1
|
Miftah H, Benthami H, Badou A. Insights into the emerging immune checkpoint NR2F6 in cancer immunity. J Leukoc Biol 2025; 117:qiae260. [PMID: 39722227 DOI: 10.1093/jleuko/qiae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/17/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
NR2F6 has emerged as a key player in immune regulation, especially in cancer immunity. It has been reported that NR2F6 could suppress the antitumor immune response and has therefore been suggested as a possible target in cancer immunotherapy. In this review, we start by describing the complex structure of the NR2F6 gene and its multifaceted biological functions. Then, we examine its expression in distinct immune cells and cancer cells, elucidating its role in cancer progression. Subsequently, we highlight the predictive significance of NR2F6 for cancer patient outcomes, suggesting its possible use as a prognostic biomarker. Finally, we discuss the emerging potential of NR2F6 as a therapeutic target, presenting novel opportunities for developing effective cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Hayat Miftah
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Hamza Benthami
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Abdallah Badou
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| |
Collapse
|
2
|
Buono G, Capozzi M, Caputo R, Lauro VD, Cianniello D, Piezzo M, Cocco S, Martinelli C, Verrazzo A, Tafuro M, Calderaio C, Calabrese A, Nuzzo F, Pagliuca M, Laurentiis MD. CAR-T cell therapy for breast cancer: Current status and future perspective. Cancer Treat Rev 2025; 133:102868. [PMID: 39798230 DOI: 10.1016/j.ctrv.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs. Unfortunately, current outcomes fall considerably short of replicating that success, primarily owing to the scarcity of tumor-specific antigens and the immunosuppressive microenvironment within BC. Herein, we provide an up-to-date overview of both preclinical and clinical data concerning the application of CAR-T cell therapy in BC. By surveying the existing literature, we discuss the prevailing constrains of this therapeutic approach and overview possible strategies to advance it in the context of breast malignancies. Possible approaches include employing synthetic biology to refine antigen targeting and mitigate off-target toxicity, utilizing logic-gated CAR constructs to enhance specificity, and leveraging armored CARs to remodel the tumor micro-environment. Temporal and spatial regulation of CAR-T cells using inducible gene switches and external triggers further improves safety and functionality. In addition, promoting T cell homing through chemokine receptor engineering and enhancing manufacturing processes with universal CAR platforms expand therapeutic applicability. These innovations not only address antigen escape and T cell exhaustion but also optimize the efficacy and safety profile of CAR-T cell therapy. We, therefore, outline a trajectory wherein CAR-T cells may evolve from a promising experimental approach to a standard modality in BC therapy.
Collapse
Affiliation(s)
- Giuseppe Buono
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Monica Capozzi
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Roberta Caputo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Di Lauro
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Michela Piezzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Stefania Cocco
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Claudia Martinelli
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Annarita Verrazzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Margherita Tafuro
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Francesco Nuzzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Martina Pagliuca
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Université Paris-Saclay, Gustave Roussy, INSERM, Molecular Predictors and New Targets in Oncology, Villejuif, France.
| | | |
Collapse
|
3
|
Zheng J, Meng W, Cui Z, Tian J, Zhang W. A dual-enzyme-like photosensitive nanozyme for remodeling the tumor immunosuppressive microenvironment to enhance immunotherapy. Biomaterials 2024; 311:122660. [PMID: 38865911 DOI: 10.1016/j.biomaterials.2024.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
In "immune-cold" tumors, the upregulation of immunosuppressive cells and insufficient infiltration of lymphocytes contribute to the resistance against immune therapy. Herein, we have developed a dual-enzyme-like photosensitive nanozyme (PBAF) to remodel the tumor immunosuppressive microenvironment (TIME) and induce the tumor infiltration of cytotoxic T lymphocytes (CTLs). Specifically, PBAF exhibits peroxidase (POD)-like activity and glutathione oxidase (GSHOx)-like activity and can be stimulated by 750 nm laser, promoting oxidative stress at the tumor site. Consequently, this process further leads to the reconstruction of TIME in animal experiments, inducing tumor-associated macrophages (TAMs) toward the immunostimulatory M1 phenotype, eliminating myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Simultaneously, PBAF also promotes dendritic cells (DCs) maturation to enhance CTLs infiltration into the tumor. The remodeled TIME and enhanced immune responses by PBAF demonstrate significant post-administration inhibition of recurrence and metastasis in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Luangwattananun P, Chiraphapphaiboon W, Thuwajit C, Junking M, Yenchitsomanus PT. Activation of cytotoxic T lymphocytes by self-differentiated myeloid-derived dendritic cells for killing breast cancer cells expressing folate receptor alpha protein. Bioengineered 2022; 13:14188-14203. [PMID: 35734827 PMCID: PMC9342379 DOI: 10.1080/21655979.2022.2084262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach for cancer treatment. Activation of T lymphocytes by self-differentiated myeloid-derived antigen-presenting-cells reactive against tumor (SmartDC) resulted in specific anti-cancer function. Folate receptor alpha (FRα) is highly expressed in breast cancer (BC) cells and thus potential to be a target antigen for ACT. To explore the SmartDC technology for treatment of BC, we create SmartDC expressing FRα antigen (SmartDC-FRα) for activation of FRα-specific T lymphocytes. Human primary monocytes were transduced with lentiviruses containing tri-cistronic complementary DNA sequences encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-4 (IL-4), and FRα to generate SmartDC-FRα. Autologous T lymphocytes were activated by SmartDC-FRα by coculture. The activated T lymphocytes exhibited enhanced cytotoxicity against FRα-expressing BC cell cultures. Up to 84.9 ± 6.2% of MDA-MB-231 and 89.7 ± 1.9% of MCF-7 BC cell lines were specifically lysed at an effector-to-target ratio of 20:1. The cytotoxicity of T lymphocytes activated by SmartDC-FRα was also demonstrated in three-dimensional (3D) spheroid culture of FRα-expressing BC cells marked by size reduction and spheroid disruption. This study thus portray the potential development of T lymphocytes activated by SmartDC-FRα as ACT in FRα-expressing BC treatment.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| |
Collapse
|
5
|
Faghfuri E, Shadbad MA, Faghfouri AH, Soozangar N. Cellular immunotherapy in gastric cancer: adoptive cell therapy and dendritic cell-based vaccination. Immunotherapy 2022; 14:475-488. [PMID: 35232264 DOI: 10.2217/imt-2021-0285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed malignancies. Recent studies have highlighted cellular immunotherapy (CI) as a promising approach for treating this disease. Among the CI-based approaches, adoptive cell therapy and dendritic cell-based vaccination are commonly studied in preclinical and clinical trials. Here we review the current evidence on the potentiality of CI in treating GC, the targets for adoptive cell therapy, ongoing clinical trials, constraints and the future outlook. The results suggest that there is a need to identify novel biomarkers that predict which GC patients will most likely respond to these approaches. Also, CI plus chemotherapy or immune checkpoint inhibitors can improve the survival of patients with late-stage GC. Therefore, this approach can be promising for treating these patients.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | | | - Narges Soozangar
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
7
|
Nguyen LN, Kaushik N, Bhartiya P, Gurmessa SK, Kim HJ, Nguyen LQ, Kaushik NK, Choi EH. Plasma-synthesized mussel-inspired gold nanoparticles promote autophagy-dependent damage-associated molecular pattern release to potentiate immunogenic cancer cell death. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Pang JS, Wen DY, He RQ, Chen G, Lin P, Li JH, Zhao YJ, Wu LY, Chen JH, He Y, Qin LT, Chen JB, Li Y, Yang H. Incomplete thermal ablation-induced up-regulation of transcription factor nuclear receptor subfamily 2, group F, member 6 (NR2F6) contributes to the rapid progression of residual liver tumor in hepatoblastoma. Bioengineered 2021; 12:4289-4303. [PMID: 34304715 PMCID: PMC8806681 DOI: 10.1080/21655979.2021.1945521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatoblastoma is a kind of extreme malignancy frequently diagnosed in children. Although surgical resection is considered as the first-line treatment for hepatoblastoma, a relatively large population of patients have lost the preferred opportunity for surgery. Administration of locoregional ablation enables local tumor control but with the deficiency of insufficient ablation, residual tumor, and rapid progression. In this study, we integrated 219 hepatoblastoma and 121 non-cancer liver tissues to evaluate the expression of NR2F6, from which a higher NR2F6 level was found in hepatoblastoma compared with non-cancer livers with a standard mean difference (SMD) of 1.04 (95% CI: 0.79, 1.29). The overexpression of NR2F6 also appeared to be an efficient indicator in distinguishing hepatoblastoma tissues from non-cancer liver tissues from the indication of a summarized AUC of 0.90, with a pooled sensitivity of 0.76 and a pooled specificity of 0.89. Interestingly, nude mouse xenografts provided direct evidence that overexpressed NR2F6 was also detected in residual tumor compared to untreated hepatoblastoma. Chromatin immunoprecipitation-binding data in HepG2 cells and transcriptome analysis of HepG2 xenografts were combined to identify target genes regulated by NR2F6. We finally selected 150 novel target genes of NR2F6 in residual tumor of incomplete ablation, and these genes appeared to be associated with the biological regulation of lipid metabolism-related pathway. Accordingly, targeting NR2F6 holds a therapeutic promise in treating residual recurrent hepatoblastoma after incomplete ablation.
Collapse
Affiliation(s)
- Jin-Shu Pang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jin-Hong Li
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yu-Jia Zhao
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Lin-Yong Wu
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jun-Hong Chen
- Department of Pathology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Li-Ting Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jia-Bo Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yong Li
- Department of Pediatric Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
9
|
Chen Q, He Y, Wang Y, Li C, Zhang Y, Guo Q, Zhang Y, Chu Y, Liu P, Chen H, Zhou Z, Zhou W, Zhao Z, Li X, Sun T, Jiang C. Penetrable Nanoplatform for "Cold" Tumor Immune Microenvironment Reeducation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000411. [PMID: 32995118 PMCID: PMC7503208 DOI: 10.1002/advs.202000411] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Lack of tumor-infiltration lymphocytes (TILs) and resistances by overexpressed immunosuppressive cells (principally, myeloid-derived suppressor cells (MDSCs)) in tumor milieu are two major challenges hindering the effectiveness of immunotherapy for "immune-cold" tumors. In addition, the natural physical barrier existing in solid cancer also limits deeper delivery of drugs. Here, a tumor-targeting and light-responsive-penetrable nanoplatform (Apt/PDGs^s@pMOF) is developed to elicit intratumoral infiltration of cytotoxic T cells (CTLs) and reeducate immunosuppressive microenvironment simultaneously. In particular, porphyrinic metal-organic framework (pMOF)-based photodynamic therapy (PDT) induces tumor immunogenic cell death (ICD) to promote CTLs intratumoral infiltration and hot "immune-cold" tumor. Upon being triggered by PDT, the nearly 10 nm adsorbed drug-loaded dendrimer de-shields from the nanoplatform and spreads into the deeper tumor, eliminating MDSCs and reversing immunosuppression, eventually reinforcing immune response. Meanwhile, the designed nanoplatform also has a systemic MDSC inhibition effect and moderate improvement of overall antitumor immune responses, resulting in effective suppression of distal tumors within less significant immune-related adverse effects (irAEs) induced.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongqing He
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Xiaomin Li
- Department of Chemistry and Laboratory of Advanced MaterialsFudan UniversityShanghai200433P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| |
Collapse
|
10
|
Venetis K, Invernizzi M, Sajjadi E, Curigliano G, Fusco N. Cellular immunotherapy in breast cancer: The quest for consistent biomarkers. Cancer Treat Rev 2020; 90:102089. [PMID: 32889360 DOI: 10.1016/j.ctrv.2020.102089] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignancy in women worldwide, with a relatively high proportion of patients experiencing resistance to standard treatments. Cellular immunotherapy (CI), which is based on the extraction, modification, and re-infusion of the patient's immune cells, is showing promising results in these patients. Among CI possible approaches, adoptive cell therapy (ACT) and dendritic cell (DC) vaccination are the most comprehensively explored in both primary/translational research studies and clinical trials. ACT may include the use of tumor-infiltrating lymphocytes (TILs), T cell receptor (TCR)-, or chimeric antigen receptor (CAR)-engineered T-cells. There are indications suggesting that a biomarker-based approach might be beneficial in effectively selecting breast cancer patients for CI. Here, we sought to provide the current knowledge of CI in breast cancer, focusing on candidate biomarkers, ongoing clinical trials, limitations, and immediate future perspectives.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Ph.D. Program in Translational Medicine, University of Milan, 20133 Milan, Italy; Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Elham Sajjadi
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| |
Collapse
|
11
|
Nazimek K, Bryniarski K. Approaches to inducing antigen-specific immune tolerance in allergy and autoimmunity: Focus on antigen-presenting cells and extracellular vesicles. Scand J Immunol 2020; 91:e12881. [PMID: 32243636 DOI: 10.1111/sji.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Increasing prevalence of allergic and autoimmune diseases urges clinicians and researchers to search for new and efficient treatments. Strategies that activate antigen-specific immune tolerance and simultaneously maintain immune reactivity to all other antigens deserve special attention. Accordingly, antigen-presenting cells (APCs) seem to be the best suited for orchestrating these mechanisms by directing T cell immune responses towards a tolerant subtype. Recent advances in understanding cell-to-cell communication via extracellular vesicles (EVs) make the latter promising candidates for reprogramming APCs towards a tolerant phenotype, and for mediating tolerogenic APC function. Thus, comprehensive studies have been undertaken to describe the interactions of APCs and EVs naturally occurring during immune tolerance induction, as well as to develop EV-based manoeuvres enabling the induction of immune tolerance in an antigen-specific manner. In this review, we summarize the findings of relevant studies, with a special emphasis on future perspectives on their translation to clinical practice.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| | - Krzysztof Bryniarski
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| |
Collapse
|
12
|
Cao Y, Du Y, Liu F, Feng Y, Cheng S, Guan S, Wang Y, Li X, Li B, Jin F, Lu S, Wei M. Vitamin D aggravates breast cancer by inducing immunosuppression in the tumor bearing mouse. Immunotherapy 2019; 10:555-566. [PMID: 29852828 DOI: 10.2217/imt-2017-0131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of this approach is to test the effects and related mechanism of vitamin D (VD) treatment on the outcomes of breast cancer. BALB/c mice were injected with 4T1 breast cancer cell suspension. The test group was treated with VD reagent. The survival and tumor size of mice were observed. The proliferation of 4T1 in vitro was detected by MTS analysis. The changes of immune parameters and microenvironment in mice were evaluated by flow cytometry and real-time RT-PCR. Our results demonstrate that VD administration caused a decline in survival time and raising the volume of tumor, the decreasing numbers of CD3+CD4+ T, CD3+CD8+ T and CD4+T-bet+IFN-γ+ Th1 cells and transcriptions of T-bet and IFN-γ, an increasing number of myeloid-derived suppressor cells and transcription of TGF-β. Our data suggest that the routine clinical application of any strategies targeting VD status for breast cancer therapy is deserved serious consideration.
Collapse
Affiliation(s)
- Yu Cao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Department of Surgical Oncology & Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunting Du
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shitong Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shu Guan
- Department of Surgical Oncology & Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuying Wang
- Department of Surgical Oncology & Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoying Li
- Department of Surgical Oncology & Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Li
- Department of Surgical Oncology & Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Surgery, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Feng Jin
- Department of Surgical Oncology & Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shilong Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Chen Q, Liu L, Lu Y, Chen X, Zhang Y, Zhou W, Guo Q, Li C, Zhang Y, Zhang Y, Liang D, Sun T, Jiang C. Tumor Microenvironment-Triggered Aggregated Magnetic Nanoparticles for Reinforced Image-Guided Immunogenic Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802134. [PMID: 30937276 PMCID: PMC6425432 DOI: 10.1002/advs.201802134] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Indexed: 05/04/2023]
Abstract
Anticancer therapies, which can induce cell death and elevate antitumor immune response in the meantime, are considered as effective treatments for many types of cancers. Immunogenic cell death (ICD) induced by chemodrugs is a promising and typical strategy to achieve cell cytotoxicity and immunological enhancement together. However, due to the low level of ICD induction and less tumor-targeting accumulation, application of traditional ICD inducers is limited. Here, tumor-targeting core-shell magnetic nanoparticles (ETP-PtFeNP:α-enolase targeting peptide modified Pt-prodrug loaded Fe3O4 nanoparticles) are developed to reinforce ICD induction of loaded-oxaliplatin (IV) prodrug. After tumor-targeting accumulation and endocytosis, platinum (IV) complexes are activated by intracellular reductive elimination to yield and release the Pt (II) congener, oxaliplatin, leading to DNA lesions and reactive oxygen species (ROS) generation. Simultaneously, in-progress-released ferric ions elicit highly toxic ROS (·OH or ·OOH) burst and interfere with the intracytoplasmic redox balance (like endoplasmic reticulum stress), leading to ICD-associated immunogenicity enhancement and specific antitumor immune responses to kill the tumor cells synergistically. Meanwhile, the transverse relaxation rate R 2 of ETP-PtFeNP is remarkably increased by more than three times while triggered by reductant, suggesting ETP-PtFeNP a high-sensitivity T 2 contrast agent for magnetic resonance imaging.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Lisha Liu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yifei Lu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Xinli Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yujie Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qin Guo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chao Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yu Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Donghui Liang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical NeurobiologyDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
14
|
Iscaro A, Howard NF, Muthana M. Nanoparticles: Properties and Applications in Cancer Immunotherapy. Curr Pharm Des 2019; 25:1962-1979. [PMID: 31566122 DOI: 10.2174/1381612825666190708214240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumours are no longer regarded as isolated masses of aberrantly proliferating epithelial cells. Rather, their properties depend on complex interactions between epithelial cancer cells and the surrounding stromal compartment within the tumour microenvironment. In particular, leukocyte infiltration plays a role in controlling tumour development and is now considered one of the hallmarks of cancer. Thus, in the last few years, immunotherapy has become a promising strategy to fight cancer, as its goal is to reprogram or activate antitumour immunity to kill tumour cells, without damaging the normal cells and provide long-lasting results where other therapies fail. However, the immune-related adverse events due to the low specificity in tumour cell targeting, strongly limit immunotherapy efficacy. In this regard, nanomedicine offers a platform for the delivery of different immunotherapeutic agents specifically to the tumour site, thus increasing efficacy and reducing toxicity. Indeed, playing with different material types, several nanoparticles can be formulated with different shape, charge, size and surface chemical modifications making them the most promising platform for biomedical applications. AIM In this review, we will summarize the different types of cancer immunotherapy currently in clinical trials or already approved for cancer treatment. Then, we will focus on the most recent promising strategies to deliver immunotherapies directly to the tumour site using nanoparticles. CONCLUSION Nanomedicine seems to be a promising approach to improve the efficacy of cancer immunotherapy. However, additional investigations are needed to minimize the variables in the production processes in order to make nanoparticles suitable for clinical use.
Collapse
Affiliation(s)
- Alessandra Iscaro
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Nutter F Howard
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Munitta Muthana
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| |
Collapse
|
15
|
Larsen JM, Bøgh KL. Animal models of allergen-specific immunotherapy in food allergy: Overview and opportunities. Clin Exp Allergy 2018; 48:1255-1274. [DOI: 10.1111/cea.13212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|