1
|
Bandara S, Raveendran S. Current Landscape and Future Directions in Cancer Immunotherapy: Therapies, Trials, and Challenges. Cancers (Basel) 2025; 17:821. [PMID: 40075668 PMCID: PMC11899461 DOI: 10.3390/cancers17050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading global health challenge, placing immense burdens on individuals and healthcare systems. Despite advancements in traditional treatments, significant limitations persist, including treatment resistance, severe side effects, and disease recurrence. Immunotherapy has emerged as a promising alternative, leveraging the immune system to target and eliminate tumour cells. However, challenges such as immunotherapy resistance, patient response variability, and the need for improved biomarkers limit its widespread success. This review provides a comprehensive analysis of the current landscape of cancer immunotherapy, highlighting both FDA-approved therapies and novel approaches in clinical development. It explores immune checkpoint inhibitors, cell and gene therapies, monoclonal antibodies, and nanotechnology-driven strategies, offering insights into their mechanisms, efficacy, and limitations. By integrating emerging research and clinical advancements, this review underscores the need for continued innovation to optimise cancer immunotherapy and overcome existing treatment barriers.
Collapse
Affiliation(s)
- Shehani Bandara
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Sreejith Raveendran
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
2
|
Zhong W, Zhang G, Yue K, Song Y, Zhao Z. MMP2 enzyme-responsive extracellular vesicles as dual-targeted carriers to promote the phagocytosis of macrophages. Colloids Surf B Biointerfaces 2025; 246:114365. [PMID: 39531838 DOI: 10.1016/j.colsurfb.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Combination therapy using inhibition of tumor cell escape and alteration of the tumor microenvironment offers a new strategy for cancer treatment. This study aimed to develop an extracellular vesicle (EV) carrier that regulates tumor cells and the tumor microenvironment to achieve efficient tumor immunotherapy. The ligand modified on carriers targets the immune checkpoint CD47 protein, blocking tumor cell escape. This ligand is cleaved by the MMP2 enzyme and assembles into nanofibers, extending the retention time in the tumor. The carriers target the CD206 protein, enabling efficient uptake by M2 macrophages. Carriers with a high density of ligands (anti-CD206) exhibit strong receptorligand interactions with tumor cells. Due to their high rigidity, these EVs have difficulty deforming during the transmembrane process, reducing resistance and resulting in low uptake efficiency by M2 cells. The optimal uptake efficiency by M2 macrophages is achieved when the mass ratio of ligand to EVs is 1:25. Crocin loaded in EVs facilitates the polarization of M2 macrophages into M1 cells, which can phagocytize tumor cells. This study reveals a potential strategy for using extracellular vesicles in tumor treatment.
Collapse
Affiliation(s)
- Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong 528399, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Tomarchio V, Crescenzi A, Tafuri M, Verri M, Di Cecca M, Rigacci L, Annibali O. The past, the present and the future of immune checkpoints inhibitors in multiple myeloma. Expert Rev Hematol 2025; 18:201-214. [PMID: 39987500 DOI: 10.1080/17474086.2025.2469720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Myeloma genesis is a very complex mechanism in which the interaction between plasma cells and microenvironments with immune cells, cytokines and chemokines have a central role. In the last years, the improved knowledge of immune checkpoint models led to the development of new drugs (anti-PD1/PD-L1 axis or anti-TIGIT) that now have a crucial role in the treatment of many hematological malignancies. AREAS COVERED In this review, the current significant literature was discussed. In the past, initial trials combining immune checkpoint inhibitors (ICIs) with immunomodulatory drugs or proteasome inhibitors demonstrated suboptimal results in terms of efficacy and safety. On the other hand, recent trials based on the combination of ICIs with immunotherapies, such as CAR-T cells or bispecific antibodies, are a particularly promising area of investigation. EXPERT OPINION Our idea after the evaluation of scientific literature is that despite the past, ICIs may represent a promising therapeutic approach for myeloma, particularly when combined with CAR-T cells or bispecific antibodies. By targeting immune evasion mechanisms, ICIs may enhance the efficacy of these treatments and provide new hope for patients with resistant disease. Future research will be crucial to further elucidate their optimal use in myeloma and to develop personalized treatment strategies.
Collapse
Affiliation(s)
- Valeria Tomarchio
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Anna Crescenzi
- Operative Research Unit of Unit of Pathological Anatomy, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Mariantonietta Tafuri
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Martina Verri
- Operative Research Unit of Unit of Pathological Anatomy, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Monica Di Cecca
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Luigi Rigacci
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Ombretta Annibali
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| |
Collapse
|
4
|
Wang J, Wu C, Wang Y, Shen Y, Wu K, Shi Y, Cao T, Yuan S, Zhu Y, Bai Y, Huang J, Zhang Y, Deng J. Nano-enabled regulation of DNA damage in tumor cells to enhance neoantigen-based pancreatic cancer immunotherapy. Biomaterials 2024; 311:122710. [PMID: 39053036 DOI: 10.1016/j.biomaterials.2024.122710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Low-expression antigens, especially neoantigens, pose a significant challenge in immunotherapy for low immunogenicity pancreatic cancer. Increasing the tumor mutation burden is crucial to enhance the expression of tumor antigens and improve tumor immunogenicity. However, the incomplete intervention in DNA stability hampers effective elevation of the tumor mutation burden, thus reducing the probability of neoantigen. To address this issue, we have developed a novel nano-regulator that intervenes in the DNA stability of tumor cells, thereby enhancing tumor mutations. This nano-regulator comprises metal-organic frameworks (MOFs) encapsulating DNA damage agent doxorubicin and DNA damage repair inhibitor siRNA-ATR, enabling simultaneous induction of DNA mutations and inhibition of their repair. Importantly, this regulator, named as MOFDOX&siATR, can modulate the tumor gene expression profile, induce the production of neoantigens of Atp8b1, and enhance the immunogenicity of pancreatic cancer. The characteristics of DNA stability intervention by MOFDOX&siATR hold promise for augmenting the immune response in low immunogenic tumors, making it a potential nanomedicine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Chenghu Wu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yiran Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Yecheng Shen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University;Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Kerui Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yikai Shi
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tianshou Cao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Shanshan Yuan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yuting Zhu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yongheng Bai
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China.
| | - Yan Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
5
|
Kusuma F, Glenardi G, Mangkuliguna G, Winarto H, Purwoto G, Utami TW, Anggraeni TD. Efficacy, safety, and patient-reported outcome of immune checkpoint inhibitor in gynecologic cancers: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2024; 19:e0307800. [PMID: 39133693 PMCID: PMC11318932 DOI: 10.1371/journal.pone.0307800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decades, immune checkpoint inhibitors (ICIs) have shown dramatic efficacy in improving survival rates in multiple malignancies. Recently, gynecological cancer patients also showed to respond favorably to ICI treatment. This study aimed to evaluate the efficacy, safety, and patient-reported outcomes of ICI therapy in gynecological cancers. We conducted a systematic review and meta-analysis by retrieving literature from multiple electronic databases, such as MEDLINE, ScienceDirect, EBSCO, ProQuest, and Google Scholar. The protocol used in this study has been registered in PROSPERO (CRD42022369529). We included a total of 12 trials involving 8 therapies and 8,034 patients. ICI group demonstrated a longer OS (HR: 0.807; 95% CI: 0.719, 0.907; p = 0.000) and greater PFS improvement (HR: 0.809; 95% CI: 0.673, 0.973; p = 0.024) compared to the control group. There was no significant difference in the incidence of treatment-related adverse events [RR: 0.968; 95%CI: 0.936, 1.001; p = 0.061], but a higher incidence of immune-related adverse events (IRAEs) was observed in the ICI group (RR: 3.093; 95%CI: 1.933, 4.798; p = 0.000). Although the mean changes of QOL score from baseline was not significantly different between both groups (SMD: 0.048; 95% CI: -0.106, 0.202; p = 0.542), the time to definitive QOL deterioration was longer in the ICI group (HR: 0.508; 95% CI: 0.461, 0.560; p = 0.000). Despite having a higher incidence of IRAE, ICI was shown to improve survival rates and QOL of patients. Thus, it should be considered as a new standard of care for gynecologic cancers, especially in advanced stages.
Collapse
Affiliation(s)
- Fitriyadi Kusuma
- Division of Oncology Gynecology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo Hospital, Greater Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Glenardi Glenardi
- Division of Oncology Gynecology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo Hospital, Greater Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
- School of Medicine and Health Sciences, Department of Medicine, Atma Jaya Catholic University of Indonesia, North Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
- Lewoleba General Hospital, Lembata Island, East Nusa Tenggara, Indonesia
| | - Ghea Mangkuliguna
- School of Medicine and Health Sciences, Department of Medicine, Atma Jaya Catholic University of Indonesia, North Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Hariyono Winarto
- Division of Oncology Gynecology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo Hospital, Greater Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Gatot Purwoto
- Division of Oncology Gynecology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo Hospital, Greater Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Tofan Widya Utami
- Division of Oncology Gynecology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo Hospital, Greater Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Tricia Dewi Anggraeni
- Division of Oncology Gynecology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo Hospital, Greater Jakarta, Daerah Khusus Ibukota Jakarta, Indonesia
| |
Collapse
|
6
|
Chamorro-Pareja N, Faje AT, Miller KK. Pituitary Complications of Checkpoint Inhibitor Use. Endocrinology 2024; 165:bqae084. [PMID: 39001874 DOI: 10.1210/endocr/bqae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy but are associated with a risk of endocrine immune-related adverse events, including pituitary complications. Autoimmune hypophysitis, traditionally a rare diagnosis, has become a more frequently encountered clinical entity with the emergence of antitumor immunotherapy. This mini-review aims to consolidate current knowledge, encompassing the epidemiology, pathophysiology, clinical presentation, diagnosis, and management of pituitary complications of immune checkpoint inhibitor use.
Collapse
Affiliation(s)
- Natalia Chamorro-Pareja
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexander T Faje
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Karen K Miller
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Li Y, Zhao J, Wang Y, Xu Y, Li R, Zhao Y, Dong X, Yao X, Li Y. Common endocrine system adverse events associated with immune checkpoint inhibitors. CANCER PATHOGENESIS AND THERAPY 2024; 2:164-172. [PMID: 39027145 PMCID: PMC11252504 DOI: 10.1016/j.cpt.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 07/20/2024]
Abstract
Immune checkpoint inhibitors (ICIs), a novel anti-tumor therapeutic modality, are monoclonal antibodies targeting certain immune checkpoints (ICs) that reactivate T cells to achieve anti-tumor immunity by targeting, binding, and blocking ICs. Targeted inhibitory antibodies against the ICs cytotoxic T-lymphocyte antigen and programmed death receptor-1 have demonstrated efficacy and durable anti-tumor activity in patients with cancer. ICs may prevent autoimmune reactions. However, ICIs may disrupt ICs properties and trigger autoimmune-related adverse reactions involving various organ systems including the cardiovascular, pulmonary, gastrointestinal, renal, musculoskeletal, dermal, and endocrine systems. Approximately 10% of patients with damage to target organs such as the thyroid, pituitary, pancreas, and adrenal glands develop endocrine system immune-related adverse events (irAEs) such as thyroid dysfunction, pituitary gland inflammation, diabetes mellitus, and primary adrenal insufficiency. However, the symptoms of immunotherapy-associated endocrine system irAEs may be nonspecific and similar to those of other treatment-related adverse reactions, and failure to recognize them early may lead to death. Timely detection and treatment of immunotherapy-associated endocrine irAEs is essential to improve the efficacy of immunotherapy, prognosis, and the quality of life of patients. This study aimed to review the mechanisms by which ICIs cause endocrine irAEs providing guidance for the development of appropriate management protocols. Here, we discuss (1) the biological mechanisms of ICs in tumorigenesis and progression, focusing on cytotoxic T-lymphocyte antigen and programmed cell death-1/programmed cell death-ligand 1; and (2) the epidemiology, clinical symptoms, diagnosis, and treatment of four immunotherapy-related endocrine complications.
Collapse
Affiliation(s)
- Ying Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Junfeng Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Yue Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Ruyue Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000, China
| | - Ying Zhao
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Xue Dong
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Xiujing Yao
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000, China
| | - Yintao Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| |
Collapse
|
8
|
Funk C, Uhlig N, Ruzsics Z, Baur F, Peindl M, Nietzer S, Epting K, Vacun G, Dandekar G, Botteron C, Werno C, Grunwald T, Bailer SM. TheraVision: Engineering platform technology for the development of oncolytic viruses based on herpes simplex virus type 1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200784. [PMID: 38596296 PMCID: PMC10950833 DOI: 10.1016/j.omton.2024.200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Viruses are able to efficiently penetrate cells, multiply, and eventually kill infected cells, release tumor antigens, and activate the immune system. Therefore, viruses are highly attractive novel agents for cancer therapy. Clinical trials with first generations of oncolytic viruses (OVs) are very promising but show significant need for optimization. The aim of TheraVision was to establish a broadly applicable engineering platform technology for combinatorial oncolytic virus and immunotherapy. Through genetic engineering, an attenuated herpes simplex virus type 1 (HSV1) was generated that showed increased safety compared to the wild-type strain. To demonstrate the modularity and the facilitated generation of new OVs, two transgenes encoding retargeting as well as immunomodulating single-chain variable fragments (scFvs) were integrated into the platform vector. The resulting virus selectively infected epidermal growth factor receptor (EGFR)-expressing cells and produced a functional immune checkpoint inhibitor against programmed cell death protein 1 (PD-1). Thus, both viral-mediated oncolysis and immune-cell-mediated therapy were combined into a single viral vector. Safety and functionality of the armed OVs have been shown in novel preclinical models ranging from patient-derived organoids and tissue-engineered human in vitro 3D tumor models to complex humanized mouse models. Consequently, a novel and proprietary engineering platform vector based on HSV1 is available for the facilitated preclinical development of oncolytic virotherapy.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Matthias Peindl
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Sarah Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Karina Epting
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gabriele Vacun
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Catherine Botteron
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christian Werno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
9
|
Sato R, Yamaki H, Komatsuda H, Wakisaka R, Inoue T, Kumai T, Takahara M. Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers. Cancers (Basel) 2024; 16:1205. [PMID: 38539539 PMCID: PMC10969392 DOI: 10.3390/cancers16061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
Salivary gland cancer (SGC) is rare and comprises over 20 histological subtypes. Recently, clinical experience regarding immunotherapies for SGCs has been accumulating, yet their efficacy remains controversial. Understanding the tumor microenvironment (TME), including the expression of immune checkpoint molecules in SGC, is crucial to optimizing immunotherapy. In this review, we demonstrate that high-grade mucoepidermoid carcinoma and salivary duct carcinoma generally exhibit immune-hot TME with high immune cell infiltration, frequent genetic mutations, and robust immune checkpoint molecule expression. In contrast, adenoid cystic carcinomas exhibit an immune-cold TME. While the reported efficacy of immune checkpoint inhibitors (ICIs) for SGCs is generally poor, several studies showed promising clinical efficacy of ICIs, with an objective response rate ranging from 20.0-33.3%, indicating that ICIs might be beneficial for a specific population of SGC. Molecule-targeted therapies including anti-human epidermal growth factor receptor 2 and anti-androgen receptor therapies have shown promising clinical efficacy against SGC. Recent evidence indicates that these molecules could be targets for antigen-specific immunotherapies including chimeric antigen receptor-T therapy and cancer vaccines. This review discusses the current understanding and future directions of immunotherapies for SGCs, including ongoing clinical trials.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 0788510, Japan
| |
Collapse
|
10
|
Cavillon A, Pouessel D, Houédé N, Mathevet F, Dauxois JY, Chevreau C, Culine S, Delord JP, Porcher R, Filleron T. Assessing Long-term Treatment Benefits Using Complementary Statistical Approaches: An In Silico Analysis of the Phase III Keynote-045 and Checkmate-214 Immune Checkpoint Inhibitor Trials. Eur Urol 2024; 85:293-300. [PMID: 36849297 DOI: 10.1016/j.eururo.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND The Keynote-045 trial illustrates that the long-term benefit (LTB) of treatment does not always translate to improved progression-free survival (PFS). Milestone survival and flexible parametric survival model with cure (FPCM) have been proposed as complementary statistical approaches to more comprehensively evaluate LTBs of treatments. OBJECTIVE The current study compares milestone survival and FPCM analyses to evaluate treatment effects of immune checkpoint inhibitor (ICI) phase III trials. DESIGN, SETTING, AND PARTICIPANTS Individual patient data, from initial and follow-up analyses of Keynote-045 (urothelial cancer) and Checkmate-214 (advanced renal cell carcinoma), were reconstructed for PFS. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Each trial was reanalyzed using the Cox proportional hazard regression and two complementary methods (milestone survival and FPCM) to estimate treatment impact on the LTB. RESULTS AND LIMITATIONS For each trial, there was evidence of nonproportional hazards. For the long-term analysis of the Keynote-045 trial, FPCM identified a time-dependent effect on PFS, but the Cox model found no statistical difference in PFS (hazard ratio, 0.90; 95% confidence interval, 0.75-1.08). Milestone survival and FPCM identified improvements in the LTB fractions. This was consistent with the results from the reanalysis of Keynote-045, based on the shorter follow-up, although the LTB fraction was not retained. The increase in PFS in Checkmate-214 was identified by both Cox model and FPCM. Experimental treatment-dependent improvement in the LTB fraction was demonstrated using milestone survival and FPCM. The LTB fraction estimated with FPCM was consistent with the results from the reanalysis of the shorter follow-up period. CONCLUSIONS Although ICIs show substantial shifts toward LTBs in terms of PFS, based on a conventional Kaplan-Meier or Cox model analysis, our approach provides an alternative assessment of benefit-risk ratios for new therapeutics and facilitates communicating risk to patients. Kidney patients treated with ICIs can be counseled that they are potentially cured, but future work will need to definitively validate this conclusion. PATIENT SUMMARY Although immune checkpoint inhibitor treatments show substantial shifts toward long-term benefits in terms of progression-free survival, a more rigorous attempt to quantify this shift, rather than simply using a Kaplan-Meier estimate or comparing progression-free survival curves using the classic Cox model, is warranted. Our results suggest that advanced renal cell carcinoma patients who had not received a previous treatment are functionally cured by nivolumab and ipilimumab, which is not the case for second-line urothelial carcinoma.
Collapse
Affiliation(s)
- Ana Cavillon
- Biostatistics & Health Data Science Unit, Institut Claudius Regaud - IUCT-Oncopole, Toulouse, France
| | - Damien Pouessel
- Department of Medical Oncology, Institut Claudius Regaud - IUCT-Oncopole, Toulouse, France
| | - Nadine Houédé
- Institut de Cancérologie du Gard, CHU Nîmes, Nîmes Cedex, France
| | - Fanny Mathevet
- Biostatistics & Health Data Science Unit, Institut Claudius Regaud - IUCT-Oncopole, Toulouse, France
| | - Jean Yves Dauxois
- Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Christine Chevreau
- Department of Medical Oncology, Institut Claudius Regaud - IUCT-Oncopole, Toulouse, France
| | - Stéphane Culine
- Department of Medical Oncology, UCOG, AP-HP, Saint-Louis Hospital, Paris, France; Paris Curie University, Paris, France
| | - Jean-Pierre Delord
- Department of Medical Oncology, Institut Claudius Regaud - IUCT-Oncopole, Toulouse, France
| | - Raphael Porcher
- Université Paris Cité, Centre de Recherche Épidémiologie et Statistiques (CRESS-UMR1153), INSERM, INRAE, Paris, France; Centre d'Épidémiologie Clinique, AP-HP, Hôtel-Dieu, Paris, France
| | - Thomas Filleron
- Biostatistics & Health Data Science Unit, Institut Claudius Regaud - IUCT-Oncopole, Toulouse, France.
| |
Collapse
|
11
|
Wang Q, Jiang H, Zhang H, Lu W, Wang X, Xu W, Li J, Lv Y, Li G, Cai C, Yu G. β-Glucan-conjugated anti-PD-L1 antibody enhances antitumor efficacy in preclinical mouse models. Carbohydr Polym 2024; 324:121564. [PMID: 37985066 DOI: 10.1016/j.carbpol.2023.121564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The use of immune checkpoint blockade (ICB) is a promising approach for clinical cancer treatment. However, most of cancer patients do not respond to anti-PD-1/PD-L1 antibody. In this study, we proposed a novel strategy of antibody-β-glucan conjugates (AGC) to enhance the antitumor immune response to ICB therapy. The AGC were constructed by conjugating an anti-PD-L1 antibody with a β-glucan via click chemistry. This design facilitates the delivery of β-glucan into the tumor microenvironment (TME). Furthermore, the bridging effect mediated by AGC can promote the interaction between tumor cells and dendritic cells (DCs), thereby enhancing immunotherapeutic benefits. In the MC38 tumor-bearing mouse model, AGC demonstrated powerful tumor suppression, achieving a tumor suppression rate of 86.7 %. Immunophenotyping, cytokine analysis, RNA sequencing, and FTY720-treated models were combined to elucidate the mechanism underlying AGC function. Compared with anti-PD-L1 antibody, AGC induced an earlier immune response, infiltration of DCs, and activation of preexisting T cells in the TME, with T cells predominantly proliferating locally rather than migrating from other organs. In conclusion, these data suggest that AGC could serve as a promising strategy to improve ICB therapy with prospects for clinical utilization.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China.
| | - Hongli Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiqiao Lu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenfeng Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
12
|
Hernández-Aceves JA, Cervantes-Torres J, Torres-García D, Zuñiga-Flores FJ, Patiño-Chávez OJ, Peña Agudelo JA, Aguayo-Flores JE, Garfias Y, Montero-León L, Romero-Romero L, Pérez-Torres A, Fragoso G, Sciutto E. GK-1 effectively reduces angiogenesis and prevents T cell exhaustion in a breast cancer murine experimental model. Cancer Immunol Immunother 2023; 72:3825-3838. [PMID: 37736849 PMCID: PMC10576684 DOI: 10.1007/s00262-023-03538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Breast cancer is the leading malignancy in women worldwide, both in terms of incidence and mortality. Triple-negative breast cancer (TNBC) is the type with the worst clinical outcomes and with fewer therapeutic options than other types of breast cancer. GK-1 is a peptide that in the experimental model of the metastatic 4T1 breast cancer has demonstrated anti-tumor and anti-metastatic properties. Herein, GK-1 (5 mg/kg, i.v.) weekly administrated not only decreases tumor growth and the number of lung macro-metastases but also lung and lymph nodes micro-metastases. Histological analysis reveals that GK-1 reduced 57% of the intra-tumor vascular areas, diminished the leukemoid reaction's progression, and the spleens' weight and length. A significant reduction in VEGF-C, SDF-1, angiopoietin-2, and endothelin-1 angiogenic factors was induced. Moreover, GK-1 prevents T cell exhaustion in the tumor-infiltrating lymphocytes (TILs) decreasing PD-1 expression. It also increased IFN-γ and granzyme-B expression and the cytotoxic activity of CD8+ TILs cells against tumor cells. All these features were found to be associated with a better antitumor response and prognosis. Altogether, these results reinforce the potential of GK-1 to improve the clinical outcome of triple-negative breast cancer immunotherapy. Translation research is ongoing towards its evaluation in humans.
Collapse
Affiliation(s)
- Juan A Hernández-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacquelynne Cervantes-Torres
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Torres-García
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco J Zuñiga-Flores
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Osiris J Patiño-Chávez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Peña Agudelo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Yonathan Garfias
- Unidad de Investigación, Conde de Valenciana, Instituto de Oftalmología, Mexico City, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Montero-León
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Romero-Romero
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
13
|
Kamrani A, Hosseinzadeh R, Shomali N, Heris JA, Shahabi P, Mohammadinasab R, Sadeghvand S, Ghahremanzadeh K, Sadeghi M, Akbari M. New immunotherapeutic approaches for cancer treatment. Pathol Res Pract 2023; 248:154632. [PMID: 37480597 DOI: 10.1016/j.prp.2023.154632] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/24/2023]
Abstract
Neoplasms are a worldwide recognized non-contagious disease which has the most mortality rate after cardiovascular diseases. For decades, there has been a vast amount of study on treatment methods of cancer which has led to conventional therapies such as chemotherapy, radiation therapy, surgery and so on. Clinicians and researchers believed that there is an urgent need, considering the high rate of incidence and prevalence, for an alternative treatment option which is more efficacious and has less adverse effects than the above-mentioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and became one of the fastest developing therapeutic approaches. Different kinds of immunotherapies are FDA approved and available for treatment of various cancer types. In this review, we have summarized the major immunotherapy methods including checkpoint inhibitors, CAR T cell therapies and cancer vaccines. Furthermore, application of combination therapy, precision medicine, biomarker discovery, overcoming resistance and reduction of adverse effects are discussed in this study.
Collapse
Affiliation(s)
- Amin Kamrani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammadreza Sadeghi
- Department of molecular medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Alqahtani A, Alghamdi L, Alghassab A, Almalki M. Immune Checkpoint Inhibitor-Induced Endocrine Adverse Events in Cancer Patients at a Tertiary Care Center in Saudi Arabia. Cureus 2023; 15:e44296. [PMID: 37779728 PMCID: PMC10533951 DOI: 10.7759/cureus.44296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are approved to treat several types of cancer, but they may cause an exaggerated immune response. This can lead to immune-related adverse events such as endocrinopathies, which mostly affect the thyroid and pituitary gland. METHODS A retrospective analysis was conducted on 125 cancer patients receiving ICIs (pembrolizumab, nivolumab, and ipilimumab) between July 2018 and July 2022. The study reviewed hormone test results and the clinical perspectives of patients to identify and characterize endocrine adverse events associated with ICI therapy in cancer patients. RESULTS Among the 125 patients who were examined, a total of 26 patients (20.8%) encountered endocrine-related adverse effects. A total of 25 patients had thyroid dysfunction. Hypophysitis was detected in a limited cohort of two patients, along with primary hypothyroidism. A case of newly diagnosed type 1 diabetes mellitus was seen in a single patient. None of the patients had primary adrenal insufficiency or parathyroid dysfunction. The administration of pembrolizumab was shown to be associated with the occurrence of thyroid dysfunction in 18 cases, as well as two cases of hypophysitis. In contrast, nivolumab was responsible for inducing thyroid dysfunction in four cases. The remaining occurrences were attributable to combination treatment. CONCLUSION The study found an increased risk of thyroid dysfunction among cancer patients receiving ICIs, while pituitary dysfunction was a less frequent adverse effect. It is recommended that an endocrine assessment be conducted before therapy initiation and periodically afterward.
Collapse
Affiliation(s)
- Ali Alqahtani
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City, Riyadh, SAU
| | - Lamia Alghamdi
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City, Riyadh, SAU
| | | | - Mussa Almalki
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City, Riyadh, SAU
| |
Collapse
|
15
|
Xu Z, Shin HS, Kim YH, Ha SY, Won JK, Kim SJ, Park YJ, Parangi S, Cho SW, Lee KE. Modeling the tumor microenvironment of anaplastic thyroid cancer: an orthotopic tumor model in C57BL/6 mice. Front Immunol 2023; 14:1187388. [PMID: 37545523 PMCID: PMC10403231 DOI: 10.3389/fimmu.2023.1187388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Securing a well-established mouse model is important in identifying and validating new therapeutic targets for immuno-oncology. The C57BL/6 mouse is one of the most fully characterised immune system of any animal and provides powerful platform for immuno-oncology discovery. An orthotopic tumor model has been established using TBP3743 (murine anaplastic thyroid cancer [ATC]) cells in B6129SF1 hybrid mice, this model has limited data on tumor immunology than C57BL/6 inbred mice. This study aimed to establish a novel orthotopic ATC model in C57BL/6 mice and characterize the tumor microenvironment focusing immunity in the model. Methods Adapted TBP3743 cells were generated via in vivo serial passaging in C57BL/6 mice. Subsequently, the following orthotopic tumor models were established via intrathyroidal injection: B6129SF1 mice injected with original TBP3743 cells (original/129), B6129SF1 mice injected with adapted cells (adapted/129), and C57BL/6 mice injected with adapted cells (adapted/B6). Results The adapted TBP3743 cells de-differentiated but exhibited cell morphology, viability, and migration/invasion potential comparable with those of original cells in vitro. The adapted/129 contained a higher Ki-67+ cell fraction than the original/129. RNA sequencing data of orthotopic tumors revealed enhanced oncogenic properties in the adapted/129 compared with those in the original/129. In contrast, the orthotopic tumors grown in the adapted/B6 were smaller, with a lower Ki-67+ cell fraction than those in the adapted/129. However, the oncogenic properties of the tumors within the adapted/B6 and adapted/129 were similar. Immune-related pathways were enriched in the adapted/B6 compared with those in the adapted/129. Flow cytometric analysis of the orthotopic tumors revealed higher cytotoxic CD8+ T cell and monocytic-myeloid-derived suppressor cell fractions in the adapted/B6 compared with the adapted/129. The estimated CD8+ and CD4+ cell fractions in the adapted/B6 were similar to those in human ATCs but negligible in the original/B6. Conclusion A novel orthotopic tumor model of ATC was established in C57BL/6 mice. Compared with the original B6129SF1 murine model, the novel model exhibited more aggressive tumor cell behaviours and strong immune responses. We expect that this novel model contributes to the understanding tumor microenvironment and provides the platform for drug development.
Collapse
Affiliation(s)
- Zhen Xu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, YanBian University Hospital, Yanji, Jilin, China
| | - Hyo Shik Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo Hyung Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seong Yun Ha
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-jin Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu Eun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| |
Collapse
|
16
|
Perdikis-Prati S, Sheikh S, Bouroumeau A, Lang N. Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review. Biomedicines 2023; 11:1720. [PMID: 37371815 DOI: 10.3390/biomedicines11061720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized the prognosis of several advanced-stage solid tumors. However, its success has been far more limited in hematological malignancies and is mostly restricted to classical Hodgkin lymphoma (cHL) and primary mediastinal B cell lymphoma (PMBCL). In patients with non-Hodgkin lymphoma (NHL), response to PD-1/PD-L1 ICB monotherapy has been relatively limited, although some subtypes are more sensitive than others. Numerous predictive biomarkers have been investigated in solid malignancies, such as PD-L1 expression, tumor mutational burden (TMB) and microsatellite instability (MSI), among others. This review aims to appraise the current knowledge on PD-1/PD-L1 ICB efficacy in lymphoma when used either as monotherapy or combined with other agents, and describes potential biomarkers of response in this specific setting.
Collapse
Affiliation(s)
| | - Semira Sheikh
- Department of Hematology, Universitätsspital Basel, 4031 Basel, Switzerland
| | - Antonin Bouroumeau
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Noémie Lang
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
- Center of Translational Research in Oncohematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
17
|
Rao Ullur A, Côté G, Pelletier K, Kitchlu A. Immunotherapy in oncology and the kidneys: a clinical review of the evaluation and management of kidney immune-related adverse events. Clin Kidney J 2023; 16:939-951. [PMID: 37261008 PMCID: PMC10229281 DOI: 10.1093/ckj/sfad014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are now widely used in the treatment of many cancers, and currently represent the standard of care for multiple malignancies. These agents enhance the T cell immune response to target cancer tissues, and have demonstrated considerable benefits for cancer outcomes. However, despite these improved outcomes, there are important kidney immune-related adverse events (iRAEs) associated with ICI. Acute tubulo-interstitial nephritis remains the most frequent kidney iRAE, however glomerular lesions and electrolytes disturbances are increasingly being recognized and reported. In this review, we summarize clinical features and identify risk factors for kidney iRAEs, and discuss the current understanding of pathophysiologic mechanisms. We highlight the evidence basis for guideline-recommended management of ICI-related kidney injury as well as gaps in current knowledge. We advocate for judicious use of kidney biopsy to identify ICI-associated kidney injury, and early use of corticosteroid treatment where appropriate. Selected patients may also be candidates for re-challenge with ICI therapy after a kidney iRAE, in view of current data on recurrent rates of kidney injury. Risk of benefits of re-challenge must be considered on an individual considering patient preferences and prognosis. Lastly, we review current knowledge of ICI use in the setting of patients with end-stage kidney disease, including kidney transplant recipients and those receiving dialysis, which suggest that these patients should not be summarily excluded from the potential benefits of these cancer therapies.
Collapse
Affiliation(s)
- Avinash Rao Ullur
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - Gabrielle Côté
- Division of Nephrology, Department of Medicine, CHU de Québec, Université Laval, Quebec City, Canada
| | - Karyne Pelletier
- Department of Medicine, Hôpital du Sacré-Coeur de Montréal, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Abhijat Kitchlu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Dehghani T, Shahrjerdi A, Kahrizi MS, Soleimani E, Ravandeh S, Merza MS, Rahnama N, Ebrahimzadeh F, Bakhshesh M. Targeting programmed cell death protein 1 (PD-1) for treatment of non-small-cell lung carcinoma (NSCLC); the recent advances. Pathol Res Pract 2023; 246:154470. [PMID: 37150133 DOI: 10.1016/j.prp.2023.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Department of Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Alireza Shahrjerdi
- National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965/161, Tehran, Iran
| | | | - Elnaz Soleimani
- Departmant of Genetic, Babol University of Medical Science, Babol, Iran
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal university College, Babylon 51001, Iraq
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Morteza Bakhshesh
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
19
|
Felip E, Pradenas E, Romeo M, Marfil S, Trinité B, Urrea V, Hernández A, Ballana E, Cucurull M, Mateu L, Massanella M, Clotet B, Morán T, Blanco J. Impact of chemotherapy and/or immunotherapy on neutralizing antibody response to SARS-CoV-2 mRNA-1237 vaccine in patients with solid tumors. Mol Oncol 2023; 17:686-694. [PMID: 36495129 PMCID: PMC9877816 DOI: 10.1002/1878-0261.13359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Patients with solid tumors have been a risk group since the beginning of the SARS-CoV-2 pandemic due to more significant complications, hospitalizations or deaths. The immunosuppressive state of cancer treatments or the tumor itself could influence the development of post-vaccination antibodies. This study prospectively analyzed 89 patients under chemotherapy and/or immunotherapy, who received two doses of the mRNA-1237 vaccine, and were compared with a group of 26 non-cancer individuals. Information on adverse events and neutralizing antibodies against the ancestral strain of SARS-CoV-2 (WH1) have been analyzed. Local reactions accounted for 65%, while systemic reactions accounted for 46% of oncologic individuals/cancer patients. Regarding the response to vaccination, 6.7% of cancer patients developed low neutralizing antibody levels. Lower levels of neutralizing antibodies between cancer and non-cancer groups were significant in individuals without previous SARS-CoV-2 infection, but not in previously infected individuals. We also observed that patients receiving chemotherapy or chemoimmunotherapy have significantly lower levels of neutralizing antibodies than non-cancer individuals. In conclusion, our study confirms the importance of prioritizing cancer patients receiving anticancer treatment in SARS-CoV-2 vaccination programs.
Collapse
Affiliation(s)
- Eudald Felip
- IrsiCaixa AIDS Research InstituteBadalonaSpain
- Medical Oncology Department, Catalan Institute of Oncology – BadalonaBadalona Applied Research Group in Oncology (B‐ARGO)Spain
| | | | - Margarita Romeo
- Medical Oncology Department, Catalan Institute of Oncology – BadalonaBadalona Applied Research Group in Oncology (B‐ARGO)Spain
| | | | | | | | - Ainhoa Hernández
- Medical Oncology Department, Catalan Institute of Oncology – BadalonaBadalona Applied Research Group in Oncology (B‐ARGO)Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research InstituteBadalonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Institute of Health (ISCIII)MadridSpain
| | - Marc Cucurull
- Medical Oncology Department, Catalan Institute of Oncology – BadalonaBadalona Applied Research Group in Oncology (B‐ARGO)Spain
| | - Lourdes Mateu
- Infectious Diseases DepartmentHospital Universitari Germans Trias i PujolBadalonaSpain
- Fundació Lluita contra les InfeccionsHospital Universitari Germans Trias i PujolBadalonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Carlos III Institute of Health (ISCIII)MadridSpain
- University of Vic–Central University of Catalonia (UVic‐UCC)Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research InstituteBadalonaSpain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Institute of Health (ISCIII)MadridSpain
- University of Vic–Central University of Catalonia (UVic‐UCC)Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research InstituteBadalonaSpain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Institute of Health (ISCIII)MadridSpain
- University of Vic–Central University of Catalonia (UVic‐UCC)Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology – BadalonaBadalona Applied Research Group in Oncology (B‐ARGO)Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research InstituteBadalonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Institute of Health (ISCIII)MadridSpain
- University of Vic–Central University of Catalonia (UVic‐UCC)Spain
| |
Collapse
|
20
|
Pan J, Huang T, Deng Z, Zou C. Roles and therapeutic implications of m6A modification in cancer immunotherapy. Front Immunol 2023; 14:1132601. [PMID: 36960074 PMCID: PMC10028070 DOI: 10.3389/fimmu.2023.1132601] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Recent studies have demonstrated that N6-methyladenosine (m6A), the most abundant, dynamic, and reversible epigenetic RNA modification in eukaryotes, is regulated by a series of enzymes, including methyltransferases (writers), demethylases (erasers), and m6A recognition proteins (readers). Aberrant regulation of m6A modification is pivotal for tumorigenesis, progression, invasion, metastasis, and apoptosis of malignant tumors. Immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, as recognized by the 2018 Nobel Prize in Medicine and Physiology. However, not all cancer patients response to ICI therapy, which is thought to be the result of intricate immune escape mechanisms. Recently, numerous studies have suggested a novel role for m6A epigenetic modification in the regulation of tumor immune evasion. Herein, we review the relevant mechanisms of m6A regulators in regulating various key signaling pathways in cancer biology and how m6A epigenetic modifications regulate the expression of immune checkpoints, opening a new window to understand the roles and mechanisms of m6A epigenetic modifications in regulating tumor immune evasion. In addition, we highlight the prospects and development directions of future combined immunotherapy strategies based on m6A modification targeting, providing directions for promoting the treatment outcomes of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan Pan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tuxiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhenjun Deng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chang Zou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Public Service Platform On Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
21
|
Murai H, Kodama T, Maesaka K, Tange S, Motooka D, Suzuki Y, Shigematsu Y, Inamura K, Mise Y, Saiura A, Ono Y, Takahashi Y, Kawasaki Y, Iino S, Kobayashi S, Idogawa M, Tokino T, Hashidate‐Yoshida T, Shindou H, Miyazaki M, Imai Y, Tanaka S, Mita E, Ohkawa K, Hikita H, Sakamori R, Tatsumi T, Eguchi H, Morii E, Takehara T. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology 2023; 77:77-91. [PMID: 35567547 PMCID: PMC9970024 DOI: 10.1002/hep.32573] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Immunotherapy has become the standard-of-care treatment for hepatocellular carcinoma (HCC), but its efficacy remains limited. To identify immunotherapy-susceptible HCC, we profiled the molecular abnormalities and tumor immune microenvironment (TIME) of rapidly increasing nonviral HCC. APPROACHES AND RESULTS We performed RNA-seq of tumor tissues in 113 patients with nonviral HCC and cancer genome sequencing of 69 genes with recurrent genetic alterations reported in HCC. Unsupervised hierarchical clustering classified nonviral HCCs into three molecular classes (Class I, II, III), which stratified patient prognosis. Class I, with the poorest prognosis, was associated with TP53 mutations, whereas class III, with the best prognosis, was associated with cadherin-associated protein beta 1 (CTNNB1) mutations. Thirty-eight percent of nonviral HCC was defined as an immune class characterized by a high frequency of intratumoral steatosis and a low frequency of CTNNB1 mutations. Steatotic HCC, which accounts for 23% of nonviral HCC cases, presented an immune-enriched but immune-exhausted TIME characterized by T cell exhaustion, M2 macrophage and cancer-associated fibroblast (CAF) infiltration, high PD-L1 expression, and TGF-β signaling activation. Spatial transcriptome analysis suggested that M2 macrophages and CAFs may be in close proximity to exhausted CD8+ T cells in steatotic HCC. An in vitro study showed that palmitic acid-induced lipid accumulation in HCC cells upregulated PD-L1 expression and promoted immunosuppressive phenotypes of cocultured macrophages and fibroblasts. Patients with steatotic HCC, confirmed by chemical-shift MR imaging, had significantly longer PFS with combined immunotherapy using anti-PD-L1 and anti-VEGF antibodies. CONCLUSIONS Multiomics stratified nonviral HCCs according to prognosis or TIME. We identified the link between intratumoral steatosis and immune-exhausted immunotherapy-susceptible TIME.
Collapse
Affiliation(s)
- Hiroki Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuki Maesaka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yasuyuki Shigematsu
- Division of Pathology, Cancer Institute, Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, Cancer Institute, Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshihiro Mise
- Department of Hepatobiliary‐Pancreatic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Akio Saiura
- Department of Hepatobiliary‐Pancreatic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshihiro Ono
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yota Kawasaki
- Department of Digestive Surgery, Breast, and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Iino
- Department of Digestive Surgery, Kagoshima Principal Hospital, Kagoshima, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Miyazaki
- Department of Gastroenterology and Hepatology, Osaka Police Hospital, Osaka, Japan
| | - Yasuharu Imai
- Department of Gastroenterology and Hepatology, Ikeda Municipal Hospital, Osaka, Japan
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Eiji Mita
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
22
|
Husebye ES, Castinetti F, Criseno S, Curigliano G, Decallonne B, Fleseriu M, Higham CE, Lupi I, Paschou SA, Toth M, van der Kooij M, Dekkers OM. Endocrine-related adverse conditions in patients receiving immune checkpoint inhibition: an ESE clinical practice guideline. Eur J Endocrinol 2022; 187:G1-G21. [PMID: 36149449 PMCID: PMC9641795 DOI: 10.1530/eje-22-0689] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment but are associated with significant autoimmune endocrinopathies that pose both diagnostic and treatment challenges. The aim of this guideline is to provide clinicians with the best possible evidence-based recommendations for treatment and follow-up of patients with ICI-induced endocrine side-effects based on the Grading of Recommendations Assessment, Development, and Evaluation system. As these drugs have been used for a relatively short time, large systematic investigations are scarce. A systematic approach to diagnosis, treatment, and follow-up is needed, including baseline tests of endocrine function before each treatment cycle. We conclude that there is no clear evidence for the benefit of high-dose glucocorticoids to treat endocrine toxicities with the possible exceptions of severe thyroid eye disease and hypophysitis affecting the visual apparatus. With the exception of thyroiditis, most endocrine dysfunctions appear to be permanent regardless of ICI discontinuation. Thus, the development of endocrinopathies does not dictate a need to stop ICI treatment.
Collapse
Affiliation(s)
- Eystein S Husebye
- Department of Clinical Science and K.G. Jebsen Center of Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Correspondence should be addressed to E S Husebye;
| | - Frederik Castinetti
- Aix Marseille Univ, INSERM U1251, Marseille Medical genetics, Department of Endocrinology, Assistance Publique-Hopitaux de Marseille, 13005 Marseille, France
| | - Sherwin Criseno
- Department of Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Giuseppe Curigliano
- Department of Oncology and Hematology, University of Milan, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Maria Fleseriu
- Pituitary Center, Department of Medicine and Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Claire E Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Isabella Lupi
- Endocrine Unit, Pisa University Hospital, Pisa, Italy
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Miklos Toth
- Department of Internal Medicine and Oncology, ENETS Center of Excellence, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Oronsky B, Caroen S, Reid T. What Exactly Is Inflammation (and What Is It Not?). Int J Mol Sci 2022; 23:ijms232314905. [PMID: 36499232 PMCID: PMC9738871 DOI: 10.3390/ijms232314905] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
In medicine, inflammation is a fuzzy, overused word first coined by the Romans, the intended meaning and precise definition of which varies according to the person and the clinical context. It tends to carry a negative connotation as a response gone awry, like a raging, out-of-control wildfire that requires immediate control and containment lest it destroy all in its path; however, frequently overlooked or lost in the shuffle is the primordial importance of inflammation to health and survival. The precise definition of inflammation matters for several reasons, not least because of the over-liberal use of anti-inflammatory drugs to inhibit inflammation, which may, contrary to prevailing dogma that all inflammation is harmful, act counterproductively to prevent restitutio ad integrum. Using fire as a central analogy, this overview attempts to define inflammation, the better to determine how to manage it, i.e., whether to fan its flames, let it burn out, or suppress it entirely.
Collapse
|
24
|
Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol 2022; 15:140. [PMID: 36209102 PMCID: PMC9547461 DOI: 10.1186/s13045-022-01365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and considerations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain tumors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shuxiang Yan
- Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
25
|
Fang X, Lan H, Jin K, Gong D, Qian J. Nanovaccines for Cancer Prevention and Immunotherapy: An Update Review. Cancers (Basel) 2022; 14:3842. [PMID: 36010836 PMCID: PMC9405528 DOI: 10.3390/cancers14163842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer immunotherapy has received more and more attention from cancer researchers over the past few decades. Various methods such as cell therapy, immune checkpoint blockers, and cancer vaccines alone or in combination therapies have achieved relatively satisfactory results in cancer therapy. Among these immunotherapy-based methods, cancer vaccines alone have not yet had the necessary efficacy in the clinic. Therefore, nanomaterials have increased the efficacy and ef-fectiveness of cancer vaccines by increasing their half-life and durability, promoting tumor mi-croenvironment (TME) reprogramming, and enhancing their anti-tumor immunity with minimal toxicity. In this review, according to the latest studies, the structure and different types of nanovaccines, the mechanisms of these vaccines in cancer treatment, as well as the advantages and disadvantages of these nanovaccines are discussed.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
26
|
HAUS Augmin-Like Complex Subunit 1 Influences Tumour Microenvironment and Prognostic Outcomes in Glioma. JOURNAL OF ONCOLOGY 2022; 2022:8027686. [PMID: 35865089 PMCID: PMC9296284 DOI: 10.1155/2022/8027686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Background. The expression of HAUS Augmin-like complex subunit 1 (HAUS1), a protein-coding gene, is low in normal samples among various cancers with pan-cancer analysis. The depletion of HAUS1 in cells decreases the G2/M cell compartment and induces apoptosis. However, the detailed expression pattern of HAUS1 and its correlation with immune infiltration in glioma (LGG and GBM) (LGG: low-grade glioma; GBM: glioblastoma) remain unknown. Therefore, in this study, we examined the role and prognostic value of HAUS1 in glioma. Methods. Transcriptional expression data of HAUS1 were collected from the CGGA and TCGA databases. The Kaplan–Meier analysis, univariate and multivariate Cox analyses, and receiver operating characteristic (ROC) curves were used to analyse the clinical significance of HAUS1 in glioma. The STRING database was used to analyse protein-protein interactions (PPI), and the “ClusterProfiler” package was used for functional enrichment analysis to examine the possible biological roles of HAUS1. In addition, the HAUS1 promoter methylation modification was analysed using MEXPRESS, and the association between HAUS1 expression and tumour-infiltrating immune cells was investigated using CIBERSORT. Results. Based on the data retrieved from TCGA (703 samples) and CGGA (1018 samples), an elevated expression of HAUS1 was observed in glioma samples, which was associated with poorer survival of patients, unfavourable clinical characteristics, 1p/19q codeletion status, WHO grade, and IDH mutation status. Furthermore, multivariate and univariate Cox analyses revealed that HAUS1 was an independent predictor of glioma. HAUS1 expression level was associated with several tumour-infiltrating immune cells, such as Th2 cells, macrophages, and activated dendritic cells. The outcomes of ROC curve analysis showed that HAUS1 was good to prognosticate immune infiltrating levels in glioma with a higher area under the curve (AUC) value (AUC = 0.974). Conclusions. HAUS1 was upregulated and served as a biomarker for poor prognosis in patients with glioma. High HAUS1 expression was associated with several tumour-infiltrating immune cells such as Th2 cells, macrophages, and activated dendritic cells, which had high infiltration levels. Therefore, these findings suggest that HAUS1 is a potential biomarker for predicting the prognosis of patients with glioma and plays a pivotal role in immune infiltration in glioma.
Collapse
|
27
|
Li J, Xia Q, Guo H, Fu Z, Liu Y, Lin S, Liu J. Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor-Resident Living Immunotherapeutics. Angew Chem Int Ed Engl 2022; 61:e202202409. [PMID: 35403784 DOI: 10.1002/anie.202202409] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 11/10/2022]
Abstract
An approach of decorating bacteria with triple immune nanoactivators is reported to develop tumor-resident living immunotherapeutics. Under cytocompatible conditions, tumor-specific antigens and checkpoint blocking antibodies are simultaneously conjugated onto bacterial surface and then polydopamine nanoparticles are formed via in situ dopamine polymerization. In addition to serving as a linker, polydopamine with its photothermal effect can repolarize tumor-associated macrophages to a pro-inflammatory phenotype. The linked antigens promote the maturation of dendritic cells and generate tumor-specific immune responses, while the anchored antibodies block immune checkpoints and activate cytotoxic T lymphocytes. Decorated bacteria show spatiotemporal tumor retention and proliferation-dependent drug release, achieving potent antitumor effects in two antigen-overexpressing tumor models. This work provides a versatile platform to prepare multimodal and long-acting therapeutics for cancer immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiyan Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenzhen Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong Liu
- National Center for NanoScience & Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
28
|
Liu D, Hu Y, Wei J, Zhang W, Piao C, Lu Y, Wang Y, Liu J, Lu X. Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) Using T Cells With NK-Like Phenotype (T-NK Cells) in Combination With Avelumab, an Anti-PD-L1 Antibody. Immunology 2022; 167:212-220. [PMID: 35751879 DOI: 10.1111/imm.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/12/2022] [Indexed: 12/01/2022] Open
Abstract
Though the PD-L1 checkpoint inhibitor avelumab has shown efficacy in the treatment of some types of cancer, improved treatment strategies are desperately needed. We evaluated whether combined treatment with avelumab and adoptively transferred T-NK cells can provide enhanced anti-cancer effects for treating PD-L1-expressing tumors. Our results demonstrate that avelumab specifically targets tumor cells with high PD-L1 expression, and that cytolytic effects are mediated by T-NK effector cells cultured from patient peripheral blood monocytic cell populations. The effects were dependent on CD16 and the perforin/granzyme pathway, supporting a role for the T-NK subpopulation. In vivo assays verified the efficacy of T-NK cells in combination with avelumab in reducing tumor growth. Furthermore, T-NK + avelumab prolonged survival in a mouse orthotopic xenograft model. Collectively, our findings provide a basis for the combined use of adoptively transferred T-NK cells with avelumab as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiology, The first hospital of Tsinghua University, Bejing, China
| | - Yuefeng Hu
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Bejing, China
| | - Jian Wei
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Bejing, China
| | - Wen Zhang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunmei Piao
- Department of Oncology, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yongcheng Lu
- Department of pharmaceutical sciences, Bouvé College of Health Sciences Northeastern University Boston, USA
| | - Yue Wang
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, Bejing, China
| | - Jingwei Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, Bejing, China
| | - Xu Lu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, Bejing, China
| |
Collapse
|
29
|
Singh A, Horng H, Roshkovan L, Weeks JK, Hershman M, Noël P, Luna JM, Cohen EA, Pantalone L, Shinohara RT, Bauml JM, Thompson JC, Aggarwal C, Carpenter EL, Katz SI, Kontos D. Development of a robust radiomic biomarker of progression-free survival in advanced non-small cell lung cancer patients treated with first-line immunotherapy. Sci Rep 2022; 12:9993. [PMID: 35705618 PMCID: PMC9200843 DOI: 10.1038/s41598-022-14160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
We aim to determine the feasibility of a novel radiomic biomarker that can integrate with other established clinical prognostic factors to predict progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC) undergoing first-line immunotherapy. Our study includes 107 patients with stage 4 NSCLC treated with pembrolizumab-based therapy (monotherapy: 30%, combination chemotherapy: 70%). The ITK-SNAP software was used for 3D tumor volume segmentation from pre-therapy CT scans. Radiomic features (n = 102) were extracted using the CaPTk software. Impact of heterogeneity introduced by image physical dimensions (voxel spacing parameters) and acquisition parameters (contrast enhancement and CT reconstruction kernel) was mitigated by resampling the images to the minimum voxel spacing parameters and harmonization by a nested ComBat technique. This technique was initialized with radiomic features, clinical factors of age, sex, race, PD-L1 expression, ECOG status, body mass index (BMI), smoking status, recurrence event and months of progression-free survival, and image acquisition parameters as batch variables. Two phenotypes were identified using unsupervised hierarchical clustering of harmonized features. Prognostic factors, including PDL1 expression, ECOG status, BMI and smoking status, were combined with radiomic phenotypes in Cox regression models of PFS and Kaplan Meier (KM) curve-fitting. Cox model based on clinical factors had a c-statistic of 0.57, which increased to 0.63 upon addition of phenotypes derived from harmonized features. There were statistically significant differences in survival outcomes stratified by clinical covariates, as measured by the log-rank test (p = 0.034), which improved upon addition of phenotypes (p = 0.00022). We found that mitigation of heterogeneity by image resampling and nested ComBat harmonization improves prognostic value of phenotypes, resulting in better prediction of PFS when added to other prognostic variables.
Collapse
Affiliation(s)
- Apurva Singh
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah Horng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leonid Roshkovan
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Joanna K Weeks
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Michelle Hershman
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Peter Noël
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - José Marcio Luna
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Eric A Cohen
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Lauren Pantalone
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joshua M Bauml
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffrey C Thompson
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charu Aggarwal
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erica L Carpenter
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sharyn I Katz
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Despina Kontos
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Lu J, Kim SI, Warner SG, Yuan YC, Liu Z, Han H, Von Hoff D, Fong Y, Woo Y. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy. Cancer Gene Ther 2022; 29:722-733. [PMID: 34108669 PMCID: PMC8896143 DOI: 10.1038/s41417-021-00350-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapeutic strategies that combine oncolytic virus (OV) and immune checkpoint inhibitors have the potential to overcome treatment resistance in pancreatic ductal adenocarcinoma (PDAC), one of the least immunogenic solid tumors. Oncolytic viral chimera, CF33-hNIS-antiPDL1 genetically modified to express anti-human PD-L1 antibody and CF33-hNIS-Δ without the anti-PD-L1 gene, were used to investigate the immunogenic effects of OVs and virus-delivered anti-PD-L1 in PDAC in vitro. Western blot, flow cytometry, and immunofluorescence microscopy were used to evaluate the effects of CF33-hNIS-Δ and IFNγ on PD-L1 upregulation in AsPC-1 and BxPC-3 cells, and CF33-hNIS-antiPDL1 production of anti-PD-L1 and surface PD-L1 blockade of AsPC-1 and BxPC-3 with or without cocultured activated T cells. The cytosolic and cell surface levels of PD-L1 in PDAC cell lines varied; only BxPC-3 showed high cell surface expression. Treatment of these cells with CF33-hNIS-Δ and IFNγ significantly upregulated PD-L1 expression and translocation of PD-L1 from the cytosol onto the cell surface. Following coculture of activated T cells and BxPC-3 with CF33-hNIS-antiPDL1, the cell surface PD-L1 blockade on BxPC-3 cells by virus-delivered anti-PD-L1 antibody increased granzyme B release and prevented virus-induced decrease of perforin release from activated CD8+ T cells. Our results suggest that CF33-IOVs can prime immune checkpoint inhibition of PDAC and enhance antitumor immune killing.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Anthony K Park
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanne G Warner
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yate-Ching Yuan
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Liu
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Haiyong Han
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Daniel Von Hoff
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
31
|
Bejjani AC, Finn RS. Hepatocellular Carcinoma: Pick the Winner-Tyrosine Kinase Inhibitor Versus Immuno-oncology Agent-Based Combinations. J Clin Oncol 2022; 40:2763-2773. [PMID: 35649192 DOI: 10.1200/jco.21.02605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The treatment landscape for advanced hepatocellular carcinoma has changed dramatically over the past 4 years. We now have numerous options for patients in frontline, second-line, and beyond. The most significant impact has been the introduction of immunotherapy into our treatment paradigms. We now have regimens that induce consistent double-digit objective response rates and markedly improve overall survival (OS) with favorable side effect profiles. The combination of atezolizumab and bevacizumab has demonstrated that the combination of targeting programmed death-ligand 1 and the vascular endothelial growth factor axis can improve outcomes versus sorafenib in the IMBrave150 study. Results from the COSMIC-312 study evaluating the multikinase vascular endothelial growth factor receptor, hepatocyte growth factor receptor, and AXL tyrosine kinase receptor inhibitor cabozantinib in combination with atezolizumab improved progression-free survival versus sorafenib, but at this time, there is no improvement in OS and response rates were lower than expected. Additional data with similar combinations are awaited on the basis of encouraging early-phase data. In addition, the combination of cytotoxic T-lymphocyte-associated protein 4 and programmed cell death-1/programmed death-ligand 1 targeting is yielding similar promising early results, and the phase III HIMALAYA study met its primary end points of improving OS versus sorafenib for durvalumab plus tremelimumab and demonstrated noninferiority for single-agent durvalumab as well. However, this combination did not improve progression-free survival and objective response rates with this combination did not seem significantly different from that with single-agent durvalumab. Although there are still knowledge gaps in this rapidly changing landscape, we will address some of the important questions relevant to making therapeutic decisions in the management of advanced hepatocellular carcinoma in the modern era on the basis of our current knowledge of the safety and efficacy of these evolving regimens. The goal is to provide clinicians with the knowledge needed to optimize outcomes for their patients.
Collapse
Affiliation(s)
- Anthony C Bejjani
- Hematology-Oncology Division, Department of Medicine, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Richard S Finn
- Division of Hematology/Oncology, Department of Medicine, Geffen School of Medicine at UCLA, Santa Monica, CA
| |
Collapse
|
32
|
Gu X, Shi Z, Shao L, Zhang Y, Zhang Y, Song Z, Wang W, Lou G. Efficacy and safety of maintenance immune checkpoint inhibitors with or without pemetrexed in advanced non-squamous non-small cell lung cancer: a retrospective study. BMC Cancer 2022; 22:576. [PMID: 35606756 PMCID: PMC9128194 DOI: 10.1186/s12885-022-09674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Advanced non-squamous non-small cell lung cancer (NS-NSCLC) patients without driver gene mutations are usually treated with immune checkpoint inhibitors (ICIs) plus pemetrexed as maintenance therapy after first-line ICIs plus 4–6 cycles of pemetrexed/platinum. Some patients in the real world receive ICIs monotherapy as maintenance therapy. No clinical study has compared the efficacy and safety of ICIs with or without pemetrexed as maintenance therapy. Methods We performed a retrospective study analyzing clinical data of patients with NS-NSCLC who were diagnosed in Zhejiang Cancer Hospital from September 2018 to May 2021 and received maintenance therapy after 4–6 cycles of ICIs plus pemetrexed/platinum. Patients were divided into ICIs plus pemetrexed group and ICIs monotherapy group. Progression Free Survival 1 (PFS1) and PFS2, defined as the interval from the date of initial treatment and maintenance therapy to the date of systemic progression/death or the last follow-up, respectively. Results A total of 120 patients received ICIs with or without pemetrexed as maintenance therapy. Eighty-two patients received ICIs plus pemetrexed as maintenance therapy, and 38 patients received ICIs monotherapy. There were no statistically significant difference in median PFS1 between the ICIs monotherapy group and ICIs plus pemetrexed group (12.00 months vs. 12.07 months, P = 0.979). Among patients with PD-L1 TPS < 1%, the median PFS1 was worse with ICIs monotherapy (9.50 months vs. 14.20 months, P = 0.039). Among patients with PD-L1 TPS ≥50% or 1–49%, the median PFS1 in both groups was not statistically significant (P = 0.866, P = 0.589, respectively). Results for median PFS2 were similar to median PFS1, with statistically significantly different only in patients with PD-L1 TPS < 1% (P = 0.008). The 2-year survival rates of the two groups were similar (66.7% vs. 69.5%, P = 0.812). The incidence of fatigue was significantly higher in the ICIs plus pemetrexed group (P = 0.023). Conclusions ICIs with or without pemetrexed can be used as maintenance therapy after first-line ICIs plus 4–6 cycles of pemetrexed/platinum in patients with advanced NS-NSCLC based on PD-L1 expression.
Collapse
Affiliation(s)
- Xiaodong Gu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,Department of Thoracic Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhiyong Shi
- Department of Thoracic Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Lan Shao
- Department of Thoracic Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yuxin Zhang
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, China
| | - Yiping Zhang
- Department of Thoracic Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhengbo Song
- Department of Thoracic Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wenxian Wang
- Department of Thoracic Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, 310022, China. .,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Guangyuan Lou
- Department of Thoracic Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, 310022, China. .,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
33
|
Li J, Xia Q, Guo H, Fu Z, Liu Y, Lin S, Liu J. Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor‐Resident Living Immunotherapeutics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- School of Life Sciences Hainan University Haikou 570228 China
| | - Qing Xia
- Department of Oncology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Haiyan Guo
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Zhenzhen Fu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yong Liu
- National Center for NanoScience & Technology Chinese Academy of Sciences Beijing 100190 China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
34
|
Prebet T, Goldberg AD, Jurcic JG, Khaled S, Dail M, Feng Y, Green C, Li C, Ma C, Medeiros BC, Yan M, Grunwald MR. A phase 1b study of atezolizumab in combination with guadecitabine for the treatment of acute myeloid leukemia. Leuk Lymphoma 2022; 63:2180-2188. [DOI: 10.1080/10428194.2022.2057484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thomas Prebet
- Hematology, Yale University, New Haven, Connecticut, United States
| | - Aaron D. Goldberg
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Joseph G. Jurcic
- Columbia University Irving Medical Center, New York, New York, United States
| | | | - Monique Dail
- Genentech, Inc, South San Francisco, California, United States
| | - Yuning Feng
- Genentech, Inc, South San Francisco, California, United States
| | - Cherie Green
- Genentech, Inc, South San Francisco, California, United States
| | - Chunze Li
- Genentech, Inc, South San Francisco, California, United States
| | - Connie Ma
- Genentech, Inc, South San Francisco, California, United States
| | | | - Mark Yan
- Hoffmann-La Roche Ltd, Mississauga, Ontario, Canada
| | - Michael R. Grunwald
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, United States
| |
Collapse
|
35
|
Kaakour D, Ward G, Dayyani F. Early Adoption of Checkpoint Inhibitors in Patients with Metastatic Gastric Adenocarcinoma-A Case Series of Non-Operative Long-Term Survivors. Diseases 2022; 10:24. [PMID: 35645245 PMCID: PMC9149843 DOI: 10.3390/diseases10020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Checkpoint inhibitor (CPI) therapy has only recently been introduced in the first-line treatment of advanced gastric cancer. However, later line monotherapy CPI efficacy in a subset of patients was presented about four years prior. Here, we present three cases of advanced gastric adenocarcinoma cancers treated with CPI in early lines years prior to the availability of randomized first line data. All three patients remain in remission without gastrectomy, with the median time from initial diagnosis of approximately 52 months. With long-term follow-up of more than four years, we present a proof of concept that, with early integration of CPI therapy, highly durable responses are possible even in the absence of surgery in patients with advanced gastric and gastroesophageal junction cancers.
Collapse
Affiliation(s)
- Dalia Kaakour
- Department of Medicine, University of California, Irvine, CA 92697, USA;
| | - Garrett Ward
- Department of Radiology, University of California, Irvine, CA 92697, USA;
| | - Farshid Dayyani
- Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
36
|
Rotundo MS, Bagnardi V, Rotundo M, Comandè M, Zampino MG. PD-1/PD-L1 blockade, a novel strategy for targeting metastatic colorectal cancer: A systematic review and meta-analysis of randomized trials. Oncol Lett 2022; 23:134. [PMID: 35251353 PMCID: PMC8895448 DOI: 10.3892/ol.2022.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Currently, standard treatment of patients with metastatic colorectal cancer (mCRC) comprises chemotherapy (CT) and/or biological therapy (BT) and/or best supportive care (BSC). The present study performed a meta-analysis on five phase II-III randomized clinical trials, which compared CT/BT/BSC as the control arm with the immune checkpoint inhibitors (ICIs) anti-programmed cell death protein 1 (PD-1) or its ligand (PD-L1) alone or in combination with cytotoxic T lymphocyte antigen 4 or mitogen activated protein kinase kinase inhibitors as the experimental arm, to evaluate whether a standard approach could be overcome using the novel target therapy strategy. Pooled hazard ratio (HR) for progression-free survival was 0.95 in favor of the experimental arm [95% confidence interval (CI), 0.74-1.22; P=0.68]. Heterogeneity was significant: Cochran's Q, 21.0; P=0.0082; I2 index, 76%. Pooled HR for overall survival was 0.88 in favor of the experimental arm (95% CI, 0.75-1.02; P=0.08). Heterogeneity was not significant (Cochran's Q, 6.0; P=0.31; I2 index, 16%). The present meta-analysis demonstrated a trend toward the improvement of survival by PD-1/PD-L1 blockade in mCRC. Further homogeneous studies are necessary to strengthen these results, beyond the known benefits of ICIs in deficient mismatch repair/high microsatellite instability tumors.
Collapse
Affiliation(s)
- Maria Saveria Rotundo
- Complex Operative Unit of Medical Oncology, Uboldo Hospital, Cernusco Sul Naviglio, I-20063 Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, I-20126 Milan, Italy
| | - Miryam Rotundo
- Department of Experimental and Clinical Medicine-Medical, Veterinary and Pharmaceutical Biotechnologies, Magna Graecia University of Catanzaro, I-88100 Catanzaro, Italy
| | - Mario Comandè
- Complex Operative Unit of Medical Oncology, Uboldo Hospital, Cernusco Sul Naviglio, I-20063 Milan, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, I-20141 Milan, Italy
| |
Collapse
|
37
|
Tabernero J, Andre F, Blay JY, Bustillos A, Fear S, Ganta S, Jaeger D, Maio M, Mileshkin L, Melero I. Phase II multicohort study of atezolizumab monotherapy in multiple advanced solid cancers. ESMO Open 2022; 7:100419. [PMID: 35305400 PMCID: PMC9058880 DOI: 10.1016/j.esmoop.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The programmed death-ligand 1 inhibitor atezolizumab had shown clinical activity against several advanced malignancies. PATIENTS AND METHODS This phase II, open-label basket study (NCT02458638) was conducted in 16 main cohorts of patients aged ≥18 years with stage III or IV solid tumors. In stage I, 12 patients were enrolled into each cohort. Treatment was atezolizumab 1200 mg intravenously every 3 weeks until loss of clinical benefit or unacceptable toxicity. The primary efficacy endpoint was the non-progression rate (NPR) at 18 weeks in treated, assessable patients. NPR ≤20% was not of interest for development as monotherapy, and NPR ≥40% was defined as the threshold of benefit/success. If ≥3 patients had non-progressive disease in stage I (interim analysis), 13 additional patients could be enrolled into stage II (final analysis). Secondary efficacy and safety endpoints were also evaluated. RESULTS Overall, 474 patients were enrolled and treated; 433 were included in the efficacy set. Due partly to slow recruitment because of competing trials and limited efficacy at interim analyses, enrollment was stopped early, including in cohorts that passed stage I boundaries of success. NPR was >20% in five cohorts: cervical cancer {n = 27; NPR 44.4% [95% confidence interval (CI) 25.5% to 64.7%]}; follicular/papillary thyroid cancer [n = 11; 54.5% (95% CI 23.4% to 83.3%)]; thymoma [n = 13; 76.9% (95% CI: 46.2% to 95.0%)]; gastroenteropancreatic (GEP) and lung neuroendocrine tumors [NETs; n = 24; 41.7% (95% CI 22.1% to 63.4%)], and low/intermediate grade carcinoid GEP and lung NETs [n = 12; 58.3% (95% CI 27.7% to 84.8%)]. Treatment-related adverse events occurred in 55.3% of patients overall, and at grade 3, 4, and 5 in 10.3%, 1.7%, and 0.4%, respectively. CONCLUSIONS Atezolizumab monotherapy was effective in the cervical cancer cohort. The interim benefit threshold was crossed in patients with follicular/papillary thyroid cancer, thymoma, and GEP and lung NETs, but recruitment was stopped before these signals could be confirmed in stage II. Safety was consistent with previous findings.
Collapse
Affiliation(s)
- J Tabernero
- Medical Oncology Department - Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain.
| | - F Andre
- Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | - J-Y Blay
- Centre Léon Bérard, Lyon, France
| | - A Bustillos
- Global Product Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - S Fear
- Global Product Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - S Ganta
- Product Development Safety, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - D Jaeger
- Medical Oncology Department, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - M Maio
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - L Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - I Melero
- Centre of Applied Medical Research, University Clinic of Navarra, Navarra, Spain
| |
Collapse
|
38
|
Panda A, Betigeri A, Ganesan S. A Gene Panel for Early Identification of Future Responders to Immune Checkpoint Blockade. Front Genet 2022; 13:706468. [PMID: 35309122 PMCID: PMC8928072 DOI: 10.3389/fgene.2022.706468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Immune checkpoint blockade (ICB), therapies that target the PD-1 pathway, CTLA-4 pathway, and other checkpoint pathways, lead to durable responses in many cancer types. Since only a minority of patients respond to ICB, it may be useful to identify the future responders early in the course of treatment. In this study we evaluated a small (15 genes) biologically motivated panel, consisting of genes involved in immune activation and checkpoint pathways, for early identification of future responders to ICB. The panel passed consistency check, pathological and in-silico validations, and was an excellent predictor (area under ROC curve >0.95) of eventual response to ICB, both CTLA-4 and PD-1 blockade, when applied to metastatic melanoma patients undergoing ICB (i.e., “on-treatment”) in a publicly available dataset. These results suggest that this small biologically motivated panel may be useful for early identification of future responders to ICB.
Collapse
Affiliation(s)
- Anshuman Panda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Anshuman Panda,
| | - Anil Betigeri
- Akash Institute of Medical Sciences, Bangalore, India
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
39
|
Lu S, Li Z. Rethinking the Status of Chemotherapy Combined With the Addition of Cytotoxic T-Lymphocyte-Associated Antigen 4 Inhibition and Programmed Death 1 or Programmed Death-Ligand 1 Blockade. J Thorac Oncol 2022; 17:341-344. [PMID: 35216727 DOI: 10.1016/j.jtho.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
40
|
Michielin O, Lalani AK, Robert C, Sharma P, Peters S. Defining unique clinical hallmarks for immune checkpoint inhibitor-based therapies. J Immunother Cancer 2022; 10:e003024. [PMID: 35078922 PMCID: PMC8796265 DOI: 10.1136/jitc-2021-003024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
IntroductionImmuno-oncology therapies, including immune checkpoint inhibitors (ICIs), have transformed cancer care and have brought into question whether classic oncology efficacy assessments adequately describe the distinctive responses observed with these agents. With more ICI-based therapies being approved across multiple tumor types, it is essential to define unique clinical hallmarks of these agents and their associated assessments to better reflect the therapeutic impact for both patients and physicians. Long-term survival and objective responses, such as depth and durability of responses, treatment-free survival, efficacy in brain metastases, improved health-related quality of life, and unique safety profiles, are among the hallmarks that have emerged for ICI therapies. An established clinical hallmark is a sustained long-term survival, as evidenced by a delayed separation of Kaplan-Meier survival curves, and a plateau at ~3 years. Combination ICI therapies provide the opportunity to raise this plateau, thereby affording durable survival benefits to more patients. Deepening of responses over time is a unique clinical ICI hallmark, with patients responding long term and with more durable complete responses. Depth of response has demonstrated prognostic value for long-term survival in some cancers, and several ICI studies have shown sustained responses even after discontinuing ICI therapy, offering the potential for treatment-free intervals. Although clinical evidence supporting efficacy in brain metastases is limited, favorable ICI intracranial responses have been seen that are largely concordant with extracranial responses. While patient outcomes can be significantly improved with ICIs, they are associated with unique immune-mediated adverse reactions (IMARs), including delayed ICI toxicities, and may require multidisciplinary management for optimal care. Interestingly, patients discontinuing ICIs for IMARs may maintain responses similar to patients who did not discontinue for an IMAR, whether they restarted ICI therapy or not.ConclusionHerein, we comprehensively review and refine the clinical hallmarks uniquely associated with ICI therapies, which not only will rejuvenate our assessment of ICI therapeutic outcomes but also will lead to a greater appreciation of the effectiveness of ICI therapies.
Collapse
Affiliation(s)
- Olivier Michielin
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Aly-Khan Lalani
- Department of Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, Ontario, Canada
| | - Caroline Robert
- Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - Padmanee Sharma
- Departments of Genitourinary Medical Oncology and Immunology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Solange Peters
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
41
|
Masetti M, Carriero R, Portale F, Marelli G, Morina N, Pandini M, Iovino M, Partini B, Erreni M, Ponzetta A, Magrini E, Colombo P, Elefante G, Colombo FS, den Haan JM, Peano C, Cibella J, Termanini A, Kunderfranco P, Brummelman J, Chung MWH, Lazzeri M, Hurle R, Casale P, Lugli E, DePinho RA, Mukhopadhyay S, Gordon S, Di Mitri D. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J Exp Med 2021; 219:212922. [PMID: 34919143 PMCID: PMC8932635 DOI: 10.1084/jem.20210564] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell–derived IL-1β enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes.
Collapse
Affiliation(s)
- Michela Masetti
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Federica Portale
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giulia Marelli
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Morina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marta Pandini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marta Iovino
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Erreni
- Unit of Advanced Optical Microscopy, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Ponzetta
- Experimental Immunopathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elena Magrini
- Experimental Immunopathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Grazia Elefante
- Department of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Flow Cytometry Core, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Joke M.M. den Haan
- Department of Molecular and Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Clelia Peano
- Human Technopole, Milan, Italy
- Genomics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
- Division of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy
| | - Javier Cibella
- Genomics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alberto Termanini
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jolanda Brummelman
- Laboratory of Translational Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matthew Wai Heng Chung
- Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Massimo Lazzeri
- Urology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Rodolfo Hurle
- Urology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Casale
- Urology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Subhankar Mukhopadhyay
- Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, Oxford, UK
| | - Diletta Di Mitri
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
42
|
Sawada L, Vallinoto ACR, Brasil-Costa I. Regulation of the Immune Checkpoint Indoleamine 2,3-Dioxygenase Expression by Epstein-Barr Virus. Biomolecules 2021; 11:1792. [PMID: 34944437 PMCID: PMC8699098 DOI: 10.3390/biom11121792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncovirus ubiquitously distributed and associated with different types of cancer. The reason why only a group of infected people develop cancer is still unknown. EBV-associated cancers represent about 1.8% of all cancer deaths worldwide, with more than 150,000 new cases of cancer being reported annually. Since EBV-associated cancers are described as more aggressive and more resistant to the usual treatment compared to EBV-negative ones, the recent introduction of monoclonal antibodies (mAbs) targeting immune checkpoints (ICs) in the treatment of cancer patients represents a possible therapy for EBV-associated diseases. However, the current mAb therapies available still need improvement, since a group of patients do not respond well to treatment. Therefore, the main objective of this review is to summarize the progress made regarding the contribution of EBV infection to the expression of the IC indoleamine 2,3-dioxygenase (IDO) thus far. This IC has the potential to be used as a target in new immune therapies, such as mAbs. We hope that this work helps the development of future immunotherapies, improving the prognosis of EBV-associated cancer patients.
Collapse
Affiliation(s)
- Leila Sawada
- Immunology Laboratory, Virology Section, Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil;
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil
| | | | - Igor Brasil-Costa
- Immunology Laboratory, Virology Section, Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil;
| |
Collapse
|
43
|
Wang M, Jia J, Cui Y, Peng Y, Jiang Y. CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion. Cell Death Dis 2021; 12:1065. [PMID: 34753903 PMCID: PMC8578373 DOI: 10.1038/s41419-021-04359-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles are involved in the occurrence, progression and metastasis of glioblastoma (GBM). GBM can secrete a variety of tumour-derived extracellular vesicles (TDEVs) with high immunosuppressive activity that remotely suppress the systemic immune system, and therapy targeting TDEVs has potential efficacy. In this study, we detected a higher concentration of CD73+ TDEVs enriched in exosomes in central and peripheral body fluids of GBM patients than in those of patients with other brain tumours (low-grade glioma or brain metastases from melanoma or non-small-cell lung cancer). High CD73 expression was detected on the surface of T cells, and this CD73 was derived from TDEVs secreted by GBM cells. In vitro, we observed that CD73+ TDEVs released by GBM cell lines could be taken up by T cells. Moreover, excess adenosine was produced by AMP degradation around T cells and by adenosine receptor 2A (A2AR)-dependent inhibition of aerobic glycolysis and energy-related metabolic substrate production, thereby inhibiting the cell cycle entry and clonal proliferation of T cells. In vivo, defects in exosomal synthesis and CD73 expression significantly inhibited tumour growth in GBM tumour-bearing mice and restored the clonal proliferation of T cells in the central and peripheral regions. These data indicate that CD73+ TDEVs can be used as a potential target for GBM immunotherapy.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
44
|
Hawkes EA, Phillips T, Budde LE, Santoro A, Saba NS, Roncolato F, Gregory GP, Verhoef G, Offner F, Quero C, Radford J, Giannopoulos K, Stevens D, Thall A, Huang B, Laird AD, Sandner R, Ansell SM. Avelumab in Combination Regimens for Relapsed/Refractory DLBCL: Results from the Phase Ib JAVELIN DLBCL Study. Target Oncol 2021; 16:761-771. [PMID: 34687398 PMCID: PMC8613117 DOI: 10.1007/s11523-021-00849-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
Background Relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) is associated with a poor prognosis despite the availability of multiple treatment options. Preliminary evidence suggests that DLBCL may be responsive to programmed death ligand 1 (PD-L1)/programmed death 1 inhibitors. Objective The JAVELIN DLBCL study was conducted to assess whether a combination of agents could augment and sustain the antitumor immunity of avelumab, an anti-PD-L1 antibody, in R/R DLBCL. Methods This was a multicenter, randomized, open-label, parallel-arm study with a phase Ib and a phase III component. Reported here are the results from the phase Ib study, wherein 29 adult patients with DLBCL were randomized 1:1:1 to receive avelumab in combination with utomilumab (an immunoglobulin G2 4-1BB agonist) and rituximab (arm A), avelumab in combination with utomilumab and azacitidine (arm B), or avelumab in combination with bendamustine and rituximab (arm C). The primary endpoints were dose-limiting toxicities and objective response as assessed by the investigator per Lugano Response Classification criteria. Results Of the seven patients in arm A, one (14.3%) experienced two grade 3 dose-limiting toxicities (herpes zoster and ophthalmic herpes zoster); no dose-limiting toxicities were reported in arms B or C. No new safety concerns emerged for avelumab. One partial response was reported in arm A, three complete responses in arm C, and no responses in arm B. Given the insufficient antitumor activity in arms A and B and the infeasibility of expanding arm C, the study was discontinued before initiation of the phase III component. Conclusions The low level of clinical activity suggests that PD-L1 inhibitor activity may be limited in R/R DLBCL. ClinicalTrials.gov Identifier NCT02951156. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-021-00849-8.
Collapse
Affiliation(s)
- Eliza A Hawkes
- Olivia Newton-John Cancer Research Institute, Austin Health, 145 Studley Road, Heidelberg, VIC, Australia.
| | - Tycel Phillips
- University of Michigan Health System, Ann Arbor, MI, USA
| | | | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano-Milano, Italy
| | - Nakhle S Saba
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University, New Orleans, LA, USA
| | | | - Gareth P Gregory
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | | | | | - Cristina Quero
- Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - John Radford
- NIHR Manchester Clinical Research Facility, The Christie NHS Foundation Trust and University of Manchester, Manchester, UK
| | - Krzysztof Giannopoulos
- Experimental Hematooncology Department, St. John's Cancer Center, Medical University of Lublin, Lublin, Poland
| | - Don Stevens
- Norton Cancer Institute, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
45
|
Chu PY, Chan SH. Cure the Incurable? Recent Breakthroughs in Immune Checkpoint Blockade for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5295. [PMID: 34771459 PMCID: PMC8582442 DOI: 10.3390/cancers13215295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
HCC usually arises from a chronic inflammation background, driven by several factors including fatty liver, HBV/HCV viral infection and metabolic syndrome. Systemic treatment for advanced HCC remains disappointing due to its strong resistance to chemotherapy and even to tyrosine kinase inhibitors (TKIs). Recently, the use of ICI therapy has revolutionized the systemic treatment of advanced HCC. For the first time, clinical trials testing ICIs, anti-CTLA-4 and anti-PD1/PDL1 reported a survival benefit in patients with sorafenib resistance. However, it took four more years to find the right combination regimen to use ICI in combination with the anti-angiogenic agent bevacizumab to substantially prolong overall survival (OS) of patients with advanced HCC after sorafenib. This review provides a comprehensive history of ICI therapy in HCC, up-to-date information on the latest ICI clinical trials, and discusses the recent development of novel ICIs that would potentially lead to a new checkpoint blockade therapy for advanced HCC.
Collapse
Affiliation(s)
- Pei-Yi Chu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
| | - Shih-Hsuan Chan
- Graduate Institute of Integrated Medicine, China Medial University, Taichung 402, Taiwan
| |
Collapse
|
46
|
Fukaya-Shiba A, Otsuka K, Sasaki H, Shikano M, Wakao R. Identification of Novel Modalities Through Bibliometric Analysis for Timely Development of Regulatory Guidance: A Case Study of T Cell Immunity. Front Med (Lausanne) 2021; 8:756870. [PMID: 34708061 PMCID: PMC8544749 DOI: 10.3389/fmed.2021.756870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The mission of medicines regulatory agencies is to ensure the timely access of innovative products for patients to improve public health. Thus, regulators should foresee evolving technologies and build expertise prior to reviewing innovative products. Novel modalities and new classes of therapeutics in biological or cell-based products represent a regulatory challenge because of knowledge gaps, as exemplified by the unexpected cytokine release syndrome in the first-in-human clinical trial of the CD28 super-agonist. Meanwhile, recent treatments harnessing T cell co-signaling pathways provide an opportunity for investigation. Therefore, this study aimed to systematically identify and evaluate novel modalities for T cell immunity to assess the need for regulatory guidance. Methods: A PubMed search was carried out using the query, "immun* AND t lymph*" to select publications. Subsequently, a citation network was created, followed by clustering and text mining to identify the modalities and classes of therapeutics under development. Results and Discussion: Analysis of the top 20 clusters revealed research domains characterized by keywords such as immune checkpoint antibody, chimeric antigen receptor (CAR)-T cells, microbiota, exosome, regulatory T cells, unconventional T cells, and vaccines. After reviewing the pharmacological concepts, clinical trial information, and available guidance, we presented a perspective on the future development of guidance for these domains. Conclusion: Bibliometric analyses identified a set of innovative modalities targeted for drug development with which regulatory guidance is going to catch up. This strategy could help in the successful development of upcoming modalities to ensure readiness for clinical application as part of horizon scanning.
Collapse
Affiliation(s)
- Ai Fukaya-Shiba
- Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Kouhei Otsuka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Hajime Sasaki
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Mayumi Shikano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Rika Wakao
- Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| |
Collapse
|
47
|
Liu HY, Pedros C, Kong KF, Canonigo-Balancio AJ, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer 2021; 9:jitc-2021-002792. [PMID: 34588224 PMCID: PMC8483050 DOI: 10.1136/jitc-2021-002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/03/2022] Open
Abstract
Background Our previous studies revealed a critical role of a novel CTLA4-protein kinase C-eta (PKCη) signaling axis in mediating the suppressive activity of regulatory T cells (Tregs) in antitumor immunity. These studies have employed adoptive transfer of germline PKCη-deficient (Prkch−/−) Tregs into Prkch+/+ mice prior to tumor implantation. Here, we extended these findings into a biologically and clinically more relevant context. Methods We have analyzed the role of PKCη in antitumor immunity and the tumor microenvironment (TME) in intact tumor-bearing mice with Treg-specific or CD8+ T cell-specific Prkch deletion, including in a therapeutic model of combinatorial treatment. In addition to measuring tumor growth, we analyzed the phenotype and functional attributes of tumor-infiltrating immune cells, particularly Tregs and dendritic cells (DCs). Results Using two models of mouse transplantable cancer and a genetically engineered autochthonous hepatocellular carcinoma (HCC) model, we found, first, that mice with Treg-specific Prkch deletion displayed a significantly reduced growth of B16–F10 melanoma and TRAMP-C1 adenocarcinoma tumors. Tumor growth reduction was associated with a less immunosuppressive TME, indicated by increased numbers and function of tumor-infiltrating CD8+ effector T cells and elevated expression of the costimulatory ligand CD86 on intratumoral DCs. In contrast, CD8+ T cell-specific Prkch deletion had no effect on tumor growth or the abundance and functionality of CD8+ effector T cells, consistent with findings that Prkch−/− CD8+ T cells proliferated normally in response to in vitro polyclonal or specific antigen stimulation. Similar beneficial antitumor effects were found in mice with germline or Treg-specific Prkch deletion that were induced to develop an autochthonous HCC. Lastly, using a therapeutic model, we found that monotherapies consisting of Treg-specific Prkch deletion or vaccination with irradiated Fms-like tyrosine kinase 3 ligand (Flt3L)-expressing B16–F10 tumor cells post-tumor implantation significantly delayed tumor growth. This effect was more pronounced in mice receiving a combination of the two immunotherapies. Conclusion These findings demonstrate the potential utility of PKCη inhibition as a viable clinical approach to treat patients with cancer, especially when combined with adjuvant therapies.
Collapse
Affiliation(s)
- Hsin-Yu Liu
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Christophe Pedros
- La Jolla Institute for Immunology, La Jolla, California, USA.,CERTIS, San Diego, California, USA
| | - Kok-Fai Kong
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Wen Xue
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Amnon Altman
- La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
48
|
Miao L, Zhang Z, Ren Z, Li Y. Application of Immunotherapy in Hepatocellular Carcinoma. Front Oncol 2021; 11:699060. [PMID: 34513678 PMCID: PMC8426571 DOI: 10.3389/fonc.2021.699060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignancies globally. It not only has a hidden onset but also progresses rapidly. Most HCC patients are already in the advanced stage of cancer when they are diagnosed, and have even lost the opportunity for surgical treatment. As an inflammation-related tumor, the immunosuppressive microenvironment of HCC can promote immune tolerance through a variety of mechanisms. Immunotherapy can activate tumor-specific immune responses, which brings a new hope for the treatment of HCC. At the present time, main immunotherapy strategies of HCC include immune checkpoint inhibitors, tumor vaccines, adoptive cell therapy, and so on. This article reviews the application and research progress of immune checkpoint inhibitors, tumor vaccines, and adoptive cell therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Mjaess G, Karam A, Aoun F, Albisinni S, Roumeguère T. Fecal microbiota transplantation for immunotherapy-resistant urological tumors: Is it time? An update of the recent literature. Cancer 2021; 128:14-19. [PMID: 34494666 DOI: 10.1002/cncr.33893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Georges Mjaess
- Department of Urology, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon
| | - Aya Karam
- Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon
| | - Fouad Aoun
- Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon.,Department of Urology, Institut Jules Bordet, Brussels, Belgium
| | - Simone Albisinni
- Department of Urology, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Thierry Roumeguère
- Department of Urology, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Department of Urology, Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
50
|
Li M, Liu D, Lee D, Cheng Y, Baumhover NJ, Marks BM, Sagastume EA, Ballas ZK, Johnson FL, Morris ZS, Schultz MK. Targeted Alpha-Particle Radiotherapy and Immune Checkpoint Inhibitors Induces Cooperative Inhibition on Tumor Growth of Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13153676. [PMID: 34359580 PMCID: PMC8345035 DOI: 10.3390/cancers13153676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Radiation therapy and immune checkpoint inhibitors (ICIs) have been demonstrated to cooperatively activate adaptive anti-tumor immunity with curative potential in preclinical models of melanoma. Receptor-targeted radionuclide therapy can be systemically injected to selectively deliver ionizing radiation to tumor sites throughout the body, potentially rendering all tumor sites more susceptible to anti-tumor immune response. In this study, we demonstrated the feasibility of delivering alpha-particle radiation to murine melanoma tumors using a 212Pb radiolabeled peptide [212Pb]VMT01 that targets the melanocortin 1 receptor (MC1R). Our data showed anti-tumor cooperation between [212Pb]VMT01 and ICIs in melanoma, mediated by induction of tumor-specific immunity. The immunogenicity of [212Pb]VMT01 in melanoma was also evidenced by enhanced tumor infiltrating lymphocytes and tumor vaccination assays. Abstract Radiotherapy can facilitate the immune recognition of immunologically “cold” tumors and enhance the efficacy of anti-PD-1 and anti-CTLA-4 immune checkpoint inhibitors (ICIs) in melanoma. Systemic administration of receptor-targeted radionuclide therapy has the potential to selectively deliver radionuclides to multiple tumors throughout the body in metastatic settings. By triggering immunologic cell death and increasing the immune susceptibility of surviving tumor cells in these locations, targeted radionuclide therapies may overcome resistance to ICIs and render immunologically “cold” tumors throughout the body responsive to ICIs and immunologically “hot”. Here, we show the anti-tumor cooperation of targeted α-particle radionuclide therapy (α-TRT) and ICIs in preclinical models of melanoma. Melanocortin 1 receptor (MC1R)-targeted radiopeptide [212Pb]VMT01 was employed to deliver α-radiation to melanoma tumors in mice. A single injection of 4.1 MBq [212Pb]VMT01 significantly slowed the tumor growth of B16-F10 melanoma and the combination of [212Pb]VMT01 and ICIs induced a cooperative anti-tumor effect leading to 43% complete tumor response with no sign of malignancy on autopsy. Animals with complete response developed anti-tumor immunity to reject further tumor inoculations. This therapeutic cooperation was completely abolished in RAG1 KO mice, which are deficient in T-cell maturation. In addition, the anti-tumor cooperation was compromised when fractionated [212Pb]VMT01 was used in the combination. We also demonstrated that [212Pb]VMT01 induced immunogenic cell death in tumor vaccination assays and in vitro exposure to [212Pb]VMT01 sensitized immunotolerant melanoma to ICIs treatment in vivo. Enhanced tumor infiltrating CD3+, CD4+, CD8+ lymphocytes were observed following injection of 1.4 MBq [212Pb]VMT01. Overall, we demonstrated anti-tumor cooperation between α-TRT and ICIs in melanoma that is mediated by tumor specific immunity.
Collapse
Affiliation(s)
- Mengshi Li
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Dijie Liu
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Dongyoul Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Yinwen Cheng
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas J. Baumhover
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Brenna M. Marks
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
| | - Edwin A. Sagastume
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
| | - Zuhair K. Ballas
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Zachary S. Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Michael K. Schultz
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(865)-356-1861
| |
Collapse
|