1
|
Relvas CM, Santos SG, Oliveira MJ, Magalhães FD, Pinto AM. Nanomaterials for Skin Cancer Photoimmunotherapy. Biomedicines 2023; 11:biomedicines11051292. [PMID: 37238966 DOI: 10.3390/biomedicines11051292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Skin cancer is one of the most common types of cancer, and its incidence continues to increase. It is divided into two main categories, melanoma and non-melanoma. Treatments include surgery, radiation therapy, and chemotherapy. The relatively high mortality in melanoma and the existing recurrence rates, both for melanoma and non-melanoma, create the need for studying and developing new approaches for skin cancer management. Recent studies have focused on immunotherapy, photodynamic therapy, photothermal therapy, and photoimmunotherapy. Photoimmunotherapy has gained much attention due to its excellent potential outcomes. It combines the advantages of photodynamic and/or photothermal therapy with a systemic immune response, making it ideal for metastatic cancer. This review critically discusses different new nanomaterials' properties and mechanisms of action for skin cancer photoimmunotherapy and the main results obtained in the field.
Collapse
Affiliation(s)
- Carlota M Relvas
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Susana G Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Artur M Pinto
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| |
Collapse
|
2
|
Systematic Construction and Validation of an Immune-Related Gene-Based Model to Predict Prognosis for Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7356992. [PMID: 35496047 PMCID: PMC9050317 DOI: 10.1155/2022/7356992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
Ovarian cancer (OC) is a malignancy with poor prognosis, stubborn resistance, and frequent recurrence. Recently, it has been widely recognized that immune-related genes (IRGs) have demonstrated their indispensable importance in the occurrence and progression of OC. Given this, this study aimed to identify IRGs with predictive value and build a prognostic model for a more accurate assessment. First, we obtained transcriptome and clinical information of ovarian samples from both TCGA and GTEx databases. After integration, we figured out 10 genes as immune-related prognostic genes (IRPGs) by performing the univariate Cox regression analysis. Subsequently, we established a TF-associated network to investigate its internal mechanism. The prognosis model consisting of 5 IRPGs was constructed later by lasso regression analysis. The comparison of the score with the clinical factors validated its independence and superiority in OC's prognosis. Moreover, the association between the signature and immune cell infiltration demonstrated its ability to image the immune situation of the tumor microenvironment. Finally, the reliability of the risk model was confirmed by the GEO cohort. Together, our study has constructed an independent prognostic model for OC, which may deepen the understanding of the immune microenvironment and help present novel biomarkers or ideas for targeted therapy.
Collapse
|
3
|
Scotto G, Borella F, Turinetto M, Tuninetti V, Valsecchi AA, Giannone G, Cosma S, Benedetto C, Valabrega G. Biomarkers of Central Nervous System Involvement from Epithelial Ovarian Cancer. Cells 2021; 10:3408. [PMID: 34943916 PMCID: PMC8699445 DOI: 10.3390/cells10123408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among women affected by gynaecological malignancies. Most patients show advanced disease at diagnosis (FIGO stage III-IV) and, despite the introduction of new therapeutic options, most women experience relapses. In most cases, recurrence is abdominal-pelvic; however, EOC can occasionally metastasize to distant organs, including the central nervous system. The incidence of brain metastases (BMs) from EOC is low, but it has grown over time; currently, there are no follow-up strategies available. In the last decade, a few biomarkers able to predict the risk of developing BMs from OC or as potential therapeutic targets have been investigated by several authors; to date, none have entered clinical practice. The purpose of this review is to offer a summary on the role of the most relevant predictors of central nervous system (CNS) involvement (hormone receptors; BRCA; MRD1; PD-1/PD-L1) and to highlight possible therapeutic strategies for the management of metastatic brain disease in EOC.
Collapse
Affiliation(s)
- Giulia Scotto
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Fulvio Borella
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (F.B.); (S.C.); (C.B.)
| | - Margherita Turinetto
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Valentina Tuninetti
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Anna A. Valsecchi
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Gaia Giannone
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Stefano Cosma
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (F.B.); (S.C.); (C.B.)
| | - Chiara Benedetto
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (F.B.); (S.C.); (C.B.)
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| |
Collapse
|
4
|
Liang X, Ju J. Matrine inhibits ovarian cancer cell viability and promotes apoptosis by regulating the ERK/JNK signaling pathway via p38MAPK. Oncol Rep 2021; 45:82. [PMID: 33786627 PMCID: PMC8025149 DOI: 10.3892/or.2021.8033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer displays the highest mortality rate among all types of gynecological cancer worldwide. The survival of patients with ovarian cancer remains poor due to poor responses to anticancer treatments. The present study aimed to investigate the therapeutic effects and potential mechanism underlying matrine in ovarian cancer tissues, ovarian cancer cells and a CAOV‑3‑derived tumor‑bearing mouse model. MTT, migration, invasion, flow cytometry, immunofluorescence and immunohistochemistry assays were performed to assess the inhibitory effects of matrine on ovarian cancer. A xenograft ovarian cancer mouse model was established and treated with matrine or PBS. The results demonstrated that compared with the control group, matrine significantly induced ovarian cancer cell apoptosis by upregulating caspase‑8 and Fas cell surface death receptor (Fas) expression levels, and downregulating Bcl‑2 and Bcl‑xl expression levels. Moreover, compared with the control group, matrine significantly inhibited ovarian cancer cell viability, migration and invasion by downregulating metastasis associated protein‑1, fibronectin, angiotensin II type 2 receptor-interacting protein 3a and H high mobility group AT‑hook 2 expression levels. Compared with the control group, matrine significantly increased p38MAPK, phosphorylated (p)ERK/ERK and pJNK/JNK expression levels in ovarian cancer cells. p38MAPK knockdown significantly downregulated p38MAPK, pERK/ERK and pJNK/JNK expression levels compared with the control group, which significantly promoted ovarian cancer cell viability, migration and invasion. In vivo experiments demonstrated that compared with the control group, matrine significantly suppressed tumor growth by markedly upregulating p38MAPK, ERK and JNK expression levels. The immunohistochemistry results demonstrated that caspase‑8 and Fas expression levels were notably increased, whereas Bcl‑2 and Bcl‑xl expression levels were obviously decreased in matrine‑treated tumors compared with PBS‑treated tumors. In conclusion, the present study demonstrated that matrine inhibited ovarian cancer cell viability, migration and invasion, but induced cell apoptosis, suggesting that matrine may serve as a promising anticancer agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Liang
- Discipline Inspection and Supervision Division, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Jianxin Ju
- Xiangyang Community, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| |
Collapse
|
5
|
Dong D, Lei H, Liu D, Bai H, Yang Y, Tang B, Li K, Liu J, Xu G, Xiao X. POLE and Mismatch Repair Status, Checkpoint Proteins and Tumor-Infiltrating Lymphocytes in Combination, and Tumor Differentiation: Identify Endometrial Cancers for Immunotherapy. Front Oncol 2021; 11:640018. [PMID: 33816285 PMCID: PMC8017289 DOI: 10.3389/fonc.2021.640018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Although Polymerase-epsilon (POLE)-mutated and mismatch repair (MMR)-deficient endometrial cancers (ECs) are considered as promising candidates for anti-PD-1/PD-L1 therapy, selecting only these patients may exclude other patients who could potentially respond to this treatment strategy, highlighting the need of additional biomarkers for better patient selection. This study aims to evaluate potential predictive biomarkers for anti-PD-1/PD-L1 therapy in addition to POLE mutation (POLEm) and MMR deficiency (MMRd). METHODS We performed next generation sequencing for POLE from 202 ECs, and immunohistochemistry for MLH1, MSH2, MSH6, PMS2, CD3, CD8, PD-1 and PD-L1 on full-section slides from these ECs. We assessed the association of POLEm and MMRd with clinicopathologic features, expression of check point proteins, and density of tumor-infiltrating lymphocytes (TILs). Prognostic impact of these immune markers was also evaluated. RESULTS POLEm, MMRd and high-grade tumors exhibited elevated level of TILs. Increased expression of PD-1 and PD-L1 was observed in MMRd and high-grade ECs. A subgroup of MMR proficient ECs also harbored increased density of TILs, and positive expression of PD-1 and PD-L1. In addition, negative expression of checkpoint proteins and high density of TILs in combination was associated with good prognosis. CONCLUSIONS Candidates for PD-1 blockade may extend beyond POLEm and MMRd ECs, additional factors such as tumor grade, and combination of TILs levels and expression of checkpoint proteins may need to be considered for better patient selection.
Collapse
Affiliation(s)
- Dandan Dong
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Huajiang Lei
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Gynecology and Obstetrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Duanya Liu
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Hansong Bai
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yue Yang
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Baijie Tang
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ke Li
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Juan Liu
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Gang Xu
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xue Xiao
- Department of Pathology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
6
|
Ge S, Xing Q, Zhang A, Wang Y. Effect of traditional Chinese medicine (TCM) on survival, quality of life, and immune function in patients with ovarian carcinoma: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e23904. [PMID: 33466133 PMCID: PMC7808448 DOI: 10.1097/md.0000000000023904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been widely applied as promising adjunctive drugs for ovarian carcinoma (OC) in China and other Asian countries. However, its exact clinical efficacy and safety is still not well investigated. In this study, we aimed to summarize the efficacy of TCM on survival, quality of life (QoL), and immune function in patients with OC through the meta-analysis. METHODS Relevant clinical trials of TCM for the treatment OC patients will be searched in Cochrane Library, Web of Science, Google Scholar, PubMed, Medline, Embase, China Scientific Journal Database, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, and Wanfang Database from their inception to November 2020. Two researchers will perform data extraction and risk of bias assessment independently. The clinical outcomes, including overall survival (OS), QoL, immune function, tumor markers, and adverse events, were systematically evaluated by using Review Manager 5.3 and Stata 14.0 statistical software. RESULTS The results of this study will provide high-quality evidence for the effect of TCM on survival, QoL and immune function in patients with OC. CONCLUSION The conclusions of this meta-analysis will be published in a peer-reviewed journal, and draw an objective conclusion of the efficacy of TCM on survival, QoL, and immune function in patients with OC. TRIAL REGISTRATION NUMBER INPLASY2020110104.
Collapse
Affiliation(s)
- Shuxia Ge
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital
| | - Qianqian Xing
- Department of Quality Control, Liaocheng City Dongchangfu District Maternal and Child Health Hospital
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, P.R. China
| | - Yucui Wang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital
| |
Collapse
|
7
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
8
|
Winkler I, Woś J, Bojarska-Junak A, Semczuk A, Rechberger T, Baranowski W, Markut-Miotła E, Tabarkiewicz J, Wolińska E, Skrzypczak M. An association of iNKT+/CD3+/CD161+ lymphocytes in ovarian cancer tissue with CA125 serum concentration. Immunobiology 2020; 225:152010. [PMID: 33130518 DOI: 10.1016/j.imbio.2020.152010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to investigate the association of iNKT (human invariant natural killer T) cells with the key marker of ovarian cancer (OC) - CA125 (cancer antigen125) in serum. The study reports the assessment of iNKT cells in peripheral blood and tissue of benign and borderline ovarian tumors (BOTs) and in the advanced-stage ovarian cancer. The study groups were as follows: 25 women with benign ovarian tumors, 11 women with BOTs, and 24 women with primary advanced-stage ovarian cancers. The control group consisted of 20 patients without the ovarian pathology. The rates of iNKT lymphocytes in the peripheral blood and tissue specimens were evaluated by a flow cytometry. Significant differences in the percentage of iNKT+/CD3+ of CD3+ lymphocytes, iNKT+/CD3+/CD161+ among CD3+ and iNKT+/CD3+/CD161+ among CD3+/iNKT+ between the control group and patients with ovarian tumors in the peripheral blood and tumor tissue were identified. Significant correlations were noticed between the proportion of lymphocytes iNKT+/CD3+/CD161+ among CD3+/iNKT cells in blood and in cancer tissue of both benign and malignant tumors. In the OC group, neither the ratio of iNKT cells in the blood (P = 0.07), nor the intra-tumor NKT-cell infiltration (P = 0.5) were independent prognostic factors for the follow-up. An increased rate of iNKT cells was detected in benign ovarian tumors compared to OCs. In patients with ovarian cancer, a higher rate of iNKT cells in tumor tissue was present related to that noted in the patient's blood. In addition, a correlation was discovered between the CA125 serum marker and NKT cells from the ovarian cancer tissue. This article has for the first time demonstrated a negative relationship between serum levels and NKT lymphocyte count from ovarian tissue. The inflammatory process in ovarian cancer tissue and the potential infiltration of endothelial immune cells, may result in a reduced number of NKT cells in the tumor microenvironment and increased circulation of the CA125 marker. Presented findings underscore new aspects of the iNKT cells involvement in the ovarian cancer development.
Collapse
Affiliation(s)
- Izabela Winkler
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland; IInd Department of Gynecology, St' Johns Center Oncology, 7 Jaczewski Street, 20-090, Lublin, Poland.
| | - Justyna Woś
- Department of Clinical Immunology, Lublin Medical University, 4a Chodźki Street, 20-093, Lublin, Poland
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Lublin Medical University, 4a Chodźki Street, 20-093, Lublin, Poland
| | - Andrzej Semczuk
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland
| | - Tomasz Rechberger
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland
| | - Włodzimierz Baranowski
- IInd Department of Gynecology, St' Johns Center Oncology, 7 Jaczewski Street, 20-090, Lublin, Poland; Military Institute of Medicine, Department of Gynecology and Oncological Gynecology, 38 Szaserów street, Warsaw, Poland
| | - Ewa Markut-Miotła
- Department of Pediatric Pulmonology and Rheumatology, Lublin Medical University, 8 Jaczewski Street, 20-090, Lublin, Poland
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty of University of Rzeszów, 1A Warzywna Street, 35-959 Rzeszów, Poland
| | - Ewa Wolińska
- Department of Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Skrzypczak
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland
| |
Collapse
|
9
|
Guo T, Yang Y, Gao M, Qu Y, Guo X, Liu Y, Cui X, Wang C. Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy. Carbohydr Polym 2020; 250:116904. [PMID: 33049880 DOI: 10.1016/j.carbpol.2020.116904] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
In the current study, we developed a synergistic chemo-immunotherapy using doxorubicin (Dox) and a natural polysaccharide as immunomodulator. First, we isolated a polysaccharide (MPW) from the root of Lepidium meyenii Walp. (maca) and characterized its chemical properties. MPW contains → 4) -α-D-Glcp- (1 → glycosidic bonds, while the terminal α-D-Glcp- (1 → group is connected to the main chain through an O-6 bond. This polysaccharide was then modified by cationization (C-MPW) to enhance immunoregulatory activity. MPW and C-MPW were combined with Dox and their chemo-immunotherapy effects on 4T1 tumor-bearing mice were assessed. Results indicated that the combination of MPW/C-MPW exerted a stronger anti-tumor effect than Dox alone, while reducing systemic toxicity and inhibiting tumor metastasis. In addition, MPW and C-MPW exerted tumor immunotherapy effects through the NF-κB, STAT1, and STAT3 signaling pathways, redirecting TAMs to the M1 phenotype that facilitates immunological responses against tumors. As a result, the immunosuppressive tumor microenvironment was remodeled into an immune-activated state due to enhanced secretion of IL-12, TNF-α, and INF-γ. Moreover, C-MPW exerted a stronger immunomodulatory effect than MPW. In conclusion, MPW and its cationic derivative are promising tools for cancer immunotherapy.
Collapse
Affiliation(s)
- Tingting Guo
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Mingju Gao
- Wenshan University, Yunnan Province, Wenshan, 663000, China
| | - Yuan Qu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Xiaoxi Guo
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China.
| |
Collapse
|
10
|
Napoletano C, Bellati F. Neoantigens from the bench to the bedside: new prospective for ovarian cancer immunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S305. [PMID: 32016024 DOI: 10.21037/atm.2019.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chiara Napoletano
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Filippo Bellati
- Surgical and Medical Department of Translational Medicine, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
11
|
Chen Q, He Q, Zhuang L, Wang K, Yin C, He L. IP10-CDR3 Reduces The Viability And Induces The Apoptosis Of Ovarian Cancer Cells By Down-Regulating The Expression Of Bcl-2 And Caspase 3. Onco Targets Ther 2019; 12:9697-9706. [PMID: 32009802 PMCID: PMC6859960 DOI: 10.2147/ott.s209757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study aimed to explore the effects of interferon-γ inducible protein 10 (IP10) and complementarity-determining region 3 (CDR3) of T cells receptor on ovarian cancer cells and the involved mechanisms. METHODS IP10 and CDR3 were linked with single-chain antibody (scfv) and exotoxin gene muton of Pseudomonas aeruginosa (PE40) to construct IP10-CDR3scfv and IP10-CDR3-PE40scfv. Then, we constructed pcDNA3.1-IP10-CDR3scfv and pcDNA3.1-IP10-CDR3-PE40scfv plasmids which were proved by HindIII/EcoRI digestion. SKOV3 cells and HOSEpiC cells were incubated with fluorescein isothiocyanate (FITC) labeled IP10-CDR3scfv and IP10-CDR3-PE40scfv proteins and protein levels were examined by flow cytometry. After gene transfection, SKOV3 cells were divided into four groups: Control, pcDNA3.1(+) negative control (NC) (pcDNA3.1(+) NC transfection), IP10-CDR3scfv (IP10-CDR3scfv transfection) and IP10-CDR3-PE40scfv (IP10-CDR3-PE40scfv transfection). Levels of IP10, CDR3, Caspase-3, cleaved Caspase-3 and Bcl-2 were determined by RT-PCR and Western blot. Cell viability and apoptosis were investigated by CCK-8 assay and Annexin V-FITC/PI assay, respectively. RESULTS The levels of FITC-labeled IP10-CDR3scfv and IP10-CDR3-PE40scfv proteins in the SKOV3+IP10-CDR3scfv group and the SKOV3+IP10-CDR3-PE40scfv group were remarkably higher than that in the SKOV3 group (P<0.05). So was the HOSEpiC related groups. There was no obvious difference in the levels of IP10, CDR3, Caspase-3, cleaved Caspase-3 and Bcl-2 between the control group and the pcDNA3.1(+) NC group. However, compared with the control group, the levels of Caspase-3 and Bcl-2 were reduced notably and the levels of IP10, CDR3 and cleaved Caspase-3 were elevated sharply in the IP10-CDR3scfv and IP10-CDR3-PE40scfv groups (P<0.05). The control group and the pcDNA3.1(+) NC group demonstrated similar cell viability and apoptosis. However, compared with the control group, cell viability in the IP10-CDR3scfv and IP10-CDR3-PE40scfv groups decreased significantly and cell apoptosis increased (P<0.05). CONCLUSION IP10-CDR3 could reduce the viability and induce the apoptosis of ovarian cancer cells by down-regulating the expression of Bcl-2 and Caspase-3.
Collapse
Affiliation(s)
- Qi Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Quan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Kunya Wang
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi330006, People’s Republic of China
| | - Chunhua Yin
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi330006, People’s Republic of China
| | - Linsheng He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| |
Collapse
|
12
|
Sosnowska A, Czystowska-Kuzmicz M, Golab J. Extracellular vesicles released by ovarian carcinoma contain arginase 1 that mitigates antitumor immune response. Oncoimmunology 2019; 8:e1655370. [PMID: 31646104 PMCID: PMC6791438 DOI: 10.1080/2162402x.2019.1655370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Expression of arginase-1 (ARG1) is an immunosuppressive feature of tumor microenvironment that leads to depletion of ʟ-arginine, a nutrient required for T-cells expansion. Ovarian carcinoma cells release extracellular vesicles carrying enzymatically active ARG1, that contributes to local and systemic immune suppression, which can be restored by ARG inhibitor.
Collapse
Affiliation(s)
- Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun 2019; 10:3000. [PMID: 31278254 PMCID: PMC6611910 DOI: 10.1038/s41467-019-10979-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. Cancer cells employ a variety of ways to escape the immune system. Here, the authors show that ovarian cancer cells produce small extracellular vescicles containing arginase 1 that are taken up by dendritic cells in the draining lymph nodes, resulting in inhibition of antigen-specific T-cell proliferation.
Collapse
|
14
|
Travers M, Brown SM, Dunworth M, Holbert CE, Wiehagen KR, Bachman KE, Foley JR, Stone ML, Baylin SB, Casero RA, Zahnow CA. DFMO and 5-Azacytidine Increase M1 Macrophages in the Tumor Microenvironment of Murine Ovarian Cancer. Cancer Res 2019; 79:3445-3454. [PMID: 31088836 DOI: 10.1158/0008-5472.can-18-4018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ+ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome. We tested this hypothesis in an immunocompetent mouse model for ovarian cancer and found that in vivo, 5AZA-C and DFMO, either alone or in combination, significantly increased survival, decreased tumor burden, and caused recruitment of activated (IFNγ+) CD4+ T cells, CD8+ T cells, and NK cells. The combination therapy had a striking increase in survival when compared with single-agent treatment, despite a smaller difference in recruited lymphocytes. Instead, combination therapy led to a significant decrease in immunosuppressive cells such as M2 polarized macrophages and an increase in tumor-killing M1 macrophages. In this model, depletion of macrophages with a CSF1R-blocking antibody reduced the efficacy of 5AZA-C + DFMO treatment and resulted in fewer M1 macrophages in the tumor microenvironment. These observations suggest our novel combination therapy modifies macrophage polarization in the tumor microenvironment, recruiting M1 macrophages and prolonging survival. SIGNIFICANCE: Combined epigenetic and polyamine-reducing therapy stimulates M1 macrophage polarization in the tumor microenvironment of an ovarian cancer mouse model, resulting in decreased tumor burden and prolonged survival.
Collapse
Affiliation(s)
- Meghan Travers
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Stephen M Brown
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Matthew Dunworth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Cassandra E Holbert
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | | | - Jackson R Foley
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Meredith L Stone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Robert A Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
15
|
Ovarian Cancer Stem Cells with High ROR1 Expression Serve as a New Prophylactic Vaccine for Ovarian Cancer. J Immunol Res 2019; 2019:9394615. [PMID: 31008116 PMCID: PMC6441513 DOI: 10.1155/2019/9394615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/25/2018] [Accepted: 01/20/2019] [Indexed: 01/16/2023] Open
Abstract
Tumor vaccines offer a number of advantages for cancer treatment. In the study, the vaccination with cancer stem cells (CSCs) with high expression of the type I receptor tyrosine kinase-like orphan receptor (ROR1) was evaluated in a murine model for the vaccine's immunogenicity and protective efficacy against epithelial ovarian carcinoma (EOC). CD117+CD44+ CSCs were isolated from human EOC HO8910 cell line using a magnetic-activated cell sorting system; murine ID8 EOC suspension sphere cells, which are collectively known as cancer stem-like cells, were acquired from serum-free suspension sphere-forming culture. Mice were subcutaneously immunized with the repeat cycles of freezing and thawing whole HO8910 CD117+CD44+ CSCs and ID8 cancer stem-like cells, respectively, followed by a challenge with HO8910 or ID8 cells at one week after final vaccination. The results showed that the CSC vaccination significantly induced immunity against EOC growth and markedly prolonged the survival of EOC-bearing mice in the prophylactic setting compared with non-CSC vaccination. Flow cytometry showed significantly increased immunocyte cytotoxicities and remarkably reduced CSC counts in the CSC-vaccinated mice. Moreover, the protective efficacy against EOC was decreased when the ROR1 expression was downregulated by shRNA in CSC vaccines. The findings from the study suggest that CSC vaccines with high ROR1 expression were highly effective in triggering immunity against EOC in vaccinated mice and may serve as an effective vaccine for EOC immunoprophylaxis.
Collapse
|
16
|
Pawłowska A, Suszczyk D, Okła K, Barczyński B, Kotarski J, Wertel I. Immunotherapies based on PD-1/PD-L1 pathway inhibitors in ovarian cancer treatment. Clin Exp Immunol 2019; 195:334-344. [PMID: 30582756 PMCID: PMC6378380 DOI: 10.1111/cei.13255] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Immunotherapies based on anti-programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway inhibitors may turn out effective in ovarian cancer (OC) treatment. They can be used in combination with standard therapy and are especially promising in recurrent and platinum-resistant OC. There is growing evidence that the mechanism of the PD-1/PD-L1 pathway can be specific for a particular histological cancer type. Interestingly, the data have shown that the PD-1/PD-L1 pathway blockade may be effective, especially in the endometrioid type of OC. It is important to identify the cause of anti-tumor immune response suppression and exclude its other mechanisms in OC patients. It is also necessary to conduct subsequent studies to confirm in which OC cases the treatment is effective and how to select patients and combine drugs to improve patient survival.
Collapse
Affiliation(s)
- A. Pawłowska
- Tumor Immunology Laboratory, 1st Chair and Department of Oncological Gynaecology and GynaecologyMedical University of LublinLublinPoland
| | - D. Suszczyk
- Tumor Immunology Laboratory, 1st Chair and Department of Oncological Gynaecology and GynaecologyMedical University of LublinLublinPoland
| | - K. Okła
- Tumor Immunology Laboratory, 1st Chair and Department of Oncological Gynaecology and GynaecologyMedical University of LublinLublinPoland
| | - B. Barczyński
- Tumor Immunology Laboratory, 1st Chair and Department of Oncological Gynaecology and GynaecologyMedical University of LublinLublinPoland
| | - J. Kotarski
- Tumor Immunology Laboratory, 1st Chair and Department of Oncological Gynaecology and GynaecologyMedical University of LublinLublinPoland
| | - I. Wertel
- Tumor Immunology Laboratory, 1st Chair and Department of Oncological Gynaecology and GynaecologyMedical University of LublinLublinPoland
| |
Collapse
|
17
|
Li H, Zhang W, Sun X, Chen J, Li Y, Niu C, Xu B, Zhang Y. Overexpression of kinesin family member 20A is associated with unfavorable clinical outcome and tumor progression in epithelial ovarian cancer. Cancer Manag Res 2018; 10:3433-3450. [PMID: 30254487 PMCID: PMC6140728 DOI: 10.2147/cmar.s169214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background KIF20A plays an indispensable role in cytokinesis regulation, which is important for tumor proliferation and growth. Recently, the oncogenic role of KIF20A has been well documented in several cancers. However, its clinical role in epithelial ovarian cancer (EOC) remains not reported yet. We investigated its expression and its role in promoting invasion and chemoresistance in EOC cells. Patients and methods KIF20A transcription and translation levels were investigated in normal ovarian epithelial cell, ovarian cancer cells, and 10 pairs of fresh EOC tissues and adjacent normal ovarian tissues by real-time quantitative polymerase chain reaction and Western blots. Moreover, KIF20A protein level was also examined by immunohistochemistry in 150 EOC tissues. The correlation between KIF20A expression and clinical variables was analyzed by statistical methods. We also used wound healing assay, transwell assay MTT, and Annexin V/PI to explore KIF20A functions. Results KIF20A expression was obviously elevated at both mRNA and protein levels in EOC cell lines and clinical cancer tissues compared with normal ovarian epithelial cell and adjacent normal ovarian tissues. KIF20A protein expression was highly correlated with International Federation of Gynecology and Obstetrics stage (P=0.008), lymph node metastasis (P=0.002), intraperitoneal metastasis (P<0.001), vital status at last follow-up (P<0.001), intraperitoneal recurrence (P=0.030), tumor recurrence (P=0.005), drug resistance (P=0.013), and ascites with tumor cells (P<0.001). KIF20A overexpression was closely related to poorer overall survival and disease progression-free survival. Furthermore, Cox regression analysis revealed that KIF20A can act as an independent hazard indicator for predicting clinical outcomes in EOC patients. Interestingly, KIF20A overexpression promoted invasion and metastasis of EOC cells and also confers resistance to cisplatin. Conclusion Our findings indicated that KIF20A overexpression predicts unfavorable clinical outcome, revealing that KIF20A holds a promising potential to serve as a useful prognostic biomarker for EOC patients.
Collapse
Affiliation(s)
- Han Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Weijing Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Xiaoying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Jueming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Yue Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Chunhao Niu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China,
| | - Benke Xu
- Department of Anatomy, Medical School of Yangtze University, Jingzhou, China,
| | - Yanna Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| |
Collapse
|
18
|
Wang Y, Zhao S, Zhu L, Zhang Q, Ren Y. MiR-19a negatively regulated the expression of PTEN and promoted the growth of ovarian cancer cells. Gene 2018; 670:166-173. [PMID: 29783075 DOI: 10.1016/j.gene.2018.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the most lethal malignancy of the women genital tract. Exploring novel factors involved in the development of ovarian cancer and characterizing the molecular mechanisms by which regulate the tumorigenesis of ovarian cancer are quite necessary. Here, we found that miR-19a was highly expressed in ovarian cancer tissues and cell lines. Overexpression of miR-19a promoted the viability of ovarian cancer cells, while down-regulation of miR-19a inhibited the growth of ovarian cancer cells. To further understand the underlying molecular mechanism of miR-19a in regulating ovarian cancer cell growth, the downstream targets of miR-19a were predicted. The bioinformatics analysis showed that the tumor suppressor PTEN was found as one of the targeting candidates of miR-19a. MiR-19a bound the 3'-UTR of PTEN and highly expressed miR-19a decreased both the mRNA and protein levels of PTEN in ovarian cancer cells. Overexpression of PTEN suppressed the promoting effect of miR-19a on regulating the growth of ovarian cancer cells. Notably, the expression of miR-19a and PTEN was inversely correlated in ovarian cancer tissues. These results demonstrated the potential oncogenic role of miR-19a in ovarian cancer, which suggested that miR-19a might be a promising target in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China.
| | - Shuzhen Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Lihong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Quanle Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Yanfang Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| |
Collapse
|
19
|
Yang X, Zhu S, Li L, Zhang L, Xian S, Wang Y, Cheng Y. Identification of differentially expressed genes and signaling pathways in ovarian cancer by integrated bioinformatics analysis. Onco Targets Ther 2018; 11:1457-1474. [PMID: 29588600 PMCID: PMC5858852 DOI: 10.2147/ott.s152238] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background The mortality rate associated with ovarian cancer ranks the highest among gynecological malignancies. However, the cause and underlying molecular events of ovarian cancer are not clear. Here, we applied integrated bioinformatics to identify key pathogenic genes involved in ovarian cancer and reveal potential molecular mechanisms. Results The expression profiles of GDS3592, GSE54388, and GSE66957 were downloaded from the Gene Expression Omnibus (GEO) database, which contained 115 samples, including 85 cases of ovarian cancer samples and 30 cases of normal ovarian samples. The three microarray datasets were integrated to obtain differentially expressed genes (DEGs) and were deeply analyzed by bioinformatics methods. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed by DAVID and KOBAS online analyses, respectively. The protein–protein interaction (PPI) networks of the DEGs were constructed from the STRING database. A total of 190 DEGs were identified in the three GEO datasets, of which 99 genes were upregulated and 91 genes were downregulated. GO analysis showed that the biological functions of DEGs focused primarily on regulating cell proliferation, adhesion, and differentiation and intracellular signal cascades. The main cellular components include cell membranes, exosomes, the cytoskeleton, and the extracellular matrix. The molecular functions include growth factor activity, protein kinase regulation, DNA binding, and oxygen transport activity. KEGG pathway analysis showed that these DEGs were mainly involved in the Wnt signaling pathway, amino acid metabolism, and the tumor signaling pathway. The 17 most closely related genes among DEGs were identified from the PPI network. Conclusion This study indicates that screening for DEGs and pathways in ovarian cancer using integrated bioinformatics analyses could help us understand the molecular mechanism underlying the development of ovarian cancer, be of clinical significance for the early diagnosis and prevention of ovarian cancer, and provide effective targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and Gynecology
| | - Shaoming Zhu
- Department of Urology, Renmin Hospital of Wuhan University
| | - Li Li
- sDepartment of Pharmacology, Wuhan University Health Science Center, Wuhan, Hubei, People's Republic of China
| | - Li Zhang
- Department of Obstetrics and Gynecology
| | - Shu Xian
- Department of Obstetrics and Gynecology
| | | | | |
Collapse
|
20
|
Hardwick NR, Frankel P, Ruel C, Kilpatrick J, Tsai W, Kos F, Kaltcheva T, Leong L, Morgan R, Chung V, Tinsley R, Eng M, Wilczynski S, Ellenhorn JDI, Diamond DJ, Cristea M. p53-Reactive T Cells Are Associated with Clinical Benefit in Patients with Platinum-Resistant Epithelial Ovarian Cancer After Treatment with a p53 Vaccine and Gemcitabine Chemotherapy. Clin Cancer Res 2018; 24:1315-1325. [PMID: 29301826 DOI: 10.1158/1078-0432.ccr-17-2709] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/27/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Purpose: To conduct a phase I trial of a Modified Vaccinia Ankara vaccine delivering wild-type human p53 (p53MVA) in combination with gemcitabine chemotherapy in patients with platinum-resistant ovarian cancer.Experimental Design: Patients received gemcitabine on days 1 and 8 and p53MVA vaccine on day 15, during the first 3 cycles of chemotherapy. Toxicity was classified using the NCI Common Toxicity Criteria and clinical response assessed by CT scan. Peripheral blood samples were collected for immunophenotyping and monitoring of anti-p53 immune responses.Results: Eleven patients were evaluated for p53MVA/gemcitabine toxicity, clinical outcome, and immunologic response. TOXICITY there were no DLTs, but 3 of 11 patients came off study early due to gemcitabine-attributed adverse events (AE). Minimal AEs were attributed to p53MVA vaccination. Immunologic and clinical response: enhanced in vitro recognition of p53 peptides was detectable after immunization in both the CD4+ and CD8+ T-cell compartments in 5 of 11 and 6 of 11 patients, respectively. Changes in peripheral T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSC) did not correlate significantly with vaccine response or progression-free survival (PFS). Patients with the greatest expansion of p53-reactive T cells had significantly longer PFS than patients with lower p53-reactivity after therapy. Tumor shrinkage or disease stabilization occurred in 4 patients.Conclusions: p53MVA was well tolerated, but gemcitabine without steroid pretreatment was intolerable in some patients. However, elevated p53-reactive CD4+ and CD8+ T-cell responses after therapy correlated with longer PFS. Therefore, if responses to p53MVA can be enhanced with alternative agents, superior clinical responses may be achievable. Clin Cancer Res; 24(6); 1315-25. ©2018 AACR.
Collapse
Affiliation(s)
- Nicola R Hardwick
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California
| | - Paul Frankel
- Division of Biostatistics, Beckman Research Institute, Duarte, California
| | - Christopher Ruel
- Division of Biostatistics, Beckman Research Institute, Duarte, California
| | - Julie Kilpatrick
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Weimin Tsai
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - Ferdynand Kos
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California
| | - Teodora Kaltcheva
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California
| | - Lucille Leong
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Robert Morgan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Vincent Chung
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Raechelle Tinsley
- Clinical Trials Office, City of Hope National Medical Center, Duarte, California
| | - Melissa Eng
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Sharon Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | | | - Don J Diamond
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California.
| | - Mihaela Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
21
|
Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 2018; 81:17-38. [PMID: 29249039 PMCID: PMC5754410 DOI: 10.1007/s00280-017-3501-8] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer is typically diagnosed at an advanced stage. Current state-of-the-art surgery and chemotherapy result in the high incidence of complete remissions; however, the recurrence rate is also high. For most patients, the disease eventually becomes a continuum of symptom-free periods and recurrence episodes. Different targeted treatment approaches and biological drugs, currently under development, bring the promise of turning ovarian cancer into a manageable chronic disease. In this review, we discuss the current standard in the therapy for ovarian cancer, major recent studies on the new variants of conventional therapies, and new therapeutic approaches, recently approved and/or in clinical trials. The latter include anti-angiogenic therapies, polyADP-ribose polymerase (PARP) inhibitors, inhibitors of growth factor signaling, or folate receptor inhibitors, as well as several immunotherapeutic approaches. We also discuss cost-effectiveness of some novel therapies and the issue of better selection of patients for personalized treatment.
Collapse
Affiliation(s)
- Alexander J Cortez
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Patrycja Tudrej
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Katarzyna A Kujawa
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Katarzyna M Lisowska
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland.
| |
Collapse
|
22
|
Mou H, Guo P, Li X, Zhang C, Jiang J, Wang L, Wang Q, Yuan Z. Nitidine chloride inhibited the expression of S phase kinase-associated protein 2 in ovarian cancer cells. Cell Cycle 2017; 16:1366-1375. [PMID: 28594256 DOI: 10.1080/15384101.2017.1327490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nitidine chloride (NC) has been reported to exert its anti-tumor activity in various types of human cancers. However, the molecular mechanism of NC-mediated tumor suppressive function is largely unclear. In the current study, we used several approaches such as MTT, FACS, RT-PCR, Western blotting analysis, invasion assay, transfection, to explore the molecular basis of NC-triggered anti-cancer activity. We found that NC inhibited cell growth, induced cell apoptosis, caused cell cycle arrest in ovarian cancer cells. Emerging evidence has demonstrated that Skp2 plays an important oncogenic role in ovarian cancer. Therefore, we also explored whether NC exerts its biologic function via downregulation of Skp2 in ovarian cancer cells. We observed that NC significantly inhibited the expression of Skp2 in ovarian cancer cells. Notably, overexpression of Skp2 abrogated the anti-cancer activity induced by NC in ovarian cancer cells. Consistently, downregulation of Skp2 expression enhanced the sensitivity of ovarian cancer cells to NC treatment. Thus, inactivation of Skp2 by NC could be a novel strategy for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Huaping Mou
- a Department of Gynecology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Ping Guo
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China.,c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| | - Xiaoming Li
- c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| | - Chuanli Zhang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Jing Jiang
- a Department of Gynecology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Lishuai Wang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Qiu Wang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Zhiping Yuan
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China.,c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| |
Collapse
|
23
|
Wang J, Chen X, Tong M. Knockdown of astrocyte elevated gene-1 inhibited cell growth and induced apoptosis and suppressed invasion in ovarian cancer cells. Gene 2017; 616:8-15. [PMID: 28323000 DOI: 10.1016/j.gene.2017.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
Abstract
Emerging evidence has demonstrated that AEG-1 (astrocyte elevated gene-1) plays a pivotal oncogenic role in tumorigenesis. However, the molecular mechanism by which AEG-1 exerts its oncogenic function is elusive in ovarian cancer. To explore the role and molecular insight on AEG-1-mediated tumorigenesis in ovarian cancer, multiple approaches are performed including MTT assay, flow cytometry for apoptosis and cell cycle assay, gene transfection, real-time RT-PCR, Western blotting, and Transwell assay. Our MTT assay showed that knockdown of AEG-1 by its siRNA significantly inhibited cell growth in ovarian cancer cells. Moreover, AEG-1 siRNA treatment induced G0/G1 cell cycle arrest and triggered cell apoptosis in ovarian cancer cells. Notably, inhibition of AEG-1 suppressed cell migration and invasion in ovarian cancer cells. Intriguingly, we identified that knockdown of AEG-1 remarkably inhibited the activation of Akt pathway. Our results also validated that knockdown of AEG-1 inhibited the expression of MMP-2 and VEGF, which could lead to inhibition of cell migration and invasion. These data suggest that AEG-1 could be a potential therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jiewen Wang
- Dept of Gynecology and Obstetrics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Chen
- Dept of Liver Disease, The Fifth Hospital of Bengbu, Bengbu, Anhui, China
| | - Maoqing Tong
- Dept of Cardiology, The Affiliated Ningbo First Hospital, School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|