1
|
Adam H, Gopinath SCB, Krishnan H, Adam T, Fakhri MA, Salim ET, Shamsher A, Subramaniam S, Chen Y. Selective detection of alpha synuclein amyloid fibrils by faradaic and non-faradaic electrochemical impedance spectroscopic approaches. Bioelectrochemistry 2025; 161:108800. [PMID: 39241513 DOI: 10.1016/j.bioelechem.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
This study utilized faradaic and non-faradaic electrochemical impedance spectroscopy to detect alpha synuclein amyloid fibrils on gold interdigitated tetraelectrodes (AuIDTE), providing valuable insights into electrochemical reactions for clinical use. AuIDE was purchased, modified with zinc oxide for increased hydrophobicity. Functionalization was conducted with hexacyanidoferrate and carbonyldiimidazole. Faradaic electrochemical impedance spectroscopy has been extensively explored in clinical diagnostics and biomedical research, providing information on the performance and stability of electrochemical biosensors. This understanding can help develop more sensitive, selective, and reliable biosensing platforms for the detection of clinically relevant analytes like biomarkers, proteins, and nucleic acids. Non-faradaic electrochemical impedance spectroscopy measures the interfacial capacitance at the electrode-electrolyte interface, eliminating the need for redox-active species and simplifying experimental setups. It has practical implications in clinical settings, like real-time detection and monitoring of biomolecules and biomarkers by tracking changes in interfacial capacitance. The limit of detection (LOD) for normal alpha synuclein in faradaic mode is 2.39-fM, The LOD for aggregated alpha synuclein detection is 1.82-fM. The LOD for non-faradaic detection of normal alpha synuclein is 2.22-fM, and the LOD for nonfaradaic detection of aggregated alpha synuclein is 2.40-fM. The proposed EIS-based AuIDTEs sensor detects alpha synuclein amyloid fibrils and it is highly sensitive.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Department of Technical Sciences, Western Caspian University, Baku, AZ 1075, Azerbaijan; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh.
| | - Hemavathi Krishnan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Makram A Fakhri
- Laser and Optoelectronics Eng. Department, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Evan T Salim
- Applied Science Department, University of Technology-Iraq, Baghdad 10066, Iraq
| | - A Shamsher
- Electrical Engineering Department, Seberang Perai Polytechnic, 13500 Permatang Pauh, Penang, Malaysia
| | - Sreeramanan Subramaniam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang, Malaysia; School of Biological Sciences, Universiti Sains Malaysia, Georgetown, 11800 Penang, Malaysia
| | - Yeng Chen
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Yamani LN, Juniastuti, Megasari NLA, Utsumi T, Sahila N, Pangestika AS, Putri SMD, Li CY, Martini S, Isfandiari MA, Lusida MI. SARS-CoV-2 IgG antibody status in unvaccinated and 2-dose vaccinated Indonesians by AstraZeneca. J Public Health Afr 2023; 14:2697. [PMID: 38204804 PMCID: PMC10774846 DOI: 10.4081/jphia.2023.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/18/2023] [Indexed: 01/12/2024] Open
Abstract
Indonesia began deploying a COVID-19 vaccine in January 2021, prioritising vaccination for high-risk groups such as healthcare workers, the elderly and those with comorbidities, and ending with the general public due to limited vaccine availability. Our study aimed to evaluate antibody response in Indonesians who had received two doses of the vaccine vs. those who had not. The study design was a cohort study involving 46 unvaccinated people and 23 people who had received the second dose of the AstraZeneca vaccine in three months. Methods used for the qualitative and quantitative detection of IgG antibodies included rapid RI-GHA and ELISA tests. Findings showed that positive IgG antibodies qualitatively detected by the rapid RI-GHA test were significantly higher in those vaccinated (60.9%) than in unvaccinated people (26.1%). Using the ELISA assay, all vaccinated individuals qualitatively showed positive antibodies (cut-off ≥4.33 BAU/ml), and the average quantitative titer of anti-SARS-CoV-2 s-RBD IgG was significantly higher in vaccinated (157.06±238.68 BAU/ml) than in unvaccinated (51.90±87.60 BAU/ml) individuals. Some unvaccinated individuals with no history of infection were found to have anti-SARS-CoV-2 antibodies that may have been previously asymptomatic, although their mean antibody titers were certainly lower than those in the 2-dose group. Approximately 56% of vaccinated individuals had antibody titers above 60 BAU/ml as a cut-off for protective threshold, a significantly higher proportion than unvaccinated individuals. In conclusion, vaccination with two doses AstraZeneca increased anti-SARS-CoV-2 antibodies which resulted in enhanced immunity against symptomatic COVID-19.
Collapse
|
3
|
Wang Z, Murray TA, Xiao M, Lin L, Alemayehu D, Chu H. Bayesian hierarchical models incorporating study-level covariates for multivariate meta-analysis of diagnostic tests without a gold standard with application to COVID-19. Stat Med 2023; 42:5085-5099. [PMID: 37724773 DOI: 10.1002/sim.9902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/25/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
When evaluating a diagnostic test, it is common that a gold standard may not be available. One example is the diagnosis of SARS-CoV-2 infection using saliva sampling or nasopharyngeal swabs. Without a gold standard, a pragmatic approach is to postulate a "reference standard," defined as positive if either test is positive, or negative if both are negative. However, this pragmatic approach may overestimate sensitivities because subjects infected with SARS-CoV-2 may still have double-negative test results even when both tests exhibit perfect specificity. To address this limitation, we propose a Bayesian hierarchical model for simultaneously estimating sensitivity, specificity, and disease prevalence in the absence of a gold standard. The proposed model allows adjusting for study-level covariates. We evaluate the model performance using an example based on a recently published meta-analysis on the diagnosis of SARS-CoV-2 infection and extensive simulations. Compared with the pragmatic reference standard approach, we demonstrate that the proposed Bayesian method provides a more accurate evaluation of prevalence, specificity, and sensitivity in a meta-analytic framework.
Collapse
Affiliation(s)
- Zheng Wang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas A Murray
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mengli Xiao
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lifeng Lin
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Demissie Alemayehu
- Global Biometrics and Data Management, Pfizer Inc., New York, New York, USA
| | - Haitao Chu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
- Global Biometrics and Data Management, Pfizer Inc., New York, New York, USA
| |
Collapse
|
4
|
Bamber HN, Kim JJ, Reynolds BC, Afzaal J, Lunn AJ, Tighe PJ, Irving WL, Tarr AW. Increasing SARS-CoV-2 seroprevalence among UK pediatric patients on dialysis and kidney transplantation between January 2020 and August 2021. Pediatr Nephrol 2023; 38:3745-3755. [PMID: 37261514 PMCID: PMC10233184 DOI: 10.1007/s00467-023-05983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) was officially declared a pandemic by the World Health Organisation (WHO) on 11 March 2020, as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly across the world. We investigated the seroprevalence of anti-SARS-CoV-2 antibodies in pediatric patients on dialysis or kidney transplantation in the UK. METHODS Excess sera samples were obtained prospectively during outpatient visits or haemodialysis sessions and analysed using a custom immunoassay calibrated with population age-matched healthy controls. Two large pediatric centres contributed samples. RESULTS In total, 520 sera from 145 patients (16 peritoneal dialysis, 16 haemodialysis, 113 transplantation) were analysed cross-sectionally from January 2020 until August 2021. No anti-SARS-CoV-2 antibody positive samples were detected in 2020 when lockdown and enhanced social distancing measures were enacted. Thereafter, the proportion of positive samples increased from 5% (January 2021) to 32% (August 2021) following the emergence of the Alpha variant. Taking all patients, 32/145 (22%) were seropositive, including 8/32 (25%) with prior laboratory-confirmed SARS-CoV-2 infection and 12/32 (38%) post-vaccination (one of whom was also infected after vaccination). The remaining 13 (41%) seropositive patients had no known stimulus, representing subclinical cases. Antibody binding signals were comparable across patient ages and dialysis versus transplantation and highest against full-length spike protein versus spike subunit-1 and nucleocapsid protein. CONCLUSIONS Anti-SARS-CoV-2 seroprevalence was low in 2020 and increased in early 2021. Serological surveillance complements nucleic acid detection and antigen testing to build a greater picture of the epidemiology of COVID-19 and is therefore important to guide public health responses. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Holly N Bamber
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jon Jin Kim
- Department of Paediatric Nephrology, Nottingham University Hospitals, Nottingham, UK
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Ben C Reynolds
- Department of Paediatric Nephrology, Royal Hospital for Children, Glasgow, UK
| | - Javairiya Afzaal
- Department of Paediatric Nephrology, Nottingham University Hospitals, Nottingham, UK
| | - Andrew J Lunn
- Department of Paediatric Nephrology, Nottingham University Hospitals, Nottingham, UK
| | - Patrick J Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - William L Irving
- School of Life Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- Microbiology, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK.
- Microbiology, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
5
|
Goshina A, Matyushenko V, Mezhenskaya D, Rak A, Katelnikova A, Gusev D, Rudenko L, Isakova-Sivak I. RDE Treatment Prevents Non-Specific Detection of SARS-CoV-2- and Influenza-Specific IgG Antibodies in Heat-Inactivated Serum Samples. Antibodies (Basel) 2023; 12:39. [PMID: 37366655 PMCID: PMC10295076 DOI: 10.3390/antib12020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Assessing the levels of serum IgG antibodies is widely used to measure immunity to influenza and the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after natural infection or vaccination with specific vaccines, as well as to study immune responses to these viruses in animal models. For safety reasons, sometimes serum specimens collected from infected individuals are subjected to heat inactivation at 56 °C to reduce the risk of infecting personnel during serological studies. However, this procedure may affect the level of virus-specific antibodies, making the results of antibody immunoassays uninterpretable. Here, we evaluated the effect of the heat inactivation of human, ferret and hamster serum samples on the binding of IgG antibodies to the influenza and SARS-CoV-2 antigens. For this, serum samples of naive and immune hosts were analyzed in three variants: (i) untreated sera, (ii) heated at 56 °C for 1 h, and (iii) treated with receptor-destroying enzyme (RDE). The samples were studied through an in-house enzyme-linked immunosorbent assay (ELISA) using whole influenza virus or recombinant proteins corresponding to nucleocapsid (N) protein and the receptor-binding domain of SARS-CoV-2 Spike (RBD) as antigens. We demonstrated that the heat inactivation of the naive serum samples of various hosts can lead to false-positive results, while RDE treatment abolished the effect of the non-specific binding of IgG antibodies to the viral antigens. Furthermore, RDE also significantly decreased the level of virus-specific IgG antibodies in SARS-CoV-2 and influenza-immune sera of humans and animals, although it is unknown whether it actually removes true virus-specific IgG antibodies or only non-specifically binding artifacts. Nevertheless, we suggest that the RDE treatment of human and animal sera may be useful in preventing false-positive results in various immunoassays, while also neutralizing infectious virus, since the standard protocol for the use of RDE also includes heating the sample at 56 °C.
Collapse
Affiliation(s)
- Arina Goshina
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., 188663 Saint Petersburg, Russia;
| | - Denis Gusev
- Botkin Infectious Diseases Hospital, Piskarovskiy Ave 49, 195067 Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| |
Collapse
|
6
|
Vilca-Alosilla JJ, Candia-Puma MA, Coronel-Monje K, Goyzueta-Mamani LD, Galdino AS, Machado-de-Ávila RA, Giunchetti RC, Ferraz Coelho EA, Chávez-Fumagalli MA. A Systematic Review and Meta-Analysis Comparing the Diagnostic Accuracy Tests of COVID-19. Diagnostics (Basel) 2023; 13:diagnostics13091549. [PMID: 37174941 PMCID: PMC10177430 DOI: 10.3390/diagnostics13091549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In this paper, we present a systematic review and meta-analysis that aims to evaluate the reliability of coronavirus disease diagnostic tests in 2019 (COVID-19). This article seeks to describe the scientific discoveries made because of diagnostic tests conducted in recent years during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Between 2020 and 2021, searches for published papers on the COVID-19 diagnostic were made in the PubMed database. Ninety-nine scientific articles that satisfied the requirements were analyzed and included in the meta-analysis, and the specificity and sensitivity of the diagnostic accuracy were assessed. When compared to serological tests such as the enzyme-linked immunosorbent assay (ELISA), chemiluminescence immunoassay (CLIA), lateral flow immunoassay (LFIA), and chemiluminescent microparticle immunoassay (CMIA), molecular tests such as reverse transcription polymerase chain reaction (RT-PCR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR) performed better in terms of sensitivity and specificity. Additionally, the area under the curve restricted to the false-positive rates (AUCFPR) of 0.984 obtained by the antiviral neutralization bioassay (ANB) diagnostic test revealed significant potential for the identification of COVID-19. It has been established that the various diagnostic tests have been effectively adapted for the detection of SARS-CoV-2; nevertheless, their performance still must be enhanced to contain potential COVID-19 outbreaks, which will also help contain potential infectious agent outbreaks in the future.
Collapse
Affiliation(s)
- Juan Jeferson Vilca-Alosilla
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Katiusca Coronel-Monje
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40015-970, BA, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| |
Collapse
|
7
|
Performance Evaluation of RapiSure (EDGC) COVID-19 S1 RBD IgG/Neutralizing Ab Test for the Rapid Detection of SARS-CoV-2 Antibodies. Diagnostics (Basel) 2023; 13:diagnostics13040643. [PMID: 36832131 PMCID: PMC9955181 DOI: 10.3390/diagnostics13040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The accurate detection of anti-neutralizing SARS-CoV-2 antibodies can aid in the understanding of the development of protective immunity against COVID-19. This study evaluated the diagnostic performance of the RapiSure (EDGC) COVID-19 S1 RBD IgG/Neutralizing Ab Test. Using the 90% plaque reduction neutralization test (PRNT90) as a reference, 200 serum samples collected from 78 COVID-19-positive and 122 COVID-19-negative patients were divided into 76 PRNT90-positive and 124 PRNT90-negative groups. The ability of the RapiSure test to detect antibodies was compared to that of the STANDARD Q COVID-19 IgM/IgG Plus test and that of PRNT90. The positive, negative, and overall percent agreement between the RapiSure and STANDARD Q test was 95.7%, 89.3%, and 91.5%, respectively, with a Cohen's kappa of 0.82. The RapiSure neutralizing antibody test results revealed a sensitivity of 93.4% and a specificity of 100% compared to the PRNT results, with an overall percent agreement of 97.5% and Cohen's kappa of 0.95. The diagnostic performance of the RapiSure test was in good agreement with the STANDARD Q COVID-19 IgM/IgG Plus test and comparable to that of the PRNT. The RapiSure S1 RBD IgG/Neutralizing Ab Test was found to be convenient and reliable and, thus, can provide valuable information for rapid clinical decisions during the COVID-19 pandemic.
Collapse
|
8
|
Deutou Wondeu AL, Talom BM, Linardos G, Ngoumo BT, Bello A, Ndassi Soufo AM, Momo AC, Doll C, Tamuedjoun AT, Kiuate JR, Cappelli G, Russo C, Perno CF, Tchidjou HK, Scaramella L, Galgani A. The COVID-19 wave was already here: High seroprevalence of SARS-CoV-2 antibodies among staff and students in a Cameroon University. J Public Health Afr 2023; 14:2242. [PMID: 36798849 PMCID: PMC9926561 DOI: 10.4081/jphia.2023.2242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 01/28/2023] Open
Abstract
Background Seroprevalence studies, to estimate the proportion of people that has been infected by SARS-CoV-2 are importance in African countries, where incidence is among the lowest in the world. Objective This study aimed at evaluating the exposure to SARS-CoV-2 within a university setting of Cameroon. Methods A cross-sectional study performed in December 2020 - December 2021, among students and staffs of the Evangelical University of Cameroon. COVID-19 antigen rapid detection test (RDT) was performed using Standard Q Biosensor, and one year after SARS-CoV-2 antibody-test was performed within the same population using RDT and chemiluminescence immunoassay (CLIA). Results 106 participants were enrolled (80% students), female sex was the most represented. Positivity to SARS-CoV-2 was 0.0% based on antigen RDTs. The seroprevalence of SARSCoV- 2 antibodies was estimated at 73.6% (95% CI. 64.5-81.0) for IgG and 1.9% (95% CI. 0.2-6.8) for IgM/IgG with RDTs, and 91.9% (95% CI. 84.7-96.4) for anti-nucleocapsid with CLIA. 95.3% (101) reported having developed at least one of the known COVID-19 symptoms (cough and headache being the most common). 90.3% (28) of people who experienced at least one of these symptoms developed IgG antibodies. 40.6% (43) of participants took natural herbs, whereas 55.7% (59) took conventional drugs. The most used herb was Zingiber officinale, while the most used drugs were antibiotics. Conclusion In this Cameroonian University community, SARS-CoV-2 seroprevalence is high, with a greater detection using advanced serological assays. This indicates a wide viral exposure, and the need to adequate control measures especially for those experiencing any related COVID-19 symptoms.
Collapse
Affiliation(s)
- Andrillene Laure Deutou Wondeu
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
- Department of Biology and Interdipartimental Center for Comparative Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Beatrice Metchum Talom
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | | | - Barnes Tanetsop Ngoumo
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Aïchatou Bello
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Aurele Marc Ndassi Soufo
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Aimé Cesaire Momo
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Christian Doll
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Jena, Jena, Germany
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Corporate Member of Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alaric Talom Tamuedjoun
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Jules-Roger Kiuate
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Giulia Cappelli
- Institute for Biological Systems, National Research Council, Rome, Italy
| | | | | | | | - Lucia Scaramella
- Unit of Food Biotechnology, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M.Aleandri”, Rome, Italy
| | - Andrea Galgani
- Department of Biology and Interdipartimental Center for Comparative Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2022; 11:CD013652. [PMID: 36394900 PMCID: PMC9671206 DOI: 10.1002/14651858.cd013652.pub2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julia Geppert
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Katie Scandrett
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jacob Bigio
- Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dineshani Hettiarachchi
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yasith Mathangasinghe
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Praveen Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Brian S Buckley
- Cochrane Response, Cochrane, London, UK
- Department of Surgery, University of the Philippines, Manila, Philippines
| | | | | | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht , Netherlands
| | - Mariska Mg Leeflang
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Amsterdam, Netherlands
| | | | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Struyf
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Chen WC, Lin YP, Cheng CM, Shen CF, Li CW, Wang YK, Shih TY, Hong C, Chang TC, Shen CJ. Detection of SARS-CoV-2 Neutralizing Antibodies in Vaccinated Pregnant Women and Neonates by Using a Lateral Flow Immunoassay Coupled with a Spectrum-Based Reader. BIOSENSORS 2022; 12:bios12100891. [PMID: 36291029 PMCID: PMC9599695 DOI: 10.3390/bios12100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/02/2023]
Abstract
The focus of this study was to investigate the detection of neutralizing antibodies (Nabs) in maternal serum and cord blood as the targeted samples by employing a lateral flow immunoassay combined with a spectrum reader (LFI-SR) and the correlation of Nab protection against different types of SARS-CoV-2. We enrolled 20 pregnant women who were vaccinated with the Moderna (mRNA-1273) vaccine during pregnancy and collected 40 samples during delivery. We used an LFI-SR for the level of spike protein receptor binding domain antibody (SRBD IgG) as Nabs and examined the correlation of the SRBD IgG concentration and Nab inhibition rates (NabIR) via enzyme-linked immunosorbent assays (ELISA). The LFI-SR had high confidence for the SRBD IgG level (p < 0.0001). Better NabIR were found in wild-type SARS-CoV-2 (WT) compared to Delta-type (DT) and Omicron-type (OT). Women with two-dose vaccinations demonstrated greater NabIR than those with a single dose. The cut-off value of the SRBD IgG level by the LFI-SR for NabIR to DT (≥30%; ≥70%) was 60.15 and 150.21 ng/mL for mothers (both p = 0.005), and 156.31 (p = 0.011) and 230.20 ng/mL (p = 0.006) for babies, respectively. An additional vaccine booster may be considered for those mothers with SRBD IgG levels < 60.15 ng/mL, and close protection should be given for those neonates with SRBD IgG levels < 150.21 ng/mL, since there is no available vaccine for them.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City 236, Taiwan
| | - Yen-Pin Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | - Ting-Chang Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Iwanicka J, Iwanicki T, Kaczmarczyk M, Mazur W. Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus. Pol J Microbiol 2022; 71:141-159. [PMID: 35716167 PMCID: PMC9252140 DOI: 10.33073/pjm-2022-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
The rapidly spreading Coronavirus Disease 2019 (COVID-19) pandemic has led to a global health crisis and has left a deep mark on society, culture, and the global economy. Despite considerable efforts made to contain the disease, SARS-CoV-2 still poses a threat on a global scale. The current epidemiological situation caused an urgent need to understand the basic mechanisms of the virus transmission and COVID-19 severe course. This review summarizes current knowledge on clinical courses, diagnostics, treatment, and prevention of COVID-19. Moreover, we have included the latest research results on the genetic characterization of SARS-CoV-2 and genetic determinants of susceptibility and severity to infection.
Collapse
Affiliation(s)
- Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Kaczmarczyk
- Clinical Department of Infectious Diseases, Medical University of Silesia, Chorzów, Poland
| | - Włodzimierz Mazur
- Clinical Department of Infectious Diseases, Medical University of Silesia, Chorzów, Poland
| |
Collapse
|
12
|
Garzillo EM, Cioffi A, Carta A, Monaco MGL. Returning to Work after the COVID-19 Pandemic Earthquake: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084538. [PMID: 35457407 PMCID: PMC9024882 DOI: 10.3390/ijerph19084538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 01/06/2023]
Abstract
Background: The ongoing SARS-CoV-2 pandemic has disrupted life and work habits and has produced landmark changes worldwide. This systematic review aimed to analyse the management of Return to Work (RTW) by work organisations following the virus spread. Methods: A selection of 2477 papers, using string research on PubMed, Embase, Web of Science and Scopus from January 2020 to October 2021, were analysed. Results: Fifty-one articles were finally included, and the results obtained were discussed from three different points of view. Twenty articles concerning ‘Remodelling of Work Organization’ proposed some model strategies for resumption to work. Twenty-one papers, including ‘Clinical Evaluation of Workers’, mostly explored the psychosocial impact of returned workers. Finally, twelve articles explored the best ‘Testing Strategies related to RTW’. Despite the heterogeneity of included articles, several interesting approaches have emerged in managing RTW. Conclusions: The reported experiences could help to develop an RTW model for COVID-19 and future pandemics.
Collapse
Affiliation(s)
| | - Arcangelo Cioffi
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.C.); (A.C.)
| | - Angela Carta
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.C.); (A.C.)
- Occupational Medicine Unit, University Hospital of Verona, 37134 Verona, Italy
| | - Maria Grazia Lourdes Monaco
- Occupational Medicine Unit, University Hospital of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-8123946
| |
Collapse
|