1
|
Loscertales E, Mateo J, España S. A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. J Liposome Res 2025; 35:64-75. [PMID: 39258993 DOI: 10.1080/08982104.2024.2401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
This study investigates drug-loaded liposomes designed for controlled release under ionizing radiation to refine cancer treatment precision. Liposomes as carriers enable targeted chemotherapy delivery, reducing healthy tissue damage risk. Liposomes containing poly- or mono-unsaturated fatty acids and various sensitizing agents were assessed for responsiveness to UV light and γ photon irradiation including rose bengal (RB), protoporphyrin IX (PPIX), verteporfin (VP), cercosporin (CERC) and hypericin (HYP). Carboxyfluorescein (CF) was used as a surrogate for drug release measurements. VP and PPIX induced rapid drug release and lipid peroxidation under UV light, while RB prompted quick drug release under UV light and a modest immediate release under γ irradiation, eventually reaching full release a few hours after irradiation, demonstrating dose-dependent effects. Smaller liposomes displayed accelerated release, emphasizing size-dependent kinetics. In vitro analyses evaluated radiosensitizing effects of RB-loaded liposomes. Clonogenic assays indicated that RB-filled liposomes had minimal direct radiobiological effects but increased indirect radiation damage, as shown by the curvature of the cell survival curve. Our study sheds light on factors influencing liposomal drug release under ionizing radiation, spotlighting RB as a promising radiosensitizer requiring further investigation for cancer therapy potential.
Collapse
Affiliation(s)
- E Loscertales
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - J Mateo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - S España
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Institute for Physical and Information Technologies "Leonardo Torres Quevedo", ITEFI, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Loscertales E, López-Méndez R, Mateo J, Fraile LM, Udias JM, Espinosa A, España S. Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy. NANOSCALE ADVANCES 2025; 7:1204-1214. [PMID: 39802332 PMCID: PMC11712209 DOI: 10.1039/d4na00773e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025]
Abstract
Radiation therapy is a common cancer treatment but often damages surrounding healthy tissues, leading to unwanted side effects. Despite technological advancements aimed at improving targeting, minimizing exposure to normal cells remains a major challenge. High-Z nanoparticles, such as gold nanoparticles (AuNPs), are being explored as nano-radiosensitizers to enhance cancer treatment through physical, biological, and chemical mechanisms. This study focuses on evaluating the chemical and biological radiosensitizing effects of AuNPs exposed to ionizing radiation (0-50 Gy), specifically their production of reactive oxygen species (ROS) and their impact on cancer cells. ROS generated by AuNPs of varying sizes and coatings were quantified using fluorescence probes for hydroxyl radicals (HO·) and singlet oxygen (1O2). The radiosensitizing effects on MDA-MB-231 cancer cells were assessed via clonogenic assays. Our results show a clear dependence of ROS production on AuNP size. Interestingly, PEG-capped AuNPs did not significantly enhance HO· production but greatly increased 1O2 production, suggesting that multiple reactive species contribute to the radiosensitization process. Clonogenic assays confirmed that PEG-capped AuNPs produced stronger radiosensitizing effects than citrate-capped AuNPs, with smaller AuNPs providing more pronounced biological effects. This study underscores the importance of conducting both chemical and biological evaluations to fully understand the radiosensitization efficacy of AuNPs.
Collapse
Affiliation(s)
- E Loscertales
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain
- Instituto de Tecnologías Físicas y de la Información "Leonardo Torres Quevedo" (ITEFI-CSIC) C/Serrano, 144 Madrid Spain
| | - R López-Méndez
- IMDEA Nanociencia C. Faraday, 9, Fuencarral-El Pardo Madrid Spain
| | - J Mateo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo Madrid Spain
| | - L M Fraile
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC) C. del Prof Martín lagos, S/N, Moncloa-Aravaca Madrid Spain
| | - J M Udias
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC) C. del Prof Martín lagos, S/N, Moncloa-Aravaca Madrid Spain
| | - A Espinosa
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Campus de Cantoblanco, C. Sor Juana Iés de la Cruz, 3, Fuencarral-El Pardo Madrid Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanociencia, Unidad Asociada al CSIC por el ICMM-CSIC c/Faraday 9 28049 Madrid Spain
| | - S España
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain
- Instituto de Tecnologías Físicas y de la Información "Leonardo Torres Quevedo" (ITEFI-CSIC) C/Serrano, 144 Madrid Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo Madrid Spain
| |
Collapse
|
3
|
Yang J, Liu C, Guan J, Wang Y, Su J, Wang Y, Liu S. SPI1 mediates transcriptional activation of TPX2 and RNF2 to regulate the radiosensitivity of lung squamous cell carcinoma. Arch Biochem Biophys 2022; 730:109425. [PMID: 36198346 DOI: 10.1016/j.abb.2022.109425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
Radiotherapy acts by damaging DNA and hindering cancer cell proliferation. H2AX is phosphorylated to produce γH2AX that accumulates in a response to DNA double-strand breaks. Non-coding RNA can influence DNA damage response and enhance DNA repair, which show potential for cancer treatment. The study aimed to observe the influence of SPI1 on the radiosensitivity of lung squamous cell carcinoma (LUSC) and to investigate the mechanisms. SPI1, TPX2, and RNF2 were overexpressed in LUSC tissues and radioresistant cells comspared with adjacent tissues and parental cells, respectively. The binding between SPI1 and TPX2 or RNF2 promoter was investigated using ChIP-qPCR and dual-luciferase assays. SPI1 bound to TPX2 and RNF2 promoters and activated their transcription. SPI1 downregulation increased the radiosensitivity of LUSC cells, which was comprised by TPX2 or RNF2 overexpression. Meanwhile, SPI1 downregulation elevated the protein expression of γH2AX at the late stage of DNA damage response and suppressed DNA damage repair in LUSC cells, which were compromised by TPX2 or RNF2. These results indicate that SPI1 silencing potentiates radiosensitivity in LUSC cells by downregulating the transcription of TPX2 and RNF2, which provides a potential target for the radiotherapy in LUSC.
Collapse
Affiliation(s)
- Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jinlei Guan
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuan Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jingwei Su
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuxiang Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Sui Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China.
| |
Collapse
|
4
|
Fernandes D, Andreyev J. The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy. Microorganisms 2022; 10:1613. [PMID: 36014031 PMCID: PMC9415405 DOI: 10.3390/microorganisms10081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut microbiome plays a key role in regulating host physiology. In a stable state, both the microbiota and the gut work synergistically. The overall homeostasis of the intestinal flora can be affected by multiple factors, including disease states and the treatments given for those diseases. In this review, we examine the relatively well-characterised abnormalities that develop in the microbiome in idiopathic inflammatory bowel disease, and compare and contrast them to those that are found in radiation enteropathy. We discuss how these changes may exert their effects at a molecular level, and the possible role of manipulating the microbiome through the use of a variety of therapies to reduce the severity of the underlying condition.
Collapse
Affiliation(s)
- Darren Fernandes
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
| | - Jervoise Andreyev
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
- The Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Zhai D, Huang J, Hu Y, Wan C, Sun Y, Meng J, Zi H, Lu L, He Q, Hu Y, Jin H, Yang K. Irradiated Tumor Cell-Derived Microparticles Prevent Lung Metastasis by Remodeling the Pulmonary Immune Microenvironment. Int J Radiat Oncol Biol Phys 2022; 114:502-515. [PMID: 35840114 DOI: 10.1016/j.ijrobp.2022.06.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE The majority of cancer-related deaths are attributed to metastasis rather than localized primary tumor progression. However, the factors that regulate the pre-metastatic niche (PMN) and metastasis have not yet been clearly elucidated. We investigated the antimetastatic effects of irradiated tumor cell-derived microparticles (RT-MPs) and highlighted the role of innate immune cells in PMN formation. METHODS AND MATERIALS Mice were treated three times with isolated RT-MPs, followed by tumor cell injection via the tail vein. H&E staining was performed to assess the number of tumor nodules in the lungs, and in vivo luciferase-based noninvasive bioluminescence imaging was conducted to detected tumor burden. The mechanisms of RT-MPs mediated PMN formation was evaluated using flow cytometry, transwell assay, and RT-PCR. RESULTS RT-MPs inhibited tumor cell colonization in the lungs. Neutrophils phagocytosed RT-MPs and secreted CCL3 and CCL4, which induced monocytes chemotaxis and maturation into macrophages. RT-MPs promoted the transition of neutrophils and macrophages into antitumor phenotypes, hence inhibiting cancer cell colonization and proliferation. CONCLUSIONS RT-MPs inhibited PMN formation and lung metastasis in a neutrophil- and macrophage-dependent but T cell-independent manner.
Collapse
Affiliation(s)
- Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaduan Zi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyuan He
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
The Gut Microbiome and Gastrointestinal Toxicities in Pelvic Radiation Therapy: A Clinical Review. Cancers (Basel) 2021; 13:cancers13102353. [PMID: 34068216 PMCID: PMC8153110 DOI: 10.3390/cancers13102353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary A substantial proportion of cancer patients receive radiotherapy (RT) during their cancer trajectory. One of the most challenging pelvic RT-related toxicities are gastrointestinal (GI) toxicities (e.g., abdominal pain, rectal bleeding, faecal incontinence, and diarrhoea) which impair the quality of life (QoL) of patients. Mounting evidence suggests that gut microbiota plays a pivotal role in health and disease, including cancer. Our current clinical review aims to assess the impact of RT on gut microbiota and GI toxicities in cancer patients to provide useful information, in addition to standard care, for clinicians and patients. Abstract Background: Gastrointestinal (GI) toxicities are common adverse effects of pelvic radiotherapy (RT). Several recent studies revealed that toxicity of RT is associated with dysbiosis of the gut microbiome. Method: A literature search was conducted in electronic databases Medline, PubMed, and ScienceDirect, with search terms “microbiome and/or microbiota” and “radiotherapy (RT) and/or chemoradiation therapy (CRT)” and “cancer”, and the relevant literature were selected for use in this article. Results: Eight prospective cohort studies were selected for review with a total of 311 participants with a range of 15–134 participants within these studies. The selected studies were conducted in patients with gynaecological (n = 3), rectal (n = 2), or prostate cancers (n = 1), or patients with various types of malignancies (n = 2). Three studies reported that cancer patients had significantly lower alpha diversity compared with healthy controls. Seven studies found that lower alpha diversity and modulated gut microbiome were associated with GI toxicities during and after pelvic RT (n = 5) and CRT (n = 2), whereas one study found that beta diversity was related to a complete response following CRT. Two further studies reported that fatigue was associated with dysbiosis of the gut microbiome and low alpha diversity during and after RT, and with dysbiosis of the gut microbiome and diarrhoea, respectively. Conclusion: Gut microbiome profiles are associated with GI toxicities and have the potential to predict RT/CRT-induced toxicities and quality of life (QoL) in patients undergoing those treatments. Further robust randomized controlled trials (RCTs) are required to elucidate the effect of gut microbiome profiles on RT-related adverse effects and responses to RT.
Collapse
|
7
|
Barua S, Elhalawani H, Volpe S, Al Feghali KA, Yang P, Ng SP, Elgohari B, Granberry RC, Mackin DS, Gunn GB, Hutcheson KA, Chambers MS, Court LE, Mohamed ASR, Fuller CD, Lai SY, Rao A. Computed Tomography Radiomics Kinetics as Early Imaging Correlates of Osteoradionecrosis in Oropharyngeal Cancer Patients. Front Artif Intell 2021; 4:618469. [PMID: 33898983 PMCID: PMC8063205 DOI: 10.3389/frai.2021.618469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Osteoradionecrosis (ORN) is a major side-effect of radiation therapy in oropharyngeal cancer (OPC) patients. In this study, we demonstrate that early prediction of ORN is possible by analyzing the temporal evolution of mandibular subvolumes receiving radiation. For our analysis, we use computed tomography (CT) scans from 21 OPC patients treated with Intensity Modulated Radiation Therapy (IMRT) with subsequent radiographically-proven ≥ grade II ORN, at three different time points: pre-IMRT, 2-months, and 6-months post-IMRT. For each patient, radiomic features were extracted from a mandibular subvolume that developed ORN and a control subvolume that received the same dose but did not develop ORN. We used a Multivariate Functional Principal Component Analysis (MFPCA) approach to characterize the temporal trajectories of these features. The proposed MFPCA model performs the best at classifying ORN vs. Control subvolumes with an area under curve (AUC) = 0.74 [95% confidence interval (C.I.): 0.61–0.90], significantly outperforming existing approaches such as a pre-IMRT features model or a delta model based on changes at intermediate time points, i.e., at 2- and 6-month follow-up. This suggests that temporal trajectories of radiomics features derived from sequential pre- and post-RT CT scans can provide markers that are correlates of RT-induced mandibular injury, and consequently aid in earlier management of ORN.
Collapse
Affiliation(s)
- Souptik Barua
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Hesham Elhalawani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefania Volpe
- Department of Radiation Oncology, European Institute of Oncology IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Karine A Al Feghali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pei Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sweet Ping Ng
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robin C Granberry
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dennis S Mackin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katherine A Hutcheson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark S Chambers
- Department of Oncologic Dentistry and Prosthodontics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Laurence E Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Rao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Zuber SH, Hashikin NAA, Mohd Yusof MF, Aziz MZA, Hashim R. Characterization of soy-lignin bonded Rhizophora spp. particleboard as substitute phantom material for radiation dosimetric studies - Investigation of CT number, mass attenuation coefficient and effective atomic number. Appl Radiat Isot 2021; 170:109601. [PMID: 33515930 DOI: 10.1016/j.apradiso.2021.109601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Experimental particleboards are made from Rhizophora spp. wood trunk with three different percentages of lignin and soy flour (0%, 6% and 12%) as adhesives. The objective was to investigate the equivalence of Rhizophora spp. particleboard as phantom material with human soft tissue using Computed Tomography (CT) number. The linear and mass attenuation coefficient of Rhizophora spp. particleboard at low energy range was also explored using X-ray Fluorescence (XRF) configuration technique. Further characterization of the particleboard was performed to determine the effective atomic number, Zeff using Energy Dispersive X-Ray (EDX) method. Adhesive-bonded Rhizophora spp. particleboard showed close similarities with water, based on the average CT numbers, electron density calibration curve and the analysis of CT density profile, compared to the binderless particleboard. The effective atomic number obtained from the study indicated that the attenuation properties of all the particleboards at different percentages of adhesives were almost similar to water. The mass attenuation coefficient calculated from XRF configuration technique showed good agreement with water from XCOM database, suggesting its potential as phantom material for radiation study.
Collapse
Affiliation(s)
- Siti Hajar Zuber
- School of Physics, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | | | | | - Mohd Zahri Abdul Aziz
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Rokiah Hashim
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| |
Collapse
|
9
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 649] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Blyth BJ, Cole AJ, MacManus MP, Martin OA. Radiation therapy-induced metastasis: radiobiology and clinical implications. Clin Exp Metastasis 2017; 35:223-236. [PMID: 29159430 DOI: 10.1007/s10585-017-9867-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.
| | - Aidan J Cole
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, UK
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Poleszczuk J, Walker R, Moros EG, Latifi K, Caudell JJ, Enderling H. Predicting Patient-Specific Radiotherapy Protocols Based on Mathematical Model Choice for Proliferation Saturation Index. Bull Math Biol 2017; 80:1195-1206. [PMID: 28681150 DOI: 10.1007/s11538-017-0279-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/31/2017] [Indexed: 01/27/2023]
Abstract
Radiation is commonly used in cancer treatment. Over 50% of all cancer patients will undergo radiotherapy (RT) as part of cancer care. Scientific advances in RT have primarily focused on the physical characteristics of treatment including beam quality and delivery. Only recently have inroads been made into utilizing tumor biology and radiobiology to design more appropriate RT protocols. Tumors are composites of proliferating and growth-arrested cells, and overall response depends on their respective proportions at irradiation. Prokopiou et al. (Radiat Oncol 10:159, 2015) developed the concept of the proliferation saturation index (PSI) to augment the clinical decision process associated with RT. This framework is based on the application of the logistic equation to pre-treatment imaging data in order to estimate a patient-specific tumor carrying capacity, which is then used to recommend a specific RT protocol. It is unclear, however, how dependent clinical recommendations are on the underlying tumor growth law. We discuss a PSI framework with a generalized logistic equation that can capture kinetics of different well-known growth laws including logistic and Gompertzian growth. Estimation of model parameters on the basis of clinical data revealed that the generalized logistic model can describe data equally well for a wide range of the generalized logistic exponent value. Clinical recommendations based on the calculated PSI, however, are strongly dependent on the specific growth law assumed. Our analysis suggests that the PSI framework may best be utilized in clinical practice when the underlying tumor growth law is known, or when sufficiently many tumor growth models suggest similar fractionation protocols.
Collapse
Affiliation(s)
- Jan Poleszczuk
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109, Warsaw, Poland
| | - Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA.
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA.
| |
Collapse
|
12
|
Ricardi U, Badellino S, Filippi AR. What do radiation oncologists require for future advancements in lung SBRT? Phys Med 2016; 44:150-156. [PMID: 27914779 DOI: 10.1016/j.ejmp.2016.11.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Stereotactic Body Radiotherapy (SBRT) is a well established therapeutic option for patients affected with peripheral early stage non-small cell lung cancer (NSCLC), given the positive clinical evidence accumulated so far on its efficacy and safety. SBRT is regarded as the best choice for inoperable patients, and could also be offered as an alternative to surgery to selected operable patients. More recently, its use for lung metastases progressively increased, and SBRT is now regarded as a low toxic and highly effective local therapy for lung oligometastases from different primary tumors, especially colorectal cancer. Improved planning and delivery techniques have facilitated over the years its use on large and/or centrally located primary tumors, and multiple nodules. Given the successful applications and the current wide dissemination of this technique, clinicians are now faced with an increasingly complex and multi-variable decision process. Some clinically relevant factors are still uncertain, and strategies are needed to reduce the risk of both local and distant failures. Secondly, aspects related to target delineation, dose prescription, image guidance and treatment planning still need to be fully addressed; this may hamper, at least for now, the standardization of SBRT procedures through different Institutions making any kind of direct outcomes comparison difficult. We here aim to provide a perspective on the current role of lung SBRT and its critical aspects, highlighting the potential future developments.
Collapse
|
13
|
Leonardi MC, Ricotti R, Dicuonzo S, Cattani F, Morra A, Dell'Acqua V, Orecchia R, Jereczek-Fossa BA. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer. Breast 2016; 29:213-22. [DOI: 10.1016/j.breast.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
|
14
|
Vehlow A, Storch K, Matzke D, Cordes N. Molecular Targeting of Integrins and Integrin-Associated Signaling Networks in Radiation Oncology. Recent Results Cancer Res 2016; 198:89-106. [PMID: 27318682 DOI: 10.1007/978-3-662-49651-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiation and chemotherapy are the main pillars of the current multimodal treatment concept for cancer patients. However, tumor recurrences and resistances still hamper treatment success regardless of advances in radiation beam application, particle radiotherapy, and optimized chemotherapeutics. To specifically intervene at key recurrence- and resistance-promoting molecular processes, the development of potent and specific molecular-targeted agents is demanded for an efficient, safe, and simultaneous integration into current standard of care regimens. Potential targets for such an approach are integrins conferring structural and biochemical communication between cells and their microenvironment. Integrin binding to extracellular matrix activates intracellular signaling for regulating essential cellular functions such as survival, proliferation, differentiation, adhesion, and cell motility. Tumor-associated characteristics such as invasion, metastasis, and radiochemoresistance also highly depend on integrin function. Owing to their dual functionality and their overexpression in the majority of human malignancies, integrins present ideal and accessible targets for cancer therapy. In the following chapter, the current knowledge on aspects of the tumor microenvironment, the molecular regulation of integrin-dependent radiochemoresistance and current approaches to integrin targeting are summarized.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Storch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Matzke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
15
|
Allison R, Dicker A. Minimizing morbidity in radiation oncology: a special issue from Future Oncology. Future Oncol 2015; 10:2303-5. [PMID: 25525839 DOI: 10.2217/fon.14.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ron Allison
- 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA
| | | |
Collapse
|