma: Literature Review and a Brazilian Cohort Analysis Highlight New Biological Pathways. Front Oncol 2021; 11:741526. [PMID: 34956867 PMCID: PMC8692715 DOI: 10.3389/fonc.2021.741526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma (HB) is a rare embryonal tumor, although it is the most common pediatric liver cancer. The aim of this study was to provide an accurate cytogenomic profile of this type of cancer, for which information in cancer databases is lacking. We performed an extensive literature review of cytogenetic studies on HBs disclosing that the most frequent copy number alterations (CNAs) are gains of 1q, 2/2q, 8/8q, and 20; and losses at 1p and 4q. Furthermore, the CNA profile of a Brazilian cohort of 26 HBs was obtained by array-CGH; the most recurrent CNAs were the same as shown in the literature review. Importantly, HBs from female patients, high-risk stratification tumors, tumors who developed in older patients (> 3 years at diagnosis) or from patients with metastasis and/or deceased carried a higher diversity of chromosomal alterations, specifically chromosomal losses at 1p, 4, 11q and 18q. In addition, we distinguished three major CNA profiles: no detectable CNA, few CNAs and tumors with complex genomes. Tumors with simpler genomes exhibited a significant association with the epithelial fetal subtype of HBs; in contrast, the complex genome group included three cases with epithelial embryonal histology, as well as the only HB with HCC features. A significant association of complex HB genomes was observed with older patients who developed high-risk tumors, metastasis, and deceased. Moreover, two patients with HBs exhibiting complex genomes were born with congenital anomalies. Together, these findings suggest that a high load of CNAs, mainly chromosomal losses, particularly losses at 1p and 18, increases the tendency to HB aggressiveness. Additionally, we identified six hot-spot chromosome regions most frequently affected in the entire group: 1q31.3q42.3, 2q23.3q37.3, and 20p13p11.1 gains, besides a 5,3 Mb amplification at 2q24.2q24.3, and losses at 1p36.33p35.1, 4p14 and 4q21.22q25. An in-silico analysis using the genes mapped to these six regions revealed several enriched biological pathways such as ERK Signaling, MicroRNAs in Cancer, and the PI3K-Akt Signaling, in addition to the WNT Signaling pathway; further investigation is required to evaluate if disturbances of these pathways can contribute to HB tumorigenesis. The analyzed gene set was found to be associated with neoplasms, abnormalities of metabolism/homeostasis and liver morphology, as well as abnormal embryonic development and cytokine secretion. In conclusion, we have provided a comprehensive characterization of the spectrum of chromosomal alterations reported in HBs and identified specific genomic regions recurrently altered in a Brazilian HB group, pointing to new biological pathways, and relevant clinical associations.
Collapse
Affiliation(s)
- Juliana Sobral Barros
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Urology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Silvia Souza Costa
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Prates Rivas
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Institute of Pediatric Oncology, Support Group for Children and Adolescents with Cancer (IOP-GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada Toledo
- Department of Pediatrics, Institute of Pediatric Oncology, Support Group for Children and Adolescents with Cancer (IOP-GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Estela Maria Novak
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vicente Odone
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Research Center, AC Camargo Cancer Center (ACCCC), São Paulo, Brazil
| | | | | | - Angela M Vianna-Morgante
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Zheng M, Hu Y, Gou R, Li S, Nie X, Li X, Lin B. Development of a seven-gene tumor immune microenvironment prognostic signature for high-risk grade III endometrial cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:294-306. [PMID: 34553020 PMCID: PMC8426172 DOI: 10.1016/j.omto.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Uterine corpus endometrial carcinoma locally infiltrates numerous immune cells and other tumor immune microenvironment components. These cells are involved in malignant tumor growth and proliferation and the process of resistance toward immunotherapies. Here, we aimed to develop a tumor immune microenvironment-related prognostic signature for high-risk grade III endometrial carcinoma based on The Cancer Genome Atlas. The signature was systematically correlated with immune infiltration characteristics of the tumor microenvironment. The seven-gene Riskscore signature was robust and performed well in training, testing, and Gene Expression Omnibus-independent cohorts. A nomogram comprising the gene signature accurately predicted patient prognosis, with our model performing better than other endometrial cancer-related signatures. Analysis of the IMvigor210 immunotherapy cohort revealed that subgroups with a low Riskscore had a better prognosis than subgroups with a high Riskscore. Subgroups with a low Riskscore exhibited immune cell infiltration and inflammatory profiles, whereas subgroups with a high Riskscore experienced progressive disease. The receiver operating characteristic curve indicated that risk score, neoantigen, and tumor mutation burden models together accurately predicted treatment response. Taken together, we developed a tumor microenvironment-based seven-gene prognostic stratification system to predict the prognosis of patients with high-risk endometrial cancer and guide more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Mingjun Zheng
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany
| | - Yuexin Hu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Rui Gou
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Siting Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Xin Nie
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| |
Collapse
|
8
|
Chen HB, Pineda Garcia JC, Arizono S, Takeda T, Li RS, Hattori Y, Sano H, Miyauchi Y, Hirota Y, Tanaka Y, Ishii Y. DAPL1 is a novel regulator of testosterone production in Leydig cells of mouse testis. Sci Rep 2021; 11:18532. [PMID: 34535743 PMCID: PMC8448858 DOI: 10.1038/s41598-021-97961-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Leydig cells in the testes produce testosterone in the presence of gonadotropins. Therefore, male testosterone levels must oscillate within a healthy spectrum, given that elevated testosterone levels augment the risk of cardiovascular disorders. We observed that the expression of death-associated protein-like 1 (DAPL1), which is involved in the early stages of epithelial differentiation and apoptosis, is considerably higher in the testes of sexually mature mice than in other tissues. Accordingly, Dapl1-null mice were constructed to evaluate this variation. Notably, in these mice, the testicular levels of steroidogenic acute regulatory protein (StAR) and serum testosterone levels were significantly elevated on postnatal day 49. The findings were confirmed in vitro using I-10 mouse testis-derived tumor cells. The in vivo and in vitro data revealed the DAPL1-regulated the expression of StAR involving altered transcription of critical proteins in the protein kinase A and CREB/CREM pathways in Leydig cells. The collective findings implicate DAPL1 as an important factor for steroidogenesis regulation, and DAPL1 deregulation may be related to high endogenous levels of testosterone.
Collapse
Affiliation(s)
- Hong-Bin Chen
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Jorge Carlos Pineda Garcia
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinako Arizono
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Experimental, Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Japan
| | - Ren-Shi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroe Sano
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Identification of tumor microenvironment-related prognostic genes in colorectal cancer based on bioinformatic methods. Sci Rep 2021; 11:15040. [PMID: 34294834 PMCID: PMC8298640 DOI: 10.1038/s41598-021-94541-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) ranks fourth among the deadliest cancers globally, and the progression is highly affected by the tumor microenvironment (TME). This study explores the relationship between TME and colorectal cancer prognosis and identifies prognostic genes related to the CRC microenvironment. We collected the gene expression data from The Cancer Genome Atlas (TCGA) and calculated the scores of stromal/immune cells and their relations to clinical outcomes in colorectal cancer by the ESTIMATE algorithm. Lower immune scores were significantly related to the malignant progression of CRC (metastasis, p = 0.001). We screened 292 differentially expressed genes (DEGs) by dividing CRC cases into high and low stromal/immune score groups. Functional enrichment analyses and protein-protein interaction (PPI) networks illustrated that these DEGs were closely involved in immune response, cytokine-cytokine receptor interaction, and chemokine signaling pathway. Six DEGs (FABP4, MEOX2, MMP12, ERMN, TNFAIP6, and CHST11) with prognostic value were identified by survival analysis and validated in two independent cohorts (GSE17538 and GSE161158). The six DEGs were significantly related to immune cell infiltration levels based on the Tumor Immune Estimation Resource (TIMER). The results might contribute to discovering new diagnostic and prognostic biomarkers and new treatment targets for colorectal cancer.
Collapse
|
10
|
Hattori Y, Takeda T, Fujii M, Taura J, Yamada H, Ishii Y. Attenuation of growth hormone production at the fetal stage is critical for dioxin-induced developmental disorder in rat offspring. Biochem Pharmacol 2021; 186:114495. [PMID: 33711284 DOI: 10.1016/j.bcp.2021.114495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Although dioxins and related chemicals have been suspected to disrupt child development, their toxic mechanism remains poorly understood. Our previous studies in rat fetuses revealed that maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly-toxic dioxin, suppresses fetal synthesis of pituitary growth hormone (GH) that is essential for development. This study examined the hypothesis that attenuating GH expression in fetuses triggers developmental disorders. Treating pregnant rats with 1 μg/kg TCDD reduced the circulating level of GH and its downstream factor, insulin-like growth factor-1 (IGF-1), in the offspring only during the fetal and early neonatal stages. Although maternal TCDD exposure resulted in low body weight and length at babyhood and defects in the learning and memory ability at adulthood, GH supplementation in TCDD-exposed fetuses restored or tended to restore the defects including IGF-1 downregulation. Moreover, maternal TCDD exposure decreased the number of GH-positive cells during the fetal/neonatal stage. A microarray analysis showed that TCDD reduced the expression of death-associated protein-like 1 (DAPL1), a cell cycle-dependent proliferation regulator, in the fetal pituitary gland. In addition, TCDD treatment attenuated proliferating cells and cyclin mRNA expression in the fetal pituitary gland. Aryl hydrocarbon receptor (AHR)-knockout fetuses were insensitive to TCDD treatment, indicating that the TCDD-induced reduction in DAPL1 and GH mRNAs expression was due to AHR activation. Finally, DAPL1 knockdown suppressed GH and cyclin D2 expression in fetal pituitary cells. These results provide a novel evidence that dioxin suppresses GH-producing cell proliferation and GH synthesis due to partly targeting DAPL1, thereby impairing offspring development.
Collapse
Affiliation(s)
- Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Junki Taura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Rivas MP, Aguiar TFM, Maschietto M, Lemes RB, Caires-Júnior LC, Goulart E, Telles-Silva KA, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, Carraro DM, Escobar MQ, Lee H, Johnston M, da Costa CML, da Cunha IW, Tasic L, Pearson PL, Rosenberg C, Timchenko N, Krepischi ACV. Hepatoblastomas exhibit marked NNMT downregulation driven by promoter DNA hypermethylation. Tumour Biol 2020; 42:1010428320977124. [PMID: 33256542 DOI: 10.1177/1010428320977124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatoblastomas exhibit the lowest mutational burden among pediatric tumors. We previously showed that epigenetic disruption is crucial for hepatoblastoma carcinogenesis. Our data revealed hypermethylation of nicotinamide N-methyltransferase, a highly expressed gene in adipocytes and hepatocytes. The expression pattern and the role of nicotinamide N-methyltransferase in pediatric liver tumors have not yet been explored, and this study aimed to evaluate the effect of nicotinamide N-methyltransferase hypermethylation in hepatoblastomas. We evaluated 45 hepatoblastomas and 26 non-tumoral liver samples. We examined in hepatoblastomas if the observed nicotinamide N-methyltransferase promoter hypermethylation could lead to dysregulation of expression by measuring mRNA and protein levels by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot assays. The potential impact of nicotinamide N-methyltransferase changes was evaluated on the metabolic profile by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Significant nicotinamide N-methyltransferase downregulation was revealed in hepatoblastomas, with two orders of magnitude lower nicotinamide N-methyltransferase expression in tumor samples and hepatoblastoma cell lines than in hepatocellular carcinoma cell lines. A specific TSS1500 CpG site (cg02094283) of nicotinamide N-methyltransferase was hypermethylated in tumors, with an inverse correlation between its methylation level and nicotinamide N-methyltransferase expression. A marked global reduction of the nicotinamide N-methyltransferase protein was validated in tumors, with strong correlation between gene and protein expression. Of note, higher nicotinamide N-methyltransferase expression was statistically associated with late hepatoblastoma diagnosis, a known clinical variable of worse prognosis. In addition, untargeted metabolomics analysis detected aberrant lipid metabolism in hepatoblastomas. Data presented here showed the first evidence that nicotinamide N-methyltransferase reduction occurs in hepatoblastomas, providing further support that the nicotinamide N-methyltransferase downregulation is a wide phenomenon in liver cancer. Furthermore, this study unraveled the role of DNA methylation in the regulation of nicotinamide N-methyltransferase expression in hepatoblastomas, in addition to evaluate the potential effect of nicotinamide N-methyltransferase reduction in the metabolism of these tumors. These preliminary findings also suggested that nicotinamide N-methyltransferase level may be a potential prognostic biomarker for hepatoblastoma.
Collapse
Affiliation(s)
- Maria Prates Rivas
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Renan B Lemes
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Luiz Carlos Caires-Júnior
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil.,Molecular Genetics-São Paulo's Blood Center, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatric, Adolescent and Child with Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatric, Adolescent and Child with Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Melissa Quintero Escobar
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Hana Lee
- Department of Surgery, Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Johnston
- Department of Surgery, Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Isabela Werneck da Cunha
- Department of Pathology, Rede D'OR São Luiz, São Paulo, Brazil.,Department of Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Peter L Pearson
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Nikolai Timchenko
- Department of Surgery, Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Detarya M, Sawanyawisuth K, Aphivatanasiri C, Chuangchaiya S, Saranaruk P, Sukprasert L, Silsirivanit A, Araki N, Wongkham S, Wongkham C. The O-GalNAcylating enzyme GALNT5 mediates carcinogenesis and progression of cholangiocarcinoma via activation of AKT/ERK signaling. Glycobiology 2020; 30:312-324. [PMID: 31868214 DOI: 10.1093/glycob/cwz098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Mucin type O-glycosylation is a posttranslational modification of membrane and secretory proteins. Transferring of N-acetylgalactosamine, the first sugar of O-glycosylation, is catalyzed by one of the 20 isoforms of polypeptide N-acetylgalactosaminyltransferases (GALNTs). In this study, Vicia villosa lectin (VVL), a lectin that recognizes O-GalNAcylated glycans, was used to detect VVL-binding glycans (VBGs) in cholangiocarcinoma (CCA). The elevation of VBGs in tumor tissues of the liver fluke associated with CCA from hamsters and patients was noted. VBGs were detected in hyperplastic/dysplastic bile ducts and CCA but not in normal biliary epithelia and hepatocytes, indicating the association of VBGs with CCA development and progression. GALNT5 was shown to be the major isoform found in human CCA cell lines with high VBG expression. Suppression of GALNT5 expression using siRNA significantly reduced VBG expression, signifying the connection of GALNT5 and VBGs observed. Knocked-down GALNT5 expression considerably inhibited proliferation, migration and invasion of CCA cells. Increased expression of GALNT5 using pcDNA3.1-GALNT5 expression vector induced invasive phenotypes in CCA cells with low GALNT5 expression. Increasing of claudin-1 and decreasing of slug and vimentin expression together with inactivation of Akt/Erk signaling were noted in GALNT5 knocked-down cells. These observations were reversed in GALNT5 over-expressing cells. GALNT5-modulated progression of CCA cells was shown to be, in part, via GALNT5-mediated autocrine/paracrine factors that stimulated activations of Akt/Erk signaling and the epithelial to mesenchymal transition process. GALNT5 and its O-GalNAcylated products may have important roles in promoting progression of CCA and could possibly be novel targets for treatment of metastatic CCA.
Collapse
Affiliation(s)
- Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Chaiwat Aphivatanasiri
- Department of Pathology, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Sriwipa Chuangchaiya
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Paksiree Saranaruk
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Lukkana Sukprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Dilliott AA, Wang J, Brown E, Singh G, Shkrum MJ, Clin M, Rupar CA, Hegele RA, Siu VM. A novel homozygous variant in REN in a family presenting with classic features of disorders involving the renin-angiotensin pathway, without renal tubular dysgenesis. Am J Med Genet A 2020; 182:2284-2290. [PMID: 33043632 DOI: 10.1002/ajmg.a.61780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Autosomal recessively inherited pathogenic variants in genes associated with the renin-angiotensin-aldosterone system (RAAS) result in early onset oligohydramnios and clinical features of the Potter sequence, typically in association with proximal renal tubules dysgenesis. We describe two siblings and a first cousin who had severe oligohydramnios in the second trimester, and presented at birth with loose skin, wide fontanelles and sutures, and pulmonary insufficiency. Two had refractory hypotension during their brief lives and one received palliative care after birth. All were found to have a homozygous nonsense variant, REN: c.891delG; p.Tyr287*, on exome sequencing. Autopsy limited to the genitourinary system in two of the children revealed normal renal tubular histology in both. Immunoblotting confirmed diminished expression of renin within cultured skin fibroblasts. To our knowledge, this is the first identification of an association between biallelic variants in REN and oligohydramnios in the absence of renal tubular dysgenesis. Due to its role in the RAAS, it has previously been proposed that the decreased expression of REN results in hypotension, ischemia, and decreased urine production. We suggest sequencing of genes in the RAAS, including REN, should be considered in cases of severe early onset oligohydramnios, even when renal morphology and histology are normal.
Collapse
Affiliation(s)
- Allison A Dilliott
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Emma Brown
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gagandeep Singh
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J Shkrum
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Charles Anthony Rupar
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Victoria Mok Siu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.,Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Villela D, de Barros JS, da Costa SS, Aguiar TFM, Campagnari F, Vianna-Morgante AM, Krepischi ACV, Rosenberg C. Detection of mosaicism for segmental and whole chromosome imbalances by targeted sequencing. Ann Hum Genet 2020; 85:18-26. [PMID: 32761927 DOI: 10.1111/ahg.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/29/2022]
Abstract
Mosaic segmental and whole chromosome copy number alterations are postzygotic variations known to be associated with several disorders. We have previously presented an efficient targeted sequencing approach to simultaneously detect point mutations and copy number variations (CNVs). In this study, we evaluated the efficiency of this approach to detect mosaic CNVs, using seven postnatal and 19 tumor samples, previously characterized by chromosomal microarray analyses (CMA). These samples harbored a total of 28 genomic imbalances ranging in size from 0.68 to 171 Mb, and present in 10-80% of the cells. All CNV regions covered by the platform were correctly identified in postnatal samples, and only seven out of 19 CNVs from tumor samples were not identified either because of a lack of target probes in the affected genomic regions or an absence of minimum reads for an alteration call. These results demonstrate that, in a research setting, this is a robust approach for detecting mosaicism in cases of segmental and whole chromosome alterations. Although the current sequencing platform presented a resolution similar to genomic microarrays, it is still necessary to further validate this approach in a clinical setting in order to replace CMA and sequencing analyses by a single test.
Collapse
Affiliation(s)
- Darine Villela
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza da Costa
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita F M Aguiar
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Angela M Vianna-Morgante
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana C V Krepischi
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Aguiar TFM, Rivas MP, Costa S, Maschietto M, Rodrigues T, Sobral de Barros J, Barbosa AC, Valieris R, Fernandes GR, Bertola DR, Cypriano M, Caminada de Toledo SR, Major A, Tojal I, Apezzato MLDP, Carraro DM, Rosenberg C, Lima da Costa CM, Cunha IW, Sarabia SF, Terrada DL, Krepischi ACV. Insights Into the Somatic Mutation Burden of Hepatoblastomas From Brazilian Patients. Front Oncol 2020; 10:556. [PMID: 32432034 PMCID: PMC7214543 DOI: 10.3389/fonc.2020.00556] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164. A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Tatiane Rodrigues
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Anne Caroline Barbosa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Renan Valieris
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Gustavo R Fernandes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Debora R Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Adolescent and Child With Cancer Support Group (GRAACC), Department of Pediatric, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Adolescent and Child With Cancer Support Group (GRAACC), Department of Pediatric, Federal University of São Paulo, São Paulo, Brazil
| | - Angela Major
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Isabela W Cunha
- Department of Pathology, Rede D'OR-São Luiz, São Paulo, Brazil.,Department of Pathology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Stephen Frederick Sarabia
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Dolores-López Terrada
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Rivas MP, Aguiar TFM, Fernandes GR, Caires-Júnior LC, Goulart E, Telles-Silva KA, Cypriano M, de Toledo SRC, Rosenberg C, Carraro DM, da Costa CML, da Cunha IW, Krepischi ACV. TET Upregulation Leads to 5-Hydroxymethylation Enrichment in Hepatoblastoma. Front Genet 2019; 10:553. [PMID: 31249594 PMCID: PMC6582250 DOI: 10.3389/fgene.2019.00553] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma is an embryonal liver tumor carrying few genetic alterations. We previously disclosed in hepatoblastomas a genome-wide methylation dysfunction, characterized by hypermethylation at specific CpG islands, in addition to a low-level hypomethylation pattern in non-repetitive intergenic sequences, in comparison to non-tumoral liver tissues, shedding light into a crucial role for epigenetic dysregulation in this type of cancer. To explore the underlying mechanisms possibly related to aberrant epigenetic modifications, we evaluated the expression profile of a set of genes engaged in the epigenetic machinery related to DNA methylation (DNMT1, DNMT3A, DNMT3B, DNMT3L, UHRF1, TET1, TET2, and TET3), as well as the 5-hydroxymethylcytosine (5hmC) global level. We observed in hepatoblastomas a general disrupted expression of these genes from the epigenetic machinery, mainly UHRF1, TET1, and TET2 upregulation, in association with an enrichment of 5hmC content. Our findings support a model of active demethylation by TETs in hepatoblastoma, probably during early stages of liver development, which in combination with UHRF1 overexpression would lead to DNA hypomethylation and an increase in overall 5hmC content. Furthermore, our data suggest that decreased 5hmC content might be associated with poor survival rate, highlighting a pivotal role of epigenetics in hepatoblastoma development and progression.
Collapse
Affiliation(s)
- Maria Prates Rivas
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,International Center of Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Luiz Carlos Caires-Júnior
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Center of Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Guo H, Zhao L, Shi B, Bao J, Zheng D, Zhou B, Shi J. GALNT5 uaRNA promotes gastric cancer progression through its interaction with HSP90. Oncogene 2018; 37:4505-4517. [PMID: 29743591 DOI: 10.1038/s41388-018-0266-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/24/2022]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in the occurrence and progression of cancer because of their unique characteristics and have therefore become an active area of cancer research. The object of this study was to screen lncRNAs that are dysregulated in gastric cancer and to investigate their potential functions. Global expression of lncRNAs in gastric cancer and adjacent normal tissues of patients was profiled using a microarray assay. We identified an lncRNA (GALNT5 uaRNA, UTR-associated RNA) that is derived from the 3'-UTR of GALNT5. This lncRNA was transcribed independently of the coding region of GALNT5 and was determined to be markedly upregulated in human gastric carcinoma relative to their corresponding normal gastric tissues by quantitative RT-PCR (qRT-PCR) analysis of tissues from 122 gastric carcinoma patients. The expression of GALNT5 uaRNA was significantly correlated with the TNM stage and with lymph node metastasis. Further results demonstrated that GALNT5 uaRNA facilitated the proliferation and migration of gastric cancer cells in vitro and promoted tumor growth in a mouse model of human gastric cancer. Our results also indicated that GALNT5 uaRNA might function in gastric cancer by binding with HSP90. Further studies indicated that the 5'-end stem-loop motifs of GALNT5 uaRNA promoted the binding of HSP90 and its client proteins, and thus inhibited ubiquitination of the clients. These results expanded our understanding of GALNT5 uaRNA as a new avenue for therapeutic intervention against gastric cancer progression.
Collapse
Affiliation(s)
- Hui Guo
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Lianmei Zhao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Bianhua Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jiayu Bao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Dexian Zheng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Baoguo Zhou
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
18
|
Li Y, Zeng C, Hu J, Pan Y, Shan Y, Liu B, Jia L. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J Hematol Oncol 2018; 11:89. [PMID: 29970122 PMCID: PMC6029165 DOI: 10.1186/s13045-018-0632-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancer (CRC) arises in a multistep molecular network process, which is from either discrete genetic perturbation or epigenetic dysregulation. The long non-coding RNAs (lncRNAs), emerging as key molecules in human malignancy, has become one of the hot topics in RNA biology. Aberrant O-glycosylation is a well-described hallmark of many cancers. GALNT7 acts as a glycosyltransferase in protein O-glycosylation, involving in the occurrence and development of CRC. Methods The microarrays were used to survey the lncRNA and mRNA expression profiles of primary CRC cell line SW480 and metastatic CRC cell line SW620. Cell proliferation, migration, invasion, and apoptosis were assayed. Xenograft mouse models were used to determine the role of lncRNA-SNHG7 in CRC in vivo. In addition, CNC analysis and competing endogenous analysis were used to detect differential SNHG7 and relational miRNAs expression in CRC cell lines. Results SNHG7 expression showed a high fold (SW620/SW480) in CRC microarrays. The CRC patients with high expression of SNHG7 had a significantly poor prognosis. Furthermore, SNHG7 promoted CRC cell proliferation, metastasis, mediated cell cycle, and inhibited apoptosis. SNHG7 and GALNT7 were observed for co-expression by CNC analysis, and a negative correlation of SNHG7 and miR-34a were found by competing endogenous RNA (ceRNA) analysis. Further results indicated that SNHG7 facilitated the proliferation and metastasis as a competing endogenous RNA to regulate GALNT7 expression by sponging miR-34a in CRC cell lines. SNHG7 also played the oncogenic role in regulating PI3K/Akt/mTOR pathway by competing endogenous miR-34a and GALNT7. Conclusion The CRC-related SNHG7 and miR-34a might be implicated in CRC progression via GALNT7, suggesting the potential usage of SNHG7/miR-34a/GALNT7 axis in CRC treatment. Electronic supplementary material The online version of this article (10.1186/s13045-018-0632-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Changqian Zeng
- Medical College, Dalian University, Dalian, 116622, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
19
|
Hussain MRM, Hoessli DC, Fang M. N-acetylgalactosaminyltransferases in cancer. Oncotarget 2018; 7:54067-54081. [PMID: 27322213 PMCID: PMC5288242 DOI: 10.18632/oncotarget.10042] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant mucin-type O-glycosylation by glycosyltransferases is a well-described hallmark of many cancers and is also associated with additional non-cancerous developmental and metabolic disorders. The current review focuses on N-acetylgalactosaminyltransferase genes (GALNTs) and proteins (GalNAcTs) to illustrate their importance in cancer biology. Aberrant O-glycosylation by GalNAcTs activates a wide range of proteins that carry out interactions of sessile and motile cells affecting organogenesis, responses to agonists and stimulating hyperproliferation and metastatisation of neoplastic cells. As genome-wide analyses have provided abundant clues regarding under- or over-expressed genes that characterize different types of cancers, GALNTs and their transferase products have attracted attention by being unexpected actors in neoplastic contexts. We intend to review the current knowledge on GALNTs and their encoded transferases in cancer and suggest what could be the significance of such information in cancer pathogenesis and management.
Collapse
Affiliation(s)
- Muhammad Ramzan Manwar Hussain
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Maschietto M, Rodrigues TC, Kashiwabara AY, de Araujo ÉSS, Marques Aguiar TF, da Costa CML, da Cunha IW, Dos Reis Vasques L, Cypriano M, Brentani H, de Toledo SRC, Pearson PL, Carraro DM, Rosenberg C, Krepischi ACV. DNA methylation landscape of hepatoblastomas reveals arrest at early stages of liver differentiation and cancer-related alterations. Oncotarget 2016; 8:97871-97889. [PMID: 29228658 PMCID: PMC5716698 DOI: 10.18632/oncotarget.14208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatoblastomas are uncommon embryonal liver tumors accounting for approximately 80% of childhood hepatic cancer. We hypothesized that epigenetic changes, including DNA methylation, could be relevant to hepatoblastoma onset. The methylomes of eight matched hepatoblastomas and non-tumoral liver tissues were characterized, and data were validated in an independent group (11 hepatoblastomas). In comparison to differentiated livers, hepatoblastomas exhibited a widespread and non-stochastic pattern of global low-level hypomethylation. The analysis revealed 1,359 differentially methylated CpG sites (DMSs) between hepatoblastomas and control livers, which are associated with 765 genes. Hypomethylation was detected in hepatoblastomas for ~58% of the DMSs with enrichment at intergenic sites, and most of the hypermethylated CpGs were located in CpG islands. Functional analyses revealed enrichment in signaling pathways involved in metabolism, negative regulation of cell differentiation, liver development, cancer, and Wnt signaling pathway. Strikingly, an important overlap was observed between the 1,359 DMSs and the CpG sites reported to exhibit methylation changes through liver development (p<0.0001), with similar patterns of methylation in both hepatoblastomas and fetal livers compared to adult livers. Overall, our results suggest an arrest at early stages of liver cell differentiation, in line with the hypothesis that hepatoblastoma ontogeny involves the disruption of liver development. This genome-wide methylation dysfunction, taken together with a relatively small number of driver genetic mutations reported for both adult and pediatric liver cancers, shed light on the relevance of epigenetic mechanisms for hepatic tumorigenesis.
Collapse
Affiliation(s)
- Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiane Cristina Rodrigues
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Luciana Dos Reis Vasques
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Peter Lees Pearson
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|