1
|
Moore AE, Nault H, Cummings D, Bojovic B, Serniuck N, Baker CL, Aarts C, Venugopal C, Singh SK, Hammill JA, Bramson JL. DAP12-associated synthetic antigen receptors enable multi-targeting of T cells with independent chimeric receptors in a small genetic payload. iScience 2025; 28:112142. [PMID: 40201126 PMCID: PMC11978328 DOI: 10.1016/j.isci.2025.112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
We describe a series of DAP12-associated receptors that can be used to achieve multi-targeting within a small genetic payload. Empirical evaluation of scaffold/binder combinations is required to define the optimal synthetic receptor configuration. When two DAP12-associated synthetic receptors were expressed in T cells from a single vector, the surface levels of individual receptors was reduced when compared to T cells engineered with vectors that express a single receptor. The reduction in receptor expression had a pronounced effect on early, but not late, signaling events and primarily affected cytokine production. The functional deficiency was overcome by increasing synthetic receptor levels demonstrating that there is no fundamental issue related to co-expression of multiple DAP12-associated synthetic receptors in a single T cell. Our data show that T cells can be engineered with multiple recombinant DAP12-based receptors to yield multi-target specific T cells, however, thoughtful design and optimization are necessary.
Collapse
Affiliation(s)
- Allyson E. Moore
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hayley Nault
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Derek Cummings
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bonnie Bojovic
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nick Serniuck
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Christopher L. Baker
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Craig Aarts
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sheila K. Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joanne A. Hammill
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jonathan L. Bramson
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
2
|
Zhu S, Hu J, Lin J, Wang C, Wang E. Co-Expression of Dominant-Negative TGF-β Receptor 2 Enhances the Therapeutic Efficacy of Novel TREM1/DAP12-BB-Based CAR-T Cells in Solid Tumours. Immunology 2025; 174:310-321. [PMID: 39746895 DOI: 10.1111/imm.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has exhibited remarkable efficacy in the treatment of haematological malignancies, yet its application in solid tumours is hindered by the immunosuppressive tumour microenvironment (TME). In this study, a novel SS1-TREM1/DAP12-BB CAR-T cell was devised to target ovarian cancer and further engineered to co-express the dominant-negative TGF-β receptor 2 (DNR) to combat CAR-T cell exhaustion in TME. The incorporation of DNR effectively blocked TGF-β signalling, thereby enhancing CAR-T cell survival and antitumor activity in a TGF-β1-rich environment. In vivo evaluations demonstrated that DNR co-expression potentiated the antitumor efficacy of TREM1/DAP12-BB CAR-T cells and conferred resilience against tumour rechallenge. These findings underscore the broad potential of DNR co-expression in CAR design, presenting a novel therapeutic strategy for patients with recurrent ovarian cancer.
Collapse
MESH Headings
- Humans
- Female
- Animals
- Immunotherapy, Adoptive/methods
- Ovarian Neoplasms/therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Cell Line, Tumor
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Triggering Receptor Expressed on Myeloid Cells-1/genetics
- Triggering Receptor Expressed on Myeloid Cells-1/immunology
- Triggering Receptor Expressed on Myeloid Cells-1/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Signal Transduction
Collapse
Affiliation(s)
- Sichao Zhu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jianping Hu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jie Lin
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Chen Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, P.R. China
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, P.R. China
| |
Collapse
|
3
|
Zhong D, Liao Y, Chen W, Huang X, Liu J, Wang Z. TYROBP promotes the spread of pancreatic cancer by causing M2 TAM polarization. J Gastroenterol Hepatol 2024; 39:2926-2939. [PMID: 39496400 DOI: 10.1111/jgh.16783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND AND AIM M2-polarized tumor-associated macrophages (M2 TAMs) are known to promote cancer progression, and exosomes are crucial mediators of communication within the tumor microenvironment (TME). However, the specific role of exosomes derived from M2 TAMs in pancreatic cancer (PC) progression remains poorly understood. Tyrosine kinase binding protein (TYROBP, also known as DAP12 for DNAX activating protein-12) is a transmembrane signal transduction polypeptide that interacts with immune cell receptors, influencing cellular functions via signal transduction pathways. TYROBP is prominently found in M2 TAMs exosomes, facilitating its transfer to PC cells and suggesting a potential role in PC pathogenesis. METHODS This study initially confirmed the presence of TYROBP in M2 TAMs exosomes and its transfer to PC cells via exosomes. The impact of TYROBP on PC proliferation, apoptosis, migration, and invasion was investigated. Special attention was given to TYROBP's influence on PC metastasis and its underlying mechanisms, focusing particularly on the CD44/AKT/ERK signaling pathway. RESULTS TYROBP expression in PC cells did not significantly affect tumor cell proliferation or apoptosis but demonstrated a notable inhibitory effect on migration and invasion, which was mediated through the CD44/AKT/ERK pathway. Both in vivo and in vitro experiments consistently showed that TYROBP enhanced PC metastasis. CONCLUSIONS This study elucidates that TYROBP plays a direct role in promoting PC metastasis through its association with M2 TAMs polarization. Therefore, TYROBP represents a potential novel therapeutic target for interventions aimed at combatting PC progression.
Collapse
Affiliation(s)
- Dingwen Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreas Treatment and Therapy Center of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary and Pancreatic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Yonghui Liao
- Department of Hepatobiliary and Pancreatic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Wenhui Chen
- Department of Hepatobiliary and Pancreatic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Xianyu Huang
- Department of Hepatobiliary and Pancreatic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Jiaxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreas Treatment and Therapy Center of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Bahramloo M, Shahabi SA, Kalarestaghi H, Rafat A, Mazloumi Z, Samimifar A, Asl KD. CAR-NK cell therapy in AML: Current treatment, challenges, and advantage. Biomed Pharmacother 2024; 177:117024. [PMID: 38941897 DOI: 10.1016/j.biopha.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Over the last decade, discovery of novel therapeutic method has been attention by the researchers and has changed the therapeutic perspective of hematological malignancies. Although NK cell play a pivotal role in the elimination of abnormal and cancerous cells, there are evidence that NK cell are disarm in hematological malignancy. Chimeric antigen receptor NK (CAR-NK) cell therapy, which includes the engineering of NK cells to detect tumor-specific antigens and, as a result, clear of cancerous cells, has created various clinical advantage for several human malignancies treatment. In the current review, we summarized NK cell dysfunction and CAR-NK cell based immunotherapy to treat AML patient.
Collapse
Affiliation(s)
- Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sina Alinejad Shahabi
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Samimifar
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
5
|
Gordon KS, Perez CR, Garmilla A, Lam MSY, Aw JJ, Datta A, Lauffenburger DA, Pavesi A, Birnbaum ME. Pooled screening for CAR function identifies novel IL13Rα2-targeted CARs for treatment of glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.586240. [PMID: 38766252 PMCID: PMC11100612 DOI: 10.1101/2024.04.04.586240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor therapies have demonstrated potent efficacy in treating B cell malignancies, but have yet to meaningfully translate to solid tumors. Here, we utilize our pooled screening platform, CARPOOL, to expedite the discovery of CARs with anti-tumor functions necessary for solid tumor efficacy. We performed selections in primary human T cells expressing a library of 1.3×10 6 3 rd generation CARs targeting IL13Rα2, a cancer testis antigen commonly expressed in glioblastoma. Selections were performed for cytotoxicity, proliferation, memory formation, and persistence upon repeated antigen challenge. Each enriched CAR robustly produced the phenotype for which it was selected, and one enriched CAR triggered potent cytotoxicity and long-term proliferation upon in vitro tumor rechallenge. It also showed significantly improved persistence and comparable antigen-specific tumor control in a microphysiological human in vitro model and a xenograft model of human glioblastoma. Taken together, this work demonstrates the utility of extending CARPOOL to diseases beyond hematological malignancies and represents the largest exploration of signaling combinations in human primary cells to date.
Collapse
|
6
|
Chen Y, Liu C, Fang Y, Chen W, Qiu J, Zhu M, Wei W, Tu J. Developing CAR-immune cell therapy against SARS-CoV-2: Current status, challenges and prospects. Biochem Pharmacol 2024; 222:116066. [PMID: 38373592 DOI: 10.1016/j.bcp.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Chimeric antigen receptor (CAR)-immune cell therapy has revolutionized the anti-tumor field, achieving efficient and precise tumor clearance by directly guiding immune cell activity to target tumors. In addition, the use of CAR-immune cells to influence the composition and function of the immune system and ultimately achieve virus clearance and immune system homeostasis has attracted the interest of researchers. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a global pandemic of coronavirus disease 2019 (COVID-19). To date, the rapidly mutating SARS-CoV-2 continues to challenge existing therapies and has raised public concerns regarding reinfection. In patients with COVID-19, the interaction of SARS-CoV-2 with the immune system influences the course of the disease, and the coexistence of over-activated immune system components, such as macrophages, and severely compromised immune system components, such as natural killer cells, reveals a dysregulated immune system. Dysregulated immune-induced inflammation may impair viral clearance and T-cell responses, causing cytokine storms and ultimately leading to patient death. Here, we summarize the research progress on the use of CAR-immune cells against SARS-CoV-2 infection. Furthermore, we discuss the feasibility, challenges and prospect of CAR-immune cells as a new immune candidate therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Chong Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Weile Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Yu T, Nie FQ, Zhang Q, Yu SK, Zhang ML, Wang Q, Wang EX, Lu KH, Sun M. Effects of methionine deficiency on B7H3-DAP12-CAR-T cells in the treatment of lung squamous cell carcinoma. Cell Death Dis 2024; 15:12. [PMID: 38182561 PMCID: PMC10770166 DOI: 10.1038/s41419-023-06376-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is a subtype of lung cancer for which precision therapy is lacking. Chimeric antigen receptor T-cells (CAR-T) have the potential to eliminate cancer cells by targeting specific antigens. However, the tumor microenvironment (TME), characterized by abnormal metabolism could inhibit CAR-T function. Therefore, the aim of this study was to improve CAR-T efficacy in solid TME by investigating the effects of amino acid metabolism. We found that B7H3 was highly expressed in LUSC and developed DAP12-CAR-T targeting B7H3 based on our previous findings. When co-cultured with B7H3-overexpressing LUSC cells, B7H3-DAP12-CAR-T showed significant cell killing effects and released cytokines including IFN-γ and IL-2. However, LUSC cells consumed methionine (Met) in a competitive manner to induce a Met deficiency. CAR-T showed suppressed cell killing capacity, reduced cytokine release and less central memory T phenotype in medium with lower Met, while the exhaustion markers were up-regulated. Furthermore, the gene NKG7, responsible for T cell cytotoxicity, was downregulated in CAR-T cells at low Met concentration due to a decrease in m5C modification. NKG7 overexpression could partially restore the cytotoxicity of CAR-T in low Met. In addition, the anti-tumor efficacy of CAR-T was significantly enhanced when co-cultured with SLC7A5 knockdown LUSC cells at low Met concentration. In conclusion, B7H3 is a prospective target for LUSC, and B7H3-DAP12-CAR-T cells are promising for LUSC treatment. Maintaining Met levels in CAR-T may help overcome TME suppression and improve its clinical application potential.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Feng-Qi Nie
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Shao-Kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Mei-Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - En-Xiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
8
|
Yan Z, Zhang W, Sun K. TREM1 is involved in the mechanism between asthma and lung cancer by regulating the Toll‑like receptor signaling pathway. Oncol Lett 2024; 27:16. [PMID: 38028174 PMCID: PMC10664071 DOI: 10.3892/ol.2023.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Lung cancer and asthma are both global health problems with significant economic consequences. Recent studies have demonstrated that asthma may be a risk factor for lung cancer. The present study aimed to explore the pathogenesis between these two diseases through a comprehensive analysis. Differentially expressed genes (DEGs) screened in the asthma-related GSE165934 dataset were analyzed to find relevant inflammatory pathways. Overlapping genes regulated by inflammatory pathways and lung cancer-DEGs from The Cancer Genome Atlas (TCGA) were obtained and subjected to survival and gene-wide mutation analyses, and nomogram construction to determine the hub gene. The hub gene was further analyzed through expression validation, immunoassays and functional experiments to investigate its role and mechanism in lung cancer. Functional enrichment analysis showed that 1,275 DEGs from GSE165934 were closely associated with the Toll-like receptor signaling pathway, and 8 overlapping genes were identified from 12 genes regulated by the Toll-like receptor signaling pathway and 3,134 TCGA-DEGs. After a series of bioinformatics analyses, it was found that triggering receptor expressed on myeloid cells 1 (TREM1) was the hub gene involved in the mechanism of asthma and lung cancer. TREM1 was also found to be a suppressor gene in lung cancer correlated with immune cells, immune checkpoint-related genes and tumor mutational burden score. Additionally, the results of Cell Counting Kit-8 and Transwell experiments demonstrated that overexpression of TREM1 could significantly inhibit the invasion, proliferation and migration of lung cancer cells. Reverse transcription-quantitative PCR and western blotting demonstrated that the overexpression of TREM1 could also significantly reduce the level of Toll-like receptor signaling pathway proteins. The present findings suggest that TREM1 is associated with the mechanism of asthma and lung cancer through its regulation of the Toll-like receptor signaling pathway. Furthermore, TREM1 may serve as a potential treatment target and prognostic indicator for patients with lung cancer.
Collapse
Affiliation(s)
- Zhulin Yan
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Wei Zhang
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Keyu Sun
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| |
Collapse
|
9
|
Xu T, Wang C, Wang X, Wang E, Wang B, Sun M. A novel TREM1/DAP12-based multiple chain CAR-T cell targets PTK7 in ovarian cancer therapy. Med Oncol 2023; 40:226. [PMID: 37405498 DOI: 10.1007/s12032-023-02084-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
While CAR-T cell therapy has shown success against hematological tumors, its effectiveness for solid tumors, including ovarian cancer, remains unsatisfactory. This study aimed to develop and evaluate the efficacy of novel chimeric antigen receptor T (CAR-T) cells targeting PTK7 through TREM1/DAP12 signaling against ovarian cancer. The expression of PTK7 in ovarian cancer tissues and cells was evaluated using immunohistochemical staining and flow cytometric analysis. The anti-tumor effects of PTK7 CAR-T cells were assessed in vitro using real-time cell analysis and enzyme-linked immunosorbent assay, and in vivo using a xenograft tumor model. PTK7 was significantly expressed in ovarian cancer tissues and cells. PTK7-targeting CAR-T cells based on TREM1/DAP12 signaling exhibited potent cytotoxicity against ovarian cancer cells expressing PTK7 in vitro, and effectively eradicated tumors in vivo. Our findings suggest that TREM1/DAP12-based PTK7 CAR-T cells have potential as a treatment strategy for ovarian cancer. Further studies are needed to evaluate the safety and efficacy of this approach in clinical trials.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children's Hospital, Qingdao Women and Children's Hospital Affiliated to Qingdao University, Qingdao, 266034, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, 533000, China.
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, 533000, China.
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou Municipal Hospital, Gusu School, Baita West Road #16, Suzhou, 215001, People's Republic of China.
| |
Collapse
|
10
|
Wei ZQ, Ding S, Yang YC. TYROBP-positive endothelial cell-derived TWEAK as a promoter of osteosarcoma progression: insights from single-cell omics. Front Oncol 2023; 13:1200203. [PMID: 37207157 PMCID: PMC10191230 DOI: 10.3389/fonc.2023.1200203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Endothelial cells (ECs) play a vital role in promoting the progression of malignant cells, and they exhibit heterogeneity in their phenotypic characteristics. We aimed to explore the initiating cells of ECs in osteosarcoma (OS) and investigate their potential interaction with malignant cells. Method We obtained scRNA-seq data from 6 OS patients, and datasets were batch-corrected to minimize variations among samples. Pseudotime analysis was performed to investigate the origin of differentiation of ECs. CellChat was employed to examine the potential communication between endothelial cells and malignant cells, and gene regulatory network analysis was performed to identify transcription factor activity changes during the conversion process. Importantly, we generated TYROBP-positive ECs in vitro and investigated its role in OS cell lines. Finally, we explored the prognosis of specific ECs cluster and their impact on the tumor microenvironment (TME) at the bulk transcriptome level. Results The results showed that TYROBP-positive ECs may play a crucial role in initiating the differentiation of ECs. TYROBOP-positive endothelial cells (ECs) exhibited the strongest crosstalk with malignant cells, likely mediated by TWEAK, a multifunctional cytokine. TYROBP-positive ECs exhibited significant expression of TME-related genes, unique metabolic and immunological profiles. Importantly, OS patients with low enrichment of TYROBP-positive ECs had better prognoses and a lower risk of metastasis. Finally, vitro assays confirmed that TWEAK was significantly increased in ECs-conditioned medium (ECs-CM) when TYROBP was over-expressed in EC cells, and could promote the proliferation and migration of OS cells. Conclusion We concluded that TYROBP-positive ECs may be the initiating cells and play a crucial role in the promotion of malignant cell progression. TYROBP-positive ECs have a unique metabolic and immunological profile and may interact with malignant cells through the secretion of TWEAK.
Collapse
|
11
|
Razavi AS, Loskog A, Razi S, Rezaei N. The signaling and the metabolic differences of various CAR T cell designs. Int Immunopharmacol 2023; 114:109593. [PMID: 36700773 DOI: 10.1016/j.intimp.2022.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is introduced as an effective, rapidly evolving therapeutic to treat cancer, especially cancers derived from hematological cells, such as B cells. CAR T cell gene constructs combine a tumor-targeting device coupled to the T cell receptor (TCR) zeta chain domain with different signaling domains such as domains derived from CD28 or 4-1BB (CD137). The incorporation of each specific co-stimulatory domain targets the immunometabolic pathways of CAR T cells as well as other signaling pathways. Defining the immunometabolic and signaling pathways by which CAR T cells become and remain active, survive, and eliminate their targets may represent a huge step forward in this relatively young research field as the CAR gene can be tailored to gain optimal function also for solid tumors with elaborate immunosuppression and protective stroma. There is a close relationship between different signaling domains applied in CAR T cells, and difficult to evaluate the benefit from different tested CAR gene constructs. In this review, we attempt to collect the latest findings regarding the CAR T cell signaling pathways that affect immunometabolic pathways.
Collapse
Affiliation(s)
- Azadeh Sadat Razavi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
12
|
Xu T, Wang C, Chen X, Bai J, Wang E, Sun M. Coexpression of c-Jun in multiple-chain DAP-CAR-engineered T-cells for solid tumor therapy. Immunotherapy 2022; 14:1457-1466. [PMID: 36597720 DOI: 10.2217/imt-2022-0171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: This work was designed to explore whether c-Jun overexpression could improve the persistence and antitumor efficacy of DAP chimeric antigen receptor T-cell (CAR-T) cells. Methods: The in vitro and in vivo antitumor effects of mesothelin (MSLN) targeting DAP-CAR-T cells were verified by ELISA, real-time cell analysis and in a xenograft model. Results: c-Jun overexpression did not affect DAP-CAR-T cell expansion while slightly increasing IL-2 secretion. Moreover, c-Jun did not improve the antitumor efficacy of DAP-CAR-T cells in vitro or in vivo, but reduced LAG3 expression and increased the ratio of Tcm and Tn/Tscm cells in vivo. Conclusion: The findings indicate that coexpression with c-Jun in DAP-CAR-T cells slightly improves T-cell exhaustion and central memory phenotype maintenance, which may be useful for DAP-CAR-T cell therapy in solid tumors.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China
| | - Xiaomei Chen
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China
| | - Jian Bai
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China.,Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.,Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, 533000, China.,The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, 533000, China
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Baita West Road #16, Suzhou, 215001, China
| |
Collapse
|
13
|
Chen K, Wang S, Qi D, Ma P, Fang Y, Jiang N, Wu E, Li N. Clinical Investigations of CAR-T Cell Therapy for Solid Tumors. Front Immunol 2022; 13:896685. [PMID: 35924243 PMCID: PMC9339623 DOI: 10.3389/fimmu.2022.896685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is a distinguished targeted immunotherapy with great potential to treat solid tumors in the new era of cancer treatment. Cell therapy products include genetically engineered cell products and non-genetically engineered cell products. Several recent cell therapies, especially chimeric antigen receptor (CAR)-T cell therapies, have been approved as novel treatment strategies for cancer. Many clinical trials on cell therapies, in the form of cell therapy alone or in combination with other treatments, in solid tumors, have been conducted or ongoing. However, there are still challenges since adverse events and the limited efficacy of cell therapies have also been observed. Here, we concisely summarize the clinical milestones of the conducted and ongoing clinical trials of cell therapy, introduce the evolution of CARs, discuss the challenges and limitations of these therapeutic modalities taking CAR-T as the main focus, and analyze the disparities in the regulatory policies in different countries.
Collapse
Affiliation(s)
- Kun Chen
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuhang Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
| | - Peiwen Ma
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Fang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
- Texas A&M University Colleges of Medicine and Pharmacy, College Station, TX, United States
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ning Li
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Yu T, Yu SK, Xiang Y, Lu KH, Sun M. Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors. Front Immunol 2022; 13:936496. [PMID: 35903099 PMCID: PMC9315443 DOI: 10.3389/fimmu.2022.936496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have enormous potentials for clinical therapies. The CAR-T therapy has been approved for treating hematological malignancies. However, their application is limited in solid tumors owing to antigen loss and mutation, physical barriers, and an immunosuppressive tumor microenvironment. To overcome the challenges of CAR-T, increasing efforts are put into developing CAR-T to expand its applied ranges. Varied receptors are utilized for recognizing tumor-associated antigens and relieving immunosuppression. Emerging co-stimulatory signaling is employed for CAR-T activation. Furthermore, other immune cells such as NK cells and macrophages have manifested potential for delivering CAR. Hence, we collected and summarized the last advancements of CAR engineering from three aspects, namely, the ectodomains, endogenous domains, and immune cells, aiming to inspire the design of next-generation adoptive immunotherapy for treating solid tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| |
Collapse
|
15
|
Sun M, Xu P, Wang E, Zhou M, Xu T, Wang J, Wang Q, Wang B, Lu K, Wang C, Chen B. Novel two-chain structure utilizing KIRS2/DAP12 domain improves the safety and efficacy of CAR-T cells in adults with r/r B-ALL. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:96-106. [PMID: 34703879 PMCID: PMC8517091 DOI: 10.1016/j.omto.2021.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have been a promising therapy for hematologic malignancies. The optimization of CAR structure using different signaling domains can alter a wide range of CAR-T cell properties, including anti-tumor activity, long-term persistence, and safety. In this study, we developed a novel CAR structure based on KIRS2/Dap12 for B cell acute lymphoblastic leukemia (B-ALL) antigen CD19 and compared the anti-tumor efficacy and safety of this construct in transduced T cells with standard second-generation CAR-T cells targeting CD19 for B-ALL in vitro and in vivo and in adult relapsed/refractory (r/r) B-ALL patients. We discovered that KIRS2/Dap12 receptor infused with 4-1BB co-stimulation domain could enhance anti-tumor efficacy by remarkably increasing the production of pro-inflammatory interleukin-2 (IL-2), especially when co-cultured with antigen-positive tumor cells. In addition, CD19-KIRS2/Dap12-BB CAR-T cells showed the inspiring outcome that complete responses were seen in 4 of 4 (100%) patients without neurotoxicity and a high rate of severe cytokine release syndrome (CRS) after CAR-T infusion in a phase I clinical trial. Given these encouraging findings, CD19-KIRS2/Dap12-BB CAR-T cells are safe and can lead to clinical responses in adult patients with r/r B-ALL, indicating that further assessment of this therapy is warranted.
Collapse
Affiliation(s)
- Ming Sun
- Department of Oncology Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, PR China.,Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China.,Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nnajing 210008, PR China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China.,Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, PR China.,Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise 533000, PR China.,The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, PR China
| | - Min Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jing Wang
- Jiangsu Runtian Pharmaceutical Chain Pharmacy Co., Ltd., Nanjing 210000, PR China
| | - Qian Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Kaihua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China.,Department of Research and Development, Nanjing Aide Institute of Immunotherapy, Nanjing 211808, PR China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| |
Collapse
|
16
|
Santamaria-Alza Y, Vasquez G. Are chimeric antigen receptor T cells (CAR-T cells) the future in immunotherapy for autoimmune diseases? Inflamm Res 2021; 70:651-663. [PMID: 34018005 DOI: 10.1007/s00011-021-01470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE CAR-T cell therapy has revolutionized the treatment of oncological diseases, and potential uses in autoimmune diseases have recently been described. The review aims to integrate the available data on treatment with CAR-T cells, emphasizing autoimmune diseases, to determine therapeutic advances and their possible future clinical applicability in autoimmunity. MATERIALS AND METHODS A search was performed in PubMed with the keywords "Chimeric Antigen Receptor" and "CART cell". The documents of interest were selected, and a critical review of the information was carried out. RESULTS In the treatment of autoimmune diseases, in preclinical models, three different cellular strategies have been used, which include Chimeric antigen receptor T cells, Chimeric autoantibody receptor T cells, and Chimeric antigen receptor in regulatory T lymphocytes. All three types of therapy have been effective. The potential adverse effects within them, cytokine release syndrome, cellular toxicity and neurotoxicity must always be kept in mind. CONCLUSIONS Although information in humans is not yet available, preclinical models of CAR-T cells in the treatment of autoimmune diseases show promising results, so that in the future, they may become a useful and effective therapy in the treatment of these pathologies.
Collapse
Affiliation(s)
- Yeison Santamaria-Alza
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia.
| | - Gloria Vasquez
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia
| |
Collapse
|
17
|
Constitutively Activated DAP12 Induces Functional Anti-Tumor Activation and Maturation of Human Monocyte-Derived DC. Int J Mol Sci 2021; 22:ijms22031241. [PMID: 33513928 PMCID: PMC7865632 DOI: 10.3390/ijms22031241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen presenting cells with a great capacity for cross-presentation of exogenous antigens from which robust anti-tumor immune responses ensue. However, this function is not always available and requires DCs to first be primed to induce their maturation. In particular, in the field of DC vaccine design, currently available methodologies have been limited in eliciting a sustained anti-tumor immune response. Mechanistically, part of the maturation response is influenced by the presence of stimulatory receptors relying on ITAM-containing activating adaptor molecules like DAP12, that modulates their function. We hypothesize that activating DAP12 in DC could force their maturation and enhance their potential anti-tumor activity for therapeutic intervention. For this purpose, we developed constitutively active DAP12 mutants that can promote activation of monocyte-derived DC. Here we demonstrate its ability to induce the maturation and activation of monocyte-derived DCs which enhances migration, and T cell stimulation in vitro using primary human cells. Moreover, constitutively active DAP12 stimulates a strong immune response in a murine melanoma model leading to a reduction of tumor burden. This provides proof-of-concept for investigating the pre-activation of antigen presenting cells to enhance the effectiveness of anti-tumor immunotherapies.
Collapse
|
18
|
Cui X, Qiao J, Liu S, Wu M, Gu W. Mechanism of TREM2/DAP12 complex affecting β-amyloid plaque deposition in Alzheimer's disease modeled mice through mediating inflammatory response. Brain Res Bull 2020; 166:21-28. [PMID: 33053435 DOI: 10.1016/j.brainresbull.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
To investigate the mechanism of TREM2/DAP12 complex in mediating inflammatory responses that affect β-amyloid plaque deposition in Alzheimer's disease (AD) modeled mice. We measured escape latency and platform crossing time using the Morris water maze image automatic acquisition and software analysis system in TREM2 and DAP12 microglia knockout AD model mouse. We monitored the deposition of Aβ plaques in the mouse hippocampus using Congo red staining and measured levels. of inflammatory factors IL-6 and TNF-α by ELISA. Newborn mice with TREM2 knockout were selected for primary microglia isolation and culture, and Aged oligomer Aβ1-42 was added to the microglial culture medium to simulate the AD environment in vivo. Co-immunoprecipitation assay was used to detect the interaction between DAP12 and TREM2, and measured the inflammatory response induced by lipopolysaccharide (LPS) in mice with TREM2 and DAP12 knockdown through adeno-associated virus in BV2 microglia. The escape latency of the AD model mice with TREM2 and DAP12 knockout was higher and the number of crossing platforms lower than in the control group, whereas Aβ deposition and levels of inflammatory factors were higher. In TREM2 knockout microglial cultured with Aβ1-42, levels of IL-6 and TNF-α increased. Immunoprecipation pull-down assays showed that TREM2 binds to the membrane receptor DAP12 to form a complex. Knockout of TREM2 or DAP12 can inhibit LPS-induced microglial inflammatory responses. The TREM2/DAP12 complex inhibits the microglial inflammatory response through the JNK signaling pathway, thereby reducing the deposition of Aβ plaques and attenuation the behavioral manifestation in a mouse AD model.
Collapse
Affiliation(s)
- Xin Cui
- Yanjing Medical College of Capital Medical University, Beijing 101300, PR China
| | - Jun Qiao
- Department of Mental Health, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Sha Liu
- Department of Pharmacy, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, PR China
| | - Ming Wu
- Department of Pharmacy, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, PR China
| | - Weiwei Gu
- Experimental Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
19
|
T Cells Expressing NKG2D CAR with a DAP12 Signaling Domain Stimulate Lower Cytokine Production While Effective in Tumor Eradication. Mol Ther 2020; 29:75-85. [PMID: 32956627 DOI: 10.1016/j.ymthe.2020.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/08/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-related toxicity associated with the use of highly active chimeric antigen receptor T cells (CAR-T cells) is a significant clinical problem. By fusing the natural killer group 2D (NKG2D) ectodomain to 4-1BB and the DAP12 cytoplasmic domain containing only one immunoreceptor tyrosine-based activation motif, we have developed a 2nd-generation (2nd-Gen) NKG2D CAR for stable expression in human T cells. When compared to T cells modified with NKG2D CAR containing the commonly used CD3ζ activation domain, T cells expressing the NKG2D-DAP12 CAR stimulated lower level release of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin (IL)-2 during tumor cell lysis and their proliferative activity was lower upon repeated antigen stimulation, although no difference between the two CARs was observed in mediating in vitro tumor cell lysis. In tumor-bearing NSG mice, both types of CAR-T cells displayed similar anti-tumor activity, being able to completely eradicate established solid tumor xenografts. However, treatment with the NKG2D-CD3ζ CAR-T cells led to the death of most mice from xenogeneic graft versus host disease starting 30 days post-CAR-T cell injection, which was associated with a higher level of cytokine release, whereas all the mice treated with the NKG2D-DAP12 CAR-T cells survived well. Thus, the incorporation of the DAP12 activation domain in a CAR design may possibly provide a potential clinical advantage in mitigating the risk of cytokine release syndrome (CRS).
Collapse
|
20
|
Kong Y, Feng ZC, Zhang YL, Liu XF, Ma Y, Zhao ZM, Huang B, Chen AJ, Zhang D, Thorsen F, Wang J, Yang N, Li XG. Identification of Immune-Related Genes Contributing to the Development of Glioblastoma Using Weighted Gene Co-expression Network Analysis. Front Immunol 2020; 11:1281. [PMID: 32765489 PMCID: PMC7378359 DOI: 10.3389/fimmu.2020.01281] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The tumor microenvironment (TME) of human glioblastoma (GBM) exhibits considerable immune cell infiltration, and such cell types have been shown to be widely involved in the development of GBM. Here, weighted correlation network analysis (WGCNA) was performed on publicly available datasets to identify immune-related molecules that may contribute to the progression of GBM and thus be exploited as potential therapeutic targets. Methods: WGCNA was used to identify highly correlated gene clusters in Chinese Glioma Genome Atlas glioma dataset. Immune-related genes in significant modules were subsequently validated in the Cancer Genome Atlas (TCGA) and Rembrandt databases, and impact on GBM development was examined in migration and vascular mimicry assays in vitro and in an orthotopic xenograft model (GL261 luciferase-GFP cells) in mice. Results: WGCNA yielded 14 significant modules, one of which (black) contained genes involved in immune response and extracellular matrix formation. The intersection of these genes with a GO immune-related gene set yielded 47 immune-related genes, five of which exhibited increased expression and association with worse prognosis in GBM. One of these genes, TREM1, was highly expressed in areas of pseudopalisading cells around necrosis and associated with other proteins induced in angiogenesis/hypoxia. In macrophages induced from THP1 cells, TREM1 expression levels were increased under hypoxic conditions and associated with markers of macrophage M2 polarization. TREM1 siRNA knockdown in induced macrophages reduced their ability to promote migration and vascular mimicry in GBM cells in vitro, and treatment of mice with LP-17 peptide, which blocks TREM1, inhibited growth of GL261 orthotopic xenografts. Finally, blocking the cytokine receptor for CSF1 in induced macrophages also impeded their potential to promote tumor migration and vascular mimicry in GBM cells. Conclusions: Our results demonstrated that TREM1 could be used as a novel immunotherapy target for glioma patients.
Collapse
Affiliation(s)
- Yang Kong
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Zi-Chao Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Yu-Lin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Xiao-Fei Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Yuan Ma
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Zhi-Min Zhao
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - An-Jing Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Frits Thorsen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China.,Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Xin-Gang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| |
Collapse
|
21
|
Zheng L, Ren L, Kouhi A, Khawli LA, Hu P, Kaslow HR, Epstein AL. A Humanized Lym-1 CAR with Novel DAP10/DAP12 Signaling Domains Demonstrates Reduced Tonic Signaling and Increased Antitumor Activity in B-Cell Lymphoma Models. Clin Cancer Res 2020; 26:3694-3706. [PMID: 32273277 DOI: 10.1158/1078-0432.ccr-19-3417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/19/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The murine Lym-1 mAb targets a discontinuous epitope (Lym-1 epitope) on several subtypes of HLA-DR, which is upregulated in a majority of human B-cell lymphomas and leukemias. Unlike CD19, the Lym-1 epitope does not downregulate upon crosslinking, which may provide an advantage as a target for CAR T-cell therapy. Lym-1 CAR T cells with a conventional 4-1BB and CD3ζ (BB3z) signaling domain exhibited impaired ex vivo expansion. This study aimed to identify the underlying mechanisms and develop strategies to overcome this effect. EXPERIMENTAL DESIGN A functional humanized Lym-1 antibody (huLym-1-B) was identified and its scFv form was used for CAR design. To overcome observed impaired expansion in vitro, a huLym-1-B CAR using DAP10 and DAP12 (DAP) signaling domains was evaluated for ex vivo expansion and in vivo function. RESULTS Impaired expansion in huLym-1-B-BB3z CAR T cells was shown to be due to ligand-dependent suboptimal CAR signaling caused by interaction of the CAR binding domain and the surface of human T cells. Using the novel DAP signaling domain construct, the effects of suboptimal CAR signaling were overcome to produce huLym-1-B CAR T cells with improved expansion ex vivo and function in vivo. In addition, the Lym-1 epitope does not significantly downregulate in response to huLym-1-B-DAP CAR T cells both ex vivo and in vivo. CONCLUSIONS DAP intracellular domains can serve as signaling motifs for CAR, and this new construct enables nonimpaired production of huLym-1-B CAR T cells with potent in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Long Zheng
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Luqing Ren
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Aida Kouhi
- School of Pharmacy, University of Southern California, Los Angeles, California
| | - Leslie A Khawli
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Harvey R Kaslow
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|