1
|
Aissa T, Aissaoui-Zid D, Moslah W, Khamessi O, Ksiksi R, Oltermann M, Ruck M, Zid MF, Srairi-Abid N. Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development. J Inorg Biochem 2024; 260:112672. [PMID: 39079338 DOI: 10.1016/j.jinorgbio.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C4H7N2)4[H2V10O28] is characterized by single-crystal X-ray diffraction, by FT-IR, UV-Vis and 51V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P21/c. Its formula unit consists of one dihydrogen decavanadate anion [H2V10O28]4- and four organic 4-methylimidazolium cations (C4H7N2)+. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC50 values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C4H7N2)4H2V10O28 compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C4H7N2)4[H2V10O28] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.
Collapse
Affiliation(s)
- Taissir Aissa
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Dorra Aissaoui-Zid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| | - Wassim Moslah
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Oussema Khamessi
- University of Tunis El Manar, Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, Tunis, Tunisia.; Higher Institute of Biotechnology of Sidi Thabet ISBST, University of Manouba, 2020 Ariana,Tunisia
| | - Regaya Ksiksi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia; The Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG) of Soukra, Carthage University, 49 Avenue "August 13" Choutrana, II-2036 Soukra, Tunisia
| | - Maike Oltermann
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Ruck
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mohamed Faouzi Zid
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| |
Collapse
|
2
|
Deng Z, Liu J, Yu YV, Jin YN. Machine learning-based identification of an immunotherapy-related signature to enhance outcomes and immunotherapy responses in melanoma. Front Immunol 2024; 15:1451103. [PMID: 39355255 PMCID: PMC11442245 DOI: 10.3389/fimmu.2024.1451103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Background Immunotherapy has revolutionized skin cutaneous melanoma treatment, but response variability due to tumor heterogeneity necessitates robust biomarkers for predicting immunotherapy response. Methods We used weighted gene co-expression network analysis (WGCNA), consensus clustering, and 10 machine learning algorithms to develop the immunotherapy-related gene model (ITRGM) signature. Multi-omics analyses included bulk and single-cell RNA sequencing of melanoma patients, mouse bulk RNA sequencing, and pathology sections of melanoma patients. Results We identified 66 consensus immunotherapy prognostic genes (CITPGs) using WGCNA and differentially expressed genes (DEGs) from two melanoma cohorts. The CITPG-high group showed better prognosis and enriched immune activities. DEGs between CITPG-high and CITPG-low groups in the TCGA-SKCM cohort were analyzed in three additional melanoma cohorts using univariate Cox regression, resulting in 44 consensus genes. Using 101 machine learning algorithm combinations, we constructed the ITRGM signature based on seven model genes. The ITRGM outperformed 37 published signatures in predicting immunotherapy prognosis across the training cohort, three testing cohorts, and a meta-cohort. It effectively stratified patients into high-risk or low-risk groups for immunotherapy response. The low-risk group, with high levels of model genes, correlated with increased immune characteristics such as tumor mutation burden and immune cell infiltration, indicating immune-hot tumors with a better prognosis. The ITRGM's relationship with the tumor immune microenvironment was further validated in our experiments using pathology sections with GBP5, an important model gene, and CD8 IHC analysis. The ITRGM also predicted better immunotherapy response in eight cohorts, including urothelial carcinoma and stomach adenocarcinoma, indicating broad applicability. Conclusions The ITRGM signature is a stable and robust predictor for stratifying melanoma patients into 'immune-hot' and 'immune-cold' tumors, enhancing prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Zaidong Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University,
Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University,
Wuhan, China
| |
Collapse
|
3
|
Peterson K, Turos-Cabal M, Salvador AD, Palomo-Caturla I, Howell AJ, Vieira ME, Greiner SM, Barnoud T, Rodriguez-Blanco J. Mechanistic insights into medulloblastoma relapse. Pharmacol Ther 2024; 260:108673. [PMID: 38857789 PMCID: PMC11270902 DOI: 10.1016/j.pharmthera.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Pediatric brain tumors are the leading cause of cancer-related deaths in children, with medulloblastoma (MB) being the most common type. A better understanding of these malignancies has led to their classification into four major molecular subgroups. This classification not only facilitates the stratification of clinical trials, but also the development of more effective therapies. Despite recent progress, approximately 30% of children diagnosed with MB experience tumor relapse. Recurrent disease in MB is often metastatic and responds poorly to current therapies. As a result, only a small subset of patients with recurrent MB survive beyond one year. Due to its dismal prognosis, novel therapeutic strategies aimed at preventing or managing recurrent disease are urgently needed. In this review, we summarize recent advances in our understanding of the molecular mechanisms behind treatment failure in MB, as well as those characterizing recurrent cases. We also propose avenues for how these findings can be used to better inform personalized medicine approaches for the treatment of newly diagnosed and recurrent MB. Lastly, we discuss the treatments currently being evaluated for MB patients, with special emphasis on those targeting MB by subgroup at diagnosis and relapse.
Collapse
Affiliation(s)
- Kendell Peterson
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Turos-Cabal
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - April D Salvador
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Ashley J Howell
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Megan E Vieira
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Sean M Greiner
- Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
4
|
Storandt MH, Tran N, Martin N, Jatoi A. Pembrolizumab near the end of life in patients with metastatic pancreatic cancer: a multi-site consecutive series to examine survival and patient treatment burden. Cancer Immunol Immunother 2023; 72:2515-2520. [PMID: 36872382 PMCID: PMC10272060 DOI: 10.1007/s00262-023-03397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/03/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Pembrolizumab confers minimal benefit to most patients with pancreas cancer. We explored survival and patient treatment burden (for example, death within 14 days of therapy) in a subgroup who had early access to pembrolizumab . METHODS This multisite study examined consecutive pancreas cancer patients, who received pembrolizumab from 2004 through 2022. Median overall survival of > 4 months was to be deemed favorable. Patient treatment burden and medical record quotations are presented descriptively. RESULTS Forty-one patients (median age 66 years; range 36, 84) are included. Fifteen (37%) had dMMR, MSI-H, TMB-H, or Lynch syndrome; and 23 (56%) received concurrent therapy. The median overall survival was 7.2 months (95% confidence interval (CI): 5.2, 12.7 months); 29 were deceased at the time of reporting. Patients with dMMR, MSI-H, TMB-H, or Lynch syndrome had a lower risk of death: hazard ratio (HR): 0.29 (95% CI: 0.12, 0.72); p = 0.008. Medical record phrases ("brilliant response") aligned with the above. One patient died within 14 days of therapy, and one was in an intensive care unit within 30 days of death. Fifteen patients enrolled in hospice; four of these died < 3 days later. CONCLUSIONS These unexpectedly favorable findings underscore the need for healthcare providers-including palliative care providers-to knowledgeably guide patients about cancer therapy even near the end of life.
Collapse
Affiliation(s)
| | - Nguyen Tran
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nichole Martin
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aminah Jatoi
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Lin E, Zwolinski R, Wu JTY, La J, Goryachev S, Huhmann L, Yildrim C, Tuck DP, Elbers DC, Brophy MT, Do NV, Fillmore NR. Machine learning-based natural language processing to extract PD-L1 expression levels from clinical notes. Health Informatics J 2023; 29:14604582231198021. [PMID: 37635280 DOI: 10.1177/14604582231198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Introduction: PD-L1 expression is used to determine oncology patients' response to and eligibility for immunologic treatments; however, PD-L1 expression status often only exists in unstructured clinical notes, limiting ability to use it in population-level studies. Methods: We developed and evaluated a machine learning based natural language processing (NLP) tool to extract PD-L1 expression values from the nationwide Veterans Affairs electronic health record system. Results: The model demonstrated strong evaluation performance across multiple levels of label granularity. Mean precision of the overall PD-L1 positive label was 0.859 (sd, 0.039), recall 0.994 (sd, 0.013), and F1 0.921 (0.024). When a numeric PD-L1 value was identified, the mean absolute error of the value was 0.537 on a scale of 0 to 100. Conclusion: We presented an accurate NLP method for deriving PD-L1 status from clinical notes. By reducing the time and manual effort needed to review medical records, our work will enable future population-level studies in cancer immunotherapy.
Collapse
Affiliation(s)
- Eric Lin
- VA Boston Healthcare System, Boston, MA, USA
- McLean Hospital, Institute for Technology in Psychiatry, Belmont, MA, USA
| | | | - Julie Tsu-Yu Wu
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer La
- VA Boston Healthcare System, Boston, MA, USA
| | | | | | | | - David P Tuck
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Danne C Elbers
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mary T Brophy
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Nhan V Do
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Nathanael R Fillmore
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Yang K, Zhou Y, Huang B, Zhao G, Geng Y, Wan C, Jiang F, Jin H, Ye C, Chen J. Sustained release of tumor cell lysate and CpG from an injectable, cytotoxic hydrogel for melanoma immunotherapy. NANOSCALE ADVANCES 2023; 5:2071-2084. [PMID: 36998647 PMCID: PMC10044724 DOI: 10.1039/d2na00911k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Many basic research studies have shown the potential of autologous cancer vaccines in the treatment of melanoma. However, some clinical trials showed that simplex whole tumor cell vaccines can only elicit weak CD8+ T cell-mediated antitumor responses which were not enough for effective tumor elimination. So efficient cancer vaccine delivery strategies with improved immunogenicity are needed. Herein, we described a novel hybrid vaccine "MCL" (Melittin-RADA32-CpG-Lysate) which was composed of melittin, RADA32, CpG and tumor lysate. In this hybrid vaccine, antitumor peptide melittin and self-assembling fusion peptide RADA32 were assembled to form the hydrogel framework melittin-RADA32(MR). Then, whole tumor cell lysate and immune adjuvant CpG-ODN were loaded into MR to develop an injectable and cytotoxic hydrogel MCL. MCL showed excellent ability for sustained drug release, to activate dendritic cells and directly kill melanoma cells in vitro. In vivo, MCL not only exerted direct antitumor activity, but also had robust immune initiation effects including the activation of dendritic cells in draining lymph nodes and the infiltration of cytotoxic T lymphocytes (CTLs) in tumor microenvironment. In addition, MCL can efficiently inhibit melanoma growth in B16-F10 tumor bearing mice, which suggested that MCL is a potential cancer vaccine strategy for melanoma treatment.
Collapse
Affiliation(s)
- Kui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital Wuhan China
| | - Yuhan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Biwang Huang
- Orthopaedic Department, General Hospital of Central Theater Command of PLA Wuhan China
| | - Guifang Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Yuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University Wuhan China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University Wuhan China
| | - Chengzhi Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University Wuhan China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
7
|
The Association between Baseline Proton Pump Inhibitors, Immune Checkpoint Inhibitors, and Chemotherapy: A Systematic Review with Network Meta-Analysis. Cancers (Basel) 2022; 15:cancers15010284. [PMID: 36612290 PMCID: PMC9818995 DOI: 10.3390/cancers15010284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
(1) Although emerging evidence suggests that proton pump inhibitor (PPI)-induced dysbiosis negatively alters treatment response to immune checkpoint inhibitors (ICIs) in cancer patients, no study systematically investigates the association between PPIs, ICIs, and chemotherapy; (2) Cochrane Library, Embase, Medline, and PubMed were searched from inception to 20 May 2022, to identify relevant studies involving patients receiving ICIs or chemotherapy and reporting survival outcome between PPI users and non-users. Survival outcomes included overall survival (OS) and progression-free survival (PFS). Network meta-analyses were performed using random-effects models. p-scores, with a value between 0 and 1, were calculated to quantify the treatment ranking, with a higher score suggesting a higher probability of greater effectiveness. We also conducted pairwise meta-analyses of observational studies to complement our network meta-analysis; (3) We identified 62 studies involving 26,484 patients (PPI = 8834; non-PPI = 17,650), including non-small cell lung cancer (NSCLC), urothelial carcinoma (UC), melanoma, renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), and squamous cell carcinoma (SCC) of the neck and head. Eight post-hoc analyses from 18 randomized-controlled trials were included in our network, which demonstrated that, in advanced NSCLC and UC, patients under ICI treatment with concomitant PPI (p-score: 0.2016) are associated with both poorer OS (HR, 1.49; 95% CI, 1.37 to 1.67) and poorer PFS (HR, 1.41; 95% CI, 1.25 to 1.61) than those without PPIs (p-score: 1.000). Patients under ICI treatment with concomitant PPI also had poorer OS (HR, 1.18; 95% CI, 1.07 to 1.31) and poorer PFS (HR, 1.30; 95% CI, 1.14 to 1.48) in comparison with those receiving chemotherapy (p-score: 0.6664), implying that PPIs may compromise ICI's effectiveness, making it less effective than chemotherapy. Our pairwise meta-analyses also supported this association. Conversely, PPI has little effect on patients with advanced melanoma, RCC, HCC, and SCC of the neck and head who were treated with ICIs; (4) "PPI-induced dysbiosis" serves as a significant modifier of treatment response in both advanced NSCLC and UC that are treated with ICIs, compromising the effectiveness of ICIs to be less than that of chemotherapy. Thus, clinicians should avoid unnecessary PPI prescription in these patients. "PPI-induced dysbiosis", on the other hand, does not alter the treatment response to ICIs in advanced melanoma, RCC, HCC, and SCC of the head and neck.
Collapse
|
8
|
Cushing KC, Du X, Chen Y, Stetson LC, Kuppa A, Chen VL, Kahlenberg JM, Gudjonsson JE, Vanderwerff B, Higgins PDR, Speliotes EK. Inflammatory Bowel Disease Risk Variants Are Associated with an Increased Risk of Skin Cancer. Inflamm Bowel Dis 2022; 28:1667-1676. [PMID: 35018451 PMCID: PMC9924040 DOI: 10.1093/ibd/izab336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Inflammatory bowel disease is associated with an increased risk of skin cancer. The aims of this study were to determine whether IBD susceptibility variants are also associated with skin cancer susceptibility and if such risk is augmented by use of immune-suppressive therapy. METHODS The discovery cohort included participants in the UK Biobank. The validation cohort included participants in the Michigan Genomics Initiative. The primary outcome of interest was skin cancer, subgrouped into nonmelanoma skin cancers (NMSC) and melanoma skin cancers (MSC). Multivariable logistic regression with matched controls (3 controls:1 case) was performed to identify genomic predictors of skin malignancy in the discovery cohort. Variants with P < .05 were tested for replication in the validation cohort. Validated Single nucleotide polymorphisms were then evaluated for effect modification by immune-suppressive medications. RESULTS The discovery cohort included 10,247 cases of NMSC and 1883 cases of MSC. The validation cohort included 7334 cases of NMSC and 3304 cases of MSC. Twenty-nine variants were associated with risk of NMSC in the discovery cohort, of which 5 replicated in the validation cohort (increased risk, rs7773324-A [DUSP22; IRF4], rs2476601-G [PTPN22], rs1847472-C [BACH2], rs72810983-A [CPEB4]; decreased risk, rs6088765-G [PROCR; MMP24]). Twelve variants were associated with risk of MSC in the discovery cohort, of which 4 were replicated in the validation cohort (increased risk, rs61839660-T [IL2RA]; decreased risk, rs17391694-C [GIPC2; MGC27382], rs6088765-G [PROCR; MMP24], and rs1728785-C [ZFP90]). No effect modification was observed. CONCLUSIONS The results of this study highlight shared genetic susceptibility across IBD and skin cancer, with increased risk of NMSC in those who carry risk variants in IRF4, PTPN22, CPEB4, and BACH2 and increased risk of MSC in those who carry a risk variant in IL2RA.
Collapse
Affiliation(s)
- Kelly C Cushing
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Yanhua Chen
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - L C Stetson
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent L Chen
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Brett Vanderwerff
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Peter D R Higgins
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Ren J, Yang J, Na S, Wang Y, Zhang L, Wang J, Liu J. Comprehensive characterisation of immunogenic cell death in melanoma revealing the association with prognosis and tumor immune microenvironment. Front Immunol 2022; 13:998653. [PMID: 36211436 PMCID: PMC9538190 DOI: 10.3389/fimmu.2022.998653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has highlighted the critical functions of immunogenic cell death (ICD) within many tumors. However, the therapeutic possibilities and mechanism of utilizing ICD in melanoma are still not well investigated. Melanoma samples involved in our study were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. First, pan-cancer analysis of ICD systematically revealed its expression characteristics, prognostic values, mutation information, methylation level, pathway regulation relationship in multiple human cancers. The non-negative matrix factorization clustering was utilized to separate the TCGA-melanoma samples into two subtypes (i.e. C1 and C2) with different prognosis and immune microenvironment based on the expression traits of ICD. Then, LASSO-Cox regression analysis was utilized to determine an ICD-dependent risk signature (ICDRS) based on the differentially expressed genes (DEGs) between the two subtypes. Principal component analysis and t-distributed stochastic neighbor embedding analysis of ICDRS showed that high- and low-risk subpopulations could be clearly distinguished. Survival analysis and ROC curves in the training, internal validation, and external validation cohorts highlighted the accurate prognosis evaluation of ICDRS. The obvious discrepancies of immune microenvironment between the different risk populations might be responsible for the different prognoses of patients with melanoma. These findings revealed the close association of ICD with prognosis and tumor immune microenvironment. More importantly, ICDRS-based immunotherapy response and targeted drug prediction might be beneficial to different risk subpopulations of patients with melanoma. The innotative ICDRS could function as a marker to determine the prognosis and tumor immune microenvironment in melanoma. This will aid in patient classification for individualized melanoma treatment.
Collapse
Affiliation(s)
- Jie Ren
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaqi Yang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song Na
- Emergency Intensive Care Unit, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yiqian Wang
- Department of Radiotherapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linyun Zhang
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jiwei Liu, ; Jinkui Wang, ; Linyun Zhang,
| | - Jinkui Wang
- Department of Plastic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jiwei Liu, ; Jinkui Wang, ; Linyun Zhang,
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jiwei Liu, ; Jinkui Wang, ; Linyun Zhang,
| |
Collapse
|
10
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
11
|
Thyroid Dysfunction as a Predictive Indicator in Camrelizumab of Advanced Esophageal Squamous Cell Carcinoma. J Immunol Res 2022; 2022:4015897. [PMID: 35832645 PMCID: PMC9273411 DOI: 10.1155/2022/4015897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Thyroid dysfunction (TD) induced by programmed death-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) immune checkpoint inhibitors (ICIs) has been widely reported. However, the effects of ICI-induced TD on the survival of patients with esophageal squamous cell carcinoma (ESCC) have not been described. Herein, a retrospective study was conducted, which 82 patients with advanced metastatic or recurrent ESCC treated with camrelizumab were enrolled. Twenty patients (24.4%) experienced TD during camrelizumab treatment with or without chemotherapy. The median onset time of TD was 1.7 months. The incidence of TD was 35.6% in patients who previously received thoracic radiotherapy versus 10.8% in patients who did not (P =0.009). Patients with TD had significantly longer median progression-free survival (5.5 months vs 3.5 months, P =0.035) and overall survival (26.7 months vs 11.5 months, P <0.001). TD is frequently observed in ESCC patients treated with camrelizumab and especially in patients who received radiotherapy previously. ESCC patients with TD during ICIs treatment often have better prognosis.
Collapse
|
12
|
Reale A, Calistri A, Altomonte J. Giving Oncolytic Viruses a Free Ride: Carrier Cells for Oncolytic Virotherapy. Pharmaceutics 2021; 13:pharmaceutics13122192. [PMID: 34959474 PMCID: PMC8709025 DOI: 10.3390/pharmaceutics13122192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Oncolytic viruses (OVs) are an emerging class of therapeutics which combine multiple mechanisms of action, including direct cancer cell-killing, immunotherapy and gene therapy. A growing number of clinical trials have indicated that OVs have an excellent safety profile and provide some degree of efficacy, but to date only a single OV drug, HSV-1 talimogene laherparepvec (T-Vec), has achieved marketing approval in the US and Europe. An important issue to consider in order to accelerate the clinical advancement of OV agents is the development of an effective delivery system. Currently, the most commonly employed OV delivery route is intratumoral; however, to target metastatic diseases and tumors that cannot be directly accessed, it is of great interest to develop effective approaches for the systemic delivery of OVs, such as the use of carrier cells. In general, the ideal carrier cell should have a tropism towards the tumor microenvironment (TME), and it must be susceptible to OV infection but remain viable long enough to allow migration and finally release of the OV within the tumor bed. Mesenchymal stem cells (MSCs) have been heavily investigated as carrier cells due to their inherent tumor tropism, in spite of some disadvantages in biodistribution. This review focuses on the other promising candidate carrier cells under development and discusses their interaction with specific OVs and future research lines.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.R.); (A.C.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.R.); (A.C.)
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
13
|
Shi S, Li C, Zhang Y, Deng C, Liu W, Du J, Li Q, Ji Y, Guo L, Liu L, Hu H, Liu Y, Cui H. Dihydrocapsaicin Inhibits Cell Proliferation and Metastasis in Melanoma via Down-regulating β-Catenin Pathway. Front Oncol 2021; 11:648052. [PMID: 33833997 PMCID: PMC8023049 DOI: 10.3389/fonc.2021.648052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dihydrocapsaicin (DHC) is one of the main components of capsaicinoids in Capsicum. It has been reported that DHC exerts anti-cancer effects on diverse malignant tumors, such as colorectal cancer, breast cancer, and glioma. However, studies focused on the effect of DHC upon melanoma have rarely been done. In the present study, melanoma A375 and MV3 cell lines were treated with DHC and the cell proliferation, migration, and invasion were significantly suppressed. Furthermore, DHC effectively inhibited xenograft tumor growth and pulmonary metastasis of melanoma cells in NOD/SCID mice model. It was identified that β-catenin, which plays significant roles in cell proliferation and epithelial-mesenchymal transition, was down-regulated after DHC treatment. In addition, cyclin D1, c-Myc, MMP2, and MMP7, which are critical in diverse cellular process regulation as downstream proteins of β-catenin, were all decreased. Mechanistically, DHC accelerates ubiquitination of β-catenin and up-regulates the beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) in melanoma cells. The DHC induced suppression of cell proliferation, migration, and invasion were partly rescued by exogenous β-catenin overexpression, both in vitro and in vivo. Taken together, DHC may serve as a candidate natural compound for human melanoma treatment through β-catenin pathway.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Department of Dermatology, Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yanli Zhang
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yacong Ji
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Leiyang Guo
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lichao Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huanrong Hu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaling Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Salinas N, Nowak E, Etienne M, Legoupil D, Fouchard M, Brenaut E, Misery L. Causes of Pruritus in Patients Treated With Immune Checkpoint Inhibitors for Melanomas or Skin Carcinomas. Front Med (Lausanne) 2021; 8:632683. [PMID: 33634154 PMCID: PMC7900003 DOI: 10.3389/fmed.2021.632683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pruritus is a frequent adverse event during the use of immune checkpoint inhibitors (ICIs), with a frequency estimated to be between 11 and 47%. The underlying causes remain poorly understood. Objectives: The main goal was to search for putative causes of pruritus occurring in patients treated with ICIs for melanomas and cutaneous carcinomas. Other objectives were to assess the association between the occurrence of pruritus and survival and between the occurrence of pruritus and other adverse events. Methods: A monocentric retrospective descriptive study was performed using data for patients treated with ICIs (nivolumab, pembrolizumab, ipilimumab, and cemiplimab) between August 2010 and November 2019. Results: A total of 181 patients were included (mean age: 69 years). Pruritus was reported by 25 patients (13.8%). We were able to determine three subgroups of pruritus causes under ICI use: pruritus directly related to immunotherapy, pruritus indirectly related through other pruritus-inducing side effects and pruritus unrelated to ICIs. In 6/25 patients, no more specific cause of pruritus was found at the onset of pruritus or in their backgrounds, other than ICI use. Limitations: The study has some limitations due to unicentric and retrospective design. Conclusion: Pruritus was found in 25/181 patients in this series; only in 6/25 patients no potential cause other than ICI could be found, and pruritus was not associated with differences in survival.
Collapse
Affiliation(s)
- Nadia Salinas
- Department of Dermatology, University Hospital of Brest, Brest, France.,Université de Brest, LIEN, Brest, France
| | - Emmanuel Nowak
- INSERM CIC 1412, University Hospital of Brest, Brest, France
| | - Maxime Etienne
- Department of Dermatology, University Hospital of Brest, Brest, France.,Université de Brest, LIEN, Brest, France
| | - Delphine Legoupil
- Department of Dermatology, University Hospital of Brest, Brest, France.,Université de Brest, LIEN, Brest, France
| | - Maxime Fouchard
- Department of Dermatology, University Hospital of Brest, Brest, France.,Université de Brest, LIEN, Brest, France
| | - Emilie Brenaut
- Department of Dermatology, University Hospital of Brest, Brest, France.,Université de Brest, LIEN, Brest, France
| | - Laurent Misery
- Department of Dermatology, University Hospital of Brest, Brest, France.,Université de Brest, LIEN, Brest, France
| |
Collapse
|
15
|
Stanbouly D, Shackelford AJ, Peters SM. Diffuse palatal pigmentation. J Am Dent Assoc 2021; 152:1054-1057. [PMID: 33461730 DOI: 10.1016/j.adaj.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 10/22/2022]
|
16
|
Kuntz L, Noel G. [Repeated irradiation of brain metastases under stereotactic conditions: A review of the literature]. Cancer Radiother 2021; 25:390-399. [PMID: 33431294 DOI: 10.1016/j.canrad.2020.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
Stereotactic radiotherapy has become a standard in the management of patients with brain metastases; its main interest is to differ whole brain radiotherapy, provider of neurocognitive toxicity and to increase the rate of local control. The repetition of radiotherapy sessions under stereotactic conditions is not codified, neither on the number of technically and clinically possible sessions, nor on the maximum total number or volume of metastases to be treated. The purpose of this review is to analyse the data in the literature concerning repeated irradiations under stereotactic conditions. The second reirradiation in stereotactic condition shows satisfactory results in terms of overall survival, local control, and toxicity. However, we lack data for patients receiving more than two sessions of SRS as well as to define dose constraints to reirradiated healthy tissues. Prospective trials are still needed to validate the management of recurrent brain metastases after initial SRS.
Collapse
Affiliation(s)
- L Kuntz
- Département de radiothérapie, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - G Noel
- Département de radiothérapie, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France.
| |
Collapse
|
17
|
Chen H, Luo J, Guo J. Construction and Validation of a 7-Immune Gene Model for Prognostic Assessment of Esophageal Carcinoma. Med Sci Monit 2020; 26:e927392. [PMID: 33275591 PMCID: PMC7722773 DOI: 10.12659/msm.927392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We constructed a predictive risk model of esophageal carcinoma (EC) for prognostic prediction. MATERIAL AND METHODS Immune genes and the expression data were downloaded from the ImmPort database and The Cancer Genome Atlas database. Univariate analysis, Lasso regression, and multivariate analysis were applied to screen the ultimately included prognostic immune genes for the model based on the training cohort. Survival analysis and receiver operating characteristic (ROC) curve were applied to evaluate the model. The model was further validated in the testing and entire cohorts, and the clinical utility of the model and its ability to assess the subtypes of EC were evaluated in the entire cohort. RESULTS We detected 297 differentially expressed immune genes, including 241 upregulated genes and 56 downregulated genes in EC patients. Based on these genes, we developed a 7-immune gene model of EC, including HSPA6, S100A12, NOS2, DKK1, OSM, AR, and OXTR. The area under the curve (AUC) of the model at 1 year was 0.825. Similarly, the AUC values for the validating cohorts were 0.813 and 0.816, respectively. Pathological stage and risk score of the model were independent prognostic factors. This model was effective for both subtypes of EC. CONCLUSIONS We constructed a 7-gene model consisting of HSPA6, S100A12, NOS2, DKK1, OSM, AR, and OXTR. This risk model could be used for prognostic prediction of EC.
Collapse
Affiliation(s)
- Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, Hubei, P.R. China
| | - Jianchun Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, Hubei, P.R. China
| |
Collapse
|
18
|
Rizzo A, Mollica V, Cimadamore A, Santoni M, Scarpelli M, Giunchi F, Cheng L, Lopez-Beltran A, Fiorentino M, Montironi R, Massari F. Is There a Role for Immunotherapy in Prostate Cancer? Cells 2020; 9:E2051. [PMID: 32911806 PMCID: PMC7564598 DOI: 10.3390/cells9092051] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decade, immunotherapy has revolutionized the treatment landscape of several hematological and solid malignancies, reporting unprecedented response rates. Unfortunately, this is not the case for metastatic castration-resistant prostate cancer (mCRPC), as several phase I and II trials assessing programmed death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors have shown limited benefits. Moreover, despite sipuleucel-T representing the only cancer vaccine approved by the Food and Drug Administration (FDA) for mCRPC following the results of the IMPACT trial, the use of this agent is relatively limited in everyday clinical practice. The identification of specific histological and molecular biomarkers that could predict response to immunotherapy represents one of the current challenges, with an aim to detect subgroups of mCRPC patients who may benefit from immune checkpoint monoclonal antibodies as monotherapy or in combination with other anticancer agents. Several unanswered questions remain, including the following: is there-or will there ever be-a role for immunotherapy in prostate cancer? In this review, we aim at underlining the failures and promises of immunotherapy in prostate cancer, summarizing the current state of art regarding cancer vaccines and immune checkpoint monoclonal antibodies, and discussing future research directions in this immunologically "cold" malignancy.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 40138 Bologna, Italy; (A.R.); (V.M.)
| | - Veronica Mollica
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 40138 Bologna, Italy; (A.R.); (V.M.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62012 Macerata, Italy;
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesca Giunchi
- Department of Pathology, Ospedale Maggiore and University of Bologna, 40138 Bologna, Italy; (F.G.); (M.F.)
| | - Liang Cheng
- Laboratory Medicine and Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Michelangelo Fiorentino
- Department of Pathology, Ospedale Maggiore and University of Bologna, 40138 Bologna, Italy; (F.G.); (M.F.)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesco Massari
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 40138 Bologna, Italy; (A.R.); (V.M.)
| |
Collapse
|
19
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
20
|
Li Z, Zhou J, Zhang J, Li S, Wang H, Du J. Cancer-associated fibroblasts promote PD-L1 expression in mice cancer cells via secreting CXCL5. Int J Cancer 2019; 145:1946-1957. [PMID: 30873585 PMCID: PMC6767568 DOI: 10.1002/ijc.32278] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in orchestrating the tumor malignant biological properties within tumor microenvironment and evidences demonstrate that CAFs are a critical regulator of tumoral immunosuppression of the T cell response. However, the functions and regulation of CAFs in the expression of programmed death-ligand 1 (PD-L1) in melanoma and colorectal carcinoma (CRC) are not completely understood. Herein, by scrutinizing the expression of α-SMA and PD-L1 in melanoma and CRC tissues, we found that CAFs was positive correlated with PD-L1 expression. Further analyses showed that CAFs promoted PD-L1 expression in mice tumor cells. By detecting a majority of cytokines expression in normal mice fibroblasts and CAFs, we determined that CXCL5 was abnormal high expression in CAFs and the immunohistochemistry and in situ hybridization confirmed that were CAFs which were expressing CXCL5. In addition, CXCL5 promoted PD-L1 expression in B16, CT26, A375 and HCT116. The silencing of CXCR2, the receptor of CXCL5, inhibited the PD-L1 expression induced by CAFs in turn. Functionally, CXCL5 derived by CAFs promoted PD-L1 expression in mice tumor cells through activating PI3K/AKT signaling. LY294002, the inhibitor of PI3K, confirmed that CXCL5 forested an immunosuppression microenvironment by promoting PD-L1 expression via PI3K/AKT signaling. Meanwhile, the B16/CT26 xenograft tumor models were used and both CXCR2 and p-AKT were found to be positively correlated with PD-L1 in the xenograft tumor tissues. The immunosuppressive action of CAFs on tumor cells is probably reflective of them being a potential therapeutic biomarker for melanoma and CRC.
Collapse
Affiliation(s)
- Ziqian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiawang Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjie Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiying Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|