1
|
Narote S, Desai SA, Patel VP, Deshmukh R, Raut N, Dapse S. Identification of new immune target and signaling for cancer immunotherapy. Cancer Genet 2025; 294-295:57-75. [PMID: 40154216 DOI: 10.1016/j.cancergen.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Immunotherapy has become one of the innovative treatments in malignancy as it activates the immune system to find and eliminate malignant cells. The tumor immunology interface has become increasingly intricate, making the identification of new immune targets and signalling pathways on which to base improved therapeutic strategies an ongoing process. This review, we goal to clarify the contacts between cancer and immune system with a focus on immune surveillance as well as immune evasion mechanisms. Comprehensive immunotherapeutic therapies are overviewed with ICI (CTLA-4, PD-1, PD-L1), CAR-T cell therapy, and cancer vaccines whereas, advanced therapies targeting new immune checkpoints are also elucidated including TIM-3, LAG-3, and TIGIT. The JAK/STAT, MAPK and PI3K-AKT-mTOR pathways are reviewed with regards to cancer progression and immunotherapeutic resistance. The dysregulation of these pathways gives hope for the identification of fresh targets for therapy. Genomics, proteomics, immunopeptidomics, single cell mass spectrometry, CRISPR-based functional genomics and bioinformatics are described as essential for immune target identification and for mapping of cancer relevant signaling pathways. This review also considers some emerging issues in the subject area like the tumor heterogeneity, immune-related adverse events (irAEs), and personalized treatment. These barriers are described to facilitate the understanding of ways to overcome them and increase the efficacy of immunotherapies through combination therapies. This means that by developing new knowledge of immunological targets and pathways, immunoprecision medicine for cancer could greatly enhance outcomes.
Collapse
Affiliation(s)
- Sakshi Narote
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India.
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Rutuja Deshmukh
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nikita Raut
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Sejal Dapse
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| |
Collapse
|
2
|
Sculthorpe DJ, Denton A, Fadhil W, Rusnita D, Ilyas M, Mukherjee A. High α-SMA expression in the tumor stroma is associated with adverse clinical parameters in mismatch repair-proficient colorectal cancers only. Am J Clin Pathol 2025; 163:464-472. [PMID: 39495028 PMCID: PMC11890275 DOI: 10.1093/ajcp/aqae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES As mismatch repair status confers differential prognosis in colorectal cancers, this study aimed to determine associations of α-smooth muscle actin (α-SMA) protein expression in mismatch repair-proficient (pMMR) and mismatch repair-deficient (dMMR) colorectal tumors with clinicopathologic and prognostic features. METHODS Tissue microarrays from patients with colorectal cancer, immunostained with α-SMA, were assessed through digital image analysis. Total (n = 962), pMMR (n = 782), and dMMR (n = 156) stromal H-scores were assessed for associations with clinicopathologic and survival data. RESULTS Higher α-SMA expression was correlated with pMMR status (P = 5.2223 × 10-8). In the pMMR subgroup, higher α-SMA stromal expression at the tumor periphery was correlated with higher T stage (P = .002), perineural invasion (P = .038), infiltrative tumor edge (P = .01), involved nodal status (P = .036), metastases (P = .013), synchronous metastases (P = .007), recurrence (P = .004), and both 3-year and 5-year survival (P = .018). dMMR tumors showed no significant correlations with α-SMA staining. CONCLUSIONS The findings highlight that immunostaining with α-SMA in pMMR colorectal tumors, especially at the tumor periphery, has the potential to identify patients with adverse prognostic features. Digital assessment of α-SMA may offer improved objectivity, accuracy, economy of time, and risk stratification for management.
Collapse
Affiliation(s)
- Declan J Sculthorpe
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amy Denton
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Wakkas Fadhil
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dewi Rusnita
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammad Ilyas
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham, UK
| | - Abhik Mukherjee
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham, UK
| |
Collapse
|
3
|
Misawa K, Bhat H, Adusumilli PS, Hou Z. Combinational CAR T-cell therapy for solid tumors: Requisites, rationales, and trials. Pharmacol Ther 2025; 266:108763. [PMID: 39617146 PMCID: PMC11848936 DOI: 10.1016/j.pharmthera.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved potent antitumor efficacy in hematological malignancies; however, because of limitations in CAR T-cell recruitment, infiltration, activation, and functional persistence in the tumor, its efficacy in solid tumors has been suboptimal. To overcome these challenges, combinational strategies that include chemotherapy, radiation therapy, or immune checkpoint inhibitor agent therapy with CAR T-cell therapy are being investigated. The established functional characteristics of the abovementioned therapies provide a rationale for the use of a combinational approach with CAR T cells. Chemotherapy reshapes the peritumoral stroma, decreases the immunosuppressive cell population, and promotes a proinflammatory milieu, all of which allow for increased recruitment, infiltration, and accumulation of CAR T cells. Radiation therapy promotes a chemokine gradient, which augments tumor infiltration by CAR T cells and further increases expression of tumor-associated antigens, allowing for increased activation of CAR T cells. Immune checkpoint inhibitor agent therapy inactivates T-cell exhaustion pathways-most notably, the PD1/PDL1 pathway-thereby improving the functional persistence of CAR T cells and promoting endogenous immunity. In this review, we discuss the requisites and rationales for combinational therapy, and we review 25 ongoing phase I and II clinical trials, of which 4 use chemotherapy, 3 use radiation therapy, 11 use immunotherapy, and 7 use another agent. While safety, efficacy, and improved outcomes are the primary goals of these ongoing studies, the knowledge gained from them will help pave the way for subsequent studies focused on optimizing combinational regimens and identifying predictive biomarkers.
Collapse
Affiliation(s)
- Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Hina Bhat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
4
|
Skelton WP, Masur J, Thomas J, Fallah P, Jain RK, Ravi P, Mantia C, McGregor BA, Nuzzo PV, Adib E, Zarif TE, Preston MA, Clinton TN, Li R, Steele GS, Kassouf W, Freeman D, Pond GR, Jain RK, Sonpavde GP. Impact of Angiotensin Converting Enzyme Inhibitors on Pathologic Complete Response With Neoadjuvant Chemotherapy for Muscle Invasive Bladder Cancer. Clin Genitourin Cancer 2024; 22:102143. [PMID: 39032202 DOI: 10.1016/j.clgc.2024.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) has been demonstrated to modulate cell proliferation, desmoplasia, angiogenesis and immunosuppression. We examined the association of RAS inhibitors (RASi)-namely angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB)-with neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) preceding radical cystectomy (RC). PATIENTS AND METHODS We retrospectively investigated concurrent RASi use with NAC prior to RC in 302 patients with MIBC from 3 academic institutions. Outcomes included pathologic complete response (pCR) and overall survival (OS). Pathologic features, performance status (PS), clinical stage, type/number of cycles of NAC, and toxicities were collected. RESULTS Overall pCR rate was 26.2% and 5-year OS was 62%. Concurrent ACEi intake with NAC approached significance for association with pCR (odds ratio [OR] = 1.71; 95% CI, 0.94-3.11; P = .077). Patients with cT3/4N0-N1 disease receiving ACEi had higher pCR rates (30.8% vs. 17.7%, P = .056) than those not on ACEi. Female sex had a statistically significant favorable interaction for pCR with ACEi intake (P = .044). ACEi intake was not associated with OS, while pCR, PS and lower clinical stage were significantly associated with improved OS. CONCLUSION ACEi intake is potentially associated with increased pCR in patients with MIBC receiving NAC prior to RC, and this association is more pronounced in patients with higher clinical stage of disease at the initiation of therapy and female sex. Our data suggest the potential relevance of the RAS as a therapeutic target in aggressive MIBC.
Collapse
Affiliation(s)
- William Paul Skelton
- University of Virginia Comprehensive Cancer Center, Department of Oncology, Charlottesville, VA; H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, Tampa, FL
| | - Jack Masur
- University of Virginia Comprehensive Cancer Center, Department of Oncology, Charlottesville, VA
| | - Jonathan Thomas
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Parvaneh Fallah
- McGill University, Department of Oncology, Montreal, Quebec, Canada
| | - Rohit K Jain
- H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, Tampa, FL
| | - Praful Ravi
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Charlene Mantia
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | | | | | - Elio Adib
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Talal El Zarif
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Mark A Preston
- Brigham and Women's Hospital, Department of Oncology, Boston, MA
| | | | - Roger Li
- H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, Tampa, FL
| | - Graeme S Steele
- Brigham and Women's Hospital, Department of Oncology, Boston, MA
| | - Wassim Kassouf
- McGill University, Department of Oncology, Montreal, Quebec, Canada
| | - Dory Freeman
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | | | - Rakesh K Jain
- Massachusetts General Hospital, Department of Oncology, Boston, MA
| | - Guru P Sonpavde
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA; AdventHealth Cancer Institute and the University of Central Florida, Department of Oncology, Orlando, FL.
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
7
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Henrich LM, Greimelmaier K, Wessolly M, Klopp NA, Mairinger E, Krause Y, Berger S, Wohlschlaeger J, Schildhaus HU, Baba HA, Mairinger FD, Borchert S. The Impact of Cancer-Associated Fibroblasts on the Biology and Progression of Colorectal Carcinomas. Genes (Basel) 2024; 15:209. [PMID: 38397199 PMCID: PMC10888097 DOI: 10.3390/genes15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. Cancer-associated fibroblasts (CAFs) are major components of CRC's tumour microenvironment (TME), but their biological background and interplay with the TME remain poorly understood. This study investigates CAF biology and its impact on CRC progression. (2) The cohort comprises 155 cases, including CRC, with diverse localizations, adenomas, inflammations, and controls. Digital gene expression analysis examines genes associated with signalling pathways (MAPK, PI3K/Akt, TGF-β, WNT, p53), while next-generation sequencing (NGS) determines CRC mutational profiles. Immunohistochemical FAP scoring assesses CAF density and activity. (3) FAP expression is found in 81 of 150 samples, prevalent in CRC (98.4%), adenomas (27.5%), and inflammatory disease (38.9%). Several key genes show significant associations with FAP-positive fibroblasts. Gene set enrichment analysis (GSEA) highlights PI3K and MAPK pathway enrichment alongside the activation of immune response pathways like natural killer (NK)-cell-mediated cytotoxicity via CAFs. (4) The findings suggest an interplay between CAFs and cancer cells, influencing growth, invasiveness, angiogenesis, and immunogenicity. Notably, TGF-β, CDKs, and the Wnt pathway are affected. In conclusion, CAFs play a significant role in CRC and impact the TME throughout development.
Collapse
Affiliation(s)
- Larissa Maria Henrich
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Kristina Greimelmaier
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany (J.W.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Nick Alexander Klopp
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Yvonne Krause
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Sophia Berger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Jeremias Wohlschlaeger
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany (J.W.)
| | - Hans-Ulrich Schildhaus
- Targos-A Discovery Life Sciences Company, Germaniastraße 7, 34119 Kassel, Germany;
- Institute of Pathology Nordhessen, Germaniastraße 7, 34119 Kassel, Germany
| | - Hideo Andreas Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| |
Collapse
|
9
|
Kumar S, Acharya S, Karthikeyan M, Biswas P, Kumari S. Limitations and potential of immunotherapy in ovarian cancer. Front Immunol 2024; 14:1292166. [PMID: 38264664 PMCID: PMC10803592 DOI: 10.3389/fimmu.2023.1292166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological cancer and alone has an emergence rate of approximately 308,069 cases worldwide (2020) with dire survival rates. To put it into perspective, the mortality rate of OC is three times higher than that of breast cancer and it is predicted to only increase significantly by 2040. The primary reasons for such a high rate are that the physical symptoms of OC are detectable only during the advanced phase of the disease when resistance to chemotherapies is high and around 80% of the patients that do indeed respond to chemotherapy initially, show a poor prognosis subsequently. This highlights a pressing need to develop new and effective therapies to tackle advanced OC to improve prognosis and patient survival. A major advance in this direction is the emergence of combination immunotherapeutic methods to boost CD8+ T cell function to tackle OC. In this perspective, we discuss our view of the current state of some of the combination immunotherapies in the treatment of advanced OC, their limitations, and potential approaches toward a safer and more effective response.
Collapse
Affiliation(s)
| | | | | | | | - Sudha Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Li K, Liu W, Yu H, Chen J, Tang W, Wang J, Qi M, Sun Y, Xu X, Zhang J, Li X, Guo W, Li X, Song S, Tang S. 68Ga-FAPI PET imaging monitors response to combined TGF-βR inhibition and immunotherapy in metastatic colorectal cancer. J Clin Invest 2024; 134:e170490. [PMID: 38175716 PMCID: PMC10866654 DOI: 10.1172/jci170490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUNDImproving and predicting tumor response to immunotherapy remains challenging. Combination therapy with a transforming growth factor-β receptor (TGF-βR) inhibitor that targets cancer-associated fibroblasts (CAFs) is promising for the enhancement of efficacy of immunotherapies. However, the effect of this approach in clinical trials is limited, requiring in vivo methods to better assess tumor responses to combination therapy.METHODSWe measured CAFs in vivo using the 68Ga-labeled fibroblast activation protein inhibitor-04 (68Ga-FAPI-04) for PET/CT imaging to guide the combination of TGF-β inhibition and immunotherapy. One hundred thirty-one patients with metastatic colorectal cancer (CRC) underwent 68Ga-FAPI and 18F-fluorodeoxyglucose (18F-FDG) PET/CT imaging. The relationship between uptake of 68Ga-FAPI and tumor immunity was analyzed in patients. Mouse cohorts of metastatic CRC were treated with the TGF-βR inhibitor combined with KN046, which blocks programmed death ligand 1 (PD-L1) and CTLA-4, followed by 68Ga-FAPI and 18F-FDG micro-PET/CT imaging to assess tumor responses.RESULTSPatients with metastatic CRC demonstrated high uptake rates of 68Ga-FAPI, along with suppressive tumor immunity and poor prognosis. The TGF-βR inhibitor enhanced tumor-infiltrating T cells and significantly sensitized metastatic CRC to KN046. 68Ga-FAPI PET/CT imaging accurately monitored the dynamic changes of CAFs and tumor response to combined the TGF-βR inhibitor with immunotherapy.CONCLUSION68Ga-FAPI PET/CT imaging is powerful in assessing tumor immunity and the response to immunotherapy in metastatic CRC. This study supports future clinical application of 68Ga-FAPI PET/CT to guide precise TGF-β inhibition plus immunotherapy in CRC patients, recommending 68Ga-FAPI and 18F-FDG dual PET/CT for CRC management.TRIAL REGISTRATIONCFFSTS Trial, ChiCTR2100053984, Chinese Clinical Trial Registry.FUNDINGNational Natural Science Foundation of China (82072695, 32270767, 82272035, 81972260).
Collapse
Affiliation(s)
- Ke Li
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Wei Liu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Hang Yu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Jiwei Chen
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenxuan Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Qi
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Yuyun Sun
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xiaoping Xu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Ji Zhang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xinxiang Li
- Department of Oncology and
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Oncology and
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shaoli Song
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Shuang Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| |
Collapse
|
11
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
de Jong D, Desperito E, Al Feghali KA, Dercle L, Seban RD, Das JP, Ma H, Sajan A, Braumuller B, Prendergast C, Liou C, Deng A, Roa T, Yeh R, Girard A, Salvatore MM, Capaccione KM. Advances in PET/CT Imaging for Breast Cancer. J Clin Med 2023; 12:4537. [PMID: 37445572 PMCID: PMC10342839 DOI: 10.3390/jcm12134537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
One out of eight women will be affected by breast cancer during her lifetime. Imaging plays a key role in breast cancer detection and management, providing physicians with information about tumor location, heterogeneity, and dissemination. In this review, we describe the latest advances in PET/CT imaging of breast cancer, including novel applications of 18F-FDG PET/CT and the development and testing of new agents for primary and metastatic breast tumor imaging and therapy. Ultimately, these radiopharmaceuticals may guide personalized approaches to optimize treatment based on the patient's specific tumor profile, and may become a new standard of care. In addition, they may enhance the assessment of treatment efficacy and lead to improved outcomes for patients with a breast cancer diagnosis.
Collapse
Affiliation(s)
- Dorine de Jong
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | | | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France;
- Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, 91401 Orsay, France
| | - Jeeban P. Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.P.D.); (R.Y.)
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Abin Sajan
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Conor Prendergast
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Aileen Deng
- Department of Hematology and Oncology, Novant Health, 170 Medical Park Road, Mooresville, NC 28117, USA;
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.P.D.); (R.Y.)
| | - Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, 35000 Rennes, France;
| | - Mary M. Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Kathleen M. Capaccione
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| |
Collapse
|
13
|
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2041-2056. [PMID: 36840906 DOI: 10.1007/s13346-023-01308-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast activation protein (FAP) is a serine protease with dual enzymatic activities overexpressed in cancer-associated fibroblasts (CAFs) in several tumor types, while its expression in healthy adult tissues is scarce. FAP overexpression on CAFs is associated with poor prognosis and plays an important role in tumor development, progression, and invasion. Therefore, FAP is considered a robust therapeutic target for cancer therapy. Here, we try to review and highlight the recent advances in immunotherapies for FAP targeting including the anti-FAP antibodies and immunoconjugates, FAP chimeric antigen receptor (CAR)-T cell, and various FAP vaccines in a preclinical and clinical setting. Subsequently, a discussion on the challenges and prospects associated with the development and translation of effective and safe therapies for targeting and depletion of FAP is provided. We proposed that new CAR-T cell engineering strategies and nanotechnology-based systems as well as advanced functional biomaterials can be used to improve the efficiency and safety of CAR-T cells and vaccines against FAP for more personalized immunotherapy. This review emphasizes the immune targeting of FAP as an emerging stromal candidate and one of the crucial elements in immunotherapy and shows the potential for improvement of current cancer therapy. A summary of different immunotherapy approaches to target fibroblast activation protein (FAP) for cancer therapy.
Collapse
Affiliation(s)
- Sedigheh Shahvali
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Kehrberg RJ, Bhyravbhatla N, Batra SK, Kumar S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim Biophys Acta Rev Cancer 2023; 1878:188901. [PMID: 37120098 PMCID: PMC10375465 DOI: 10.1016/j.bbcan.2023.188901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a significant component of the tumor microenvironment (TME), contribute to cancer progression through the secretion of extracellular matrix (ECM), growth factors, and metabolites. It is now well recognized that CAFs are a heterogenous population with ablation experiments leading to reduced tumor growth and single-cell RNA sequencing demonstrating CAF subgroups. CAFs lack genetic mutations yet substantially differ from their normal stromal precursors. Here, we review epigenetic changes in CAF maturation, focusing on DNA methylation and histone modifications. DNA methylation changes in CAFs have been demonstrated globally, while roles of methylation at specific genes affect tumor growth. Further, loss of CAF histone methylation and gain of histone acetylation has been shown to promote CAF activation and tumor promotion. Many CAF activating factors, such as transforming growth factor β (TGFβ), lead to these epigenetic changes. MicroRNAs (miRNAs) serve as targets and orchestrators of epigenetic modifications that influence gene expression. Bromodomain and extra-terminal domain (BET), an epigenetic reader, recognizes histone acetylation and activates the transcription of genes leading to the pro-tumor phenotype of CAFs.
Collapse
Affiliation(s)
- Rachel J Kehrberg
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Naik A, Leask A. Tumor-Associated Fibrosis Impairs the Response to Immunotherapy. Matrix Biol 2023; 119:125-140. [PMID: 37080324 DOI: 10.1016/j.matbio.2023.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Previously, impaired responses to immunotherapy in cancer had been attributed mainly to inherent tumor characteristics (tumor cell intrinsic factors) such as low immunogenicity, (low) mutational burden, weak host immune system, etc. However, mapping the responses of immunotherapeutic regimes in clinical trials for different types of cancer has pointed towards an obvious commonality - that tumors with a rich fibrotic stroma respond poorly or not at all. This has prompted a harder look on tumor cell extrinsic factors such as the surrounding tumor microenvironment (TME), and specifically, the fibrotic stroma as a potential enabler of immunotherapy failure. Indeed, the role of cancer-associated fibrosis in impeding efficacy of immunotherapy is now well-established. In fact, recent studies reveal a complex interconnection between fibrosis and treatment efficacy. Accordingly, in this review we provide a general overview of what a tumor associated fibrotic reaction is and how it interacts with the members of immune system that are frequently seen to be modulated in a failed immunotherapeutic regime.
Collapse
Affiliation(s)
- Angha Naik
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
16
|
Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers (Basel) 2022; 15:cancers15010162. [PMID: 36612158 PMCID: PMC9817889 DOI: 10.3390/cancers15010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Along with the extensive improvement in tumor biology research and different therapeutic developments, cancer remains a dominant and deadly disease. Tumor heterogeneity, systemic toxicities, and drug resistance are major hurdles in cancer therapy. Chemotherapy, radiotherapy, phototherapy, and surgical therapy are some prominent areas of cancer treatment. During chemotherapy for cancer, chemotherapeutic agents are distributed all over the body and also damage normal cells. With advancements in nanotechnology, nanoparticles utilized in all major areas of cancer therapy offer the probability to advance drug solubility, and stability, extend drug half-lives in plasma, reduce off-target effects, and quintessence drugs at a target site. The present review compiles the use of different types of nanoparticles in frequently and recently applied therapeutics of cancer therapy. A recent area of cancer treatment includes cancer stem cell therapy, DNA/RNA-based immunomodulation therapy, alteration of the microenvironment, and cell membrane-mediated biomimetic approach. Biocompatibility and bioaccumulation of nanoparticles is the major impediment in nano-based therapy. More research is required to develop the next generation of nanotherapeutics with the incorporation of new molecular entities, such as kinase inhibitors, siRNA, mRNA, and gene editing. We assume that nanotherapeutics will dramatically improve patient survival, move the model of cancer treatment, and develop certainty in the foreseeable future.
Collapse
Affiliation(s)
- Anupama Ojha
- Department of Allied Health Science, Mahayogi Gorakhnath University, Gorakhpur 273007, India
| | - Sonali Jaiswal
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur 273009, India
| | - Priyanka Bharti
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur 273009, India
| | - Sarad Kumar Mishra
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur 273009, India
- Correspondence:
| |
Collapse
|
17
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
18
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Engineered Oncolytic Adenoviruses: An Emerging Approach for Cancer Therapy. Pathogens 2022; 11:pathogens11101146. [PMID: 36297203 PMCID: PMC9608483 DOI: 10.3390/pathogens11101146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is among the major leading causes of mortality globally, and chemotherapy is currently one of the most effective cancer therapies. Unfortunately, chemotherapy is invariably accompanied by dose-dependent cytotoxic side effects. Recently, genetically engineered adenoviruses emerged as an alternative gene therapy approach targeting cancers. This review focuses on the characteristics of genetically modified adenovirus and oncology clinical studies using adenovirus-mediated gene therapy strategies. In addition, modulation of the tumor biology and the tumor microenvironment as well as the immunological responses associated with adenovirus-mediate cancer therapy are discussed.
Collapse
|
20
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
21
|
Capaccione KM, Doubrovin M, Braumuller B, Leibowitz D, Bhatt N, Momen-Heravi F, Molotkov A, Kissner M, Goldner K, Soffing M, Ali A, Mintz A. Evaluating the Combined Anticancer Response of Checkpoint Inhibitor Immunotherapy and FAP-Targeted Molecular Radiotherapy in Murine Models of Melanoma and Lung Cancer. Cancers (Basel) 2022; 14:cancers14194575. [PMID: 36230500 PMCID: PMC9559475 DOI: 10.3390/cancers14194575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although newer cancer medicines that help the immune system recognize and attack cancer cells have improved responses to therapy, most patients ultimately have cancer recurrence. Additional therapies and therapy combinations are needed so that responses can last longer or indefinitely. Molecular targeted radiotherapy is another kind of therapy that targets radioactive particles directly to cancer in the hopes of killing cancer cells to stop tumor growth with limited side effects. Prior studies have shown that targeted radiotherapies activate the immune system and can work together with immunotherapy to improve response. Here, we tested a promising new therapy targeting fibroblast activation protein (FAP) with a therapeutic radionuclide 177Lu alone and with immunotherapy in mouse models of melanoma and lung cancer. The FAP-targeted radiotherapy reduced tumor growth in both models and melanoma, resulting in tumor regression. We saw increased tumor cell death in dual-treated tumors. We also found that myeloid cells were affected by the combined therapy to a greater degree than the additive effect of either therapy. These results demonstrate that this is a promising new therapy regimen and requires further preclinical and clinical study to better understand the molecular mechanisms underpinning response. Abstract Immunotherapy has dramatically improved outcomes for some cancer patients; however, novel treatments are needed for more patients to achieve a long-lasting response. FAP-targeted molecular radiotherapy has shown efficacy in both preclinical and clinical models and has immunomodulatory effects. Here, we studied if combined immunotherapy and radiotherapy could increase antitumor efficacy in murine models of lung cancer and melanoma and interrogated the mechanisms by which these treatments attenuate tumor growth. Using LLC1 and B16F10 murine models of lung cancer and melanoma, respectively, we tested the efficacy of 177Lu-FAPI-04 alone and in combination with immunotherapy. Alone, 177Lu-FAPI-04 significantly reduced tumor growth in both models. In animals with melanoma, combined therapy resulted in tumor regression while lung tumor growth was attenuated, but tumors did not regress. Combined therapy significantly increased caspase-3 and decreased Ki67 compared with immunotherapy alone. Flow cytometry demonstrated that tumor-associated macrophages responded in a tumor-dependent manner which was distinct in animals treated with both therapies compared with either therapy alone. These data demonstrate that 177Lu-FAPI-04 is an effective anticancer therapy for melanoma and lung cancer which mediates effects at least partially through induction of apoptosis and modulation of the immune response. Translational studies with immunotherapy and 177Lu-FAPI-04 are needed to demonstrate the clinical efficacy of this combined regimen.
Collapse
Affiliation(s)
- Kathleen M. Capaccione
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mikhail Doubrovin
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (M.D.); (A.M.); Tel.: +1-(212)-342-0555 (A.M.)
| | - Brian Braumuller
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dev Leibowitz
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nikunj Bhatt
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrei Molotkov
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Kissner
- Flow Cytometry Core Facility, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kimberly Goldner
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mark Soffing
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandra Ali
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Akiva Mintz
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (M.D.); (A.M.); Tel.: +1-(212)-342-0555 (A.M.)
| |
Collapse
|
22
|
Bartolucci D, Montemurro L, Raieli S, Lampis S, Pession A, Hrelia P, Tonelli R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers (Basel) 2022; 14:4421. [PMID: 36139583 PMCID: PMC9496712 DOI: 10.3390/cancers14184421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among childhood cancers, neuroblastoma is the most diffuse solid tumor and the deadliest in children. While to date, the pathology has become progressively manageable with a significant increase in 5-year survival for its less aggressive form, high-risk neuroblastoma (HR-NB) remains a major issue with poor outcome and little survivability of patients. The staging system has also been improved to better fit patient needs and to administer therapies in a more focused manner in consideration of pathology features. New and improved therapies have been developed; nevertheless, low efficacy and high toxicity remain a staple feature of current high-risk neuroblastoma treatment. For this reason, more specific procedures are required, and new therapeutic targets are also needed for a precise medicine approach. In this scenario, MYCN is certainly one of the most interesting targets. Indeed, MYCN is one of the most relevant hallmarks of HR-NB, and many studies has been carried out in recent years to discover potent and specific inhibitors to block its activities and any related oncogenic function. N-Myc protein has been considered an undruggable target for a long time. Thus, many new indirect and direct approaches have been discovered and preclinically evaluated for the interaction with MYCN and its pathways; a few of the most promising approaches are nearing clinical application for the investigation in HR-NB.
Collapse
Affiliation(s)
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
23
|
Li A, Chang Y, Song NJ, Wu X, Chung D, Riesenberg BP, Velegraki M, Giuliani GD, Das K, Okimoto T, Kwon H, Chakravarthy KB, Bolyard C, Wang Y, He K, Gatti-Mays M, Das J, Yang Y, Gewirth DT, Ma Q, Carbone D, Li Z. Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8 + T cell antitumor immunity. J Immunother Cancer 2022; 10:e005433. [PMID: 36096533 PMCID: PMC9472209 DOI: 10.1136/jitc-2022-005433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor β (TGFβ) in the tumor microenvironment (TME). TGFβ drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8+ T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGFβ1, TGFβ2 and TGFβ3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. METHODS We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. RESULTS We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGFβ isoforms. PIIO-1 lacks recognition of GARP-TGFβ complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP+ and GARP- cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGFβ signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8+ T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. CONCLUSION GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGFβ activation, enhance CD8+ T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - No-Joon Song
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Xingjun Wu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Dongjun Chung
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Brian P Riesenberg
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Giuseppe D Giuliani
- Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Physics, The Ohio State University, Columbus, Ohio, USA
| | - Komal Das
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Tamio Okimoto
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hyunwoo Kwon
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Karthik B Chakravarthy
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kai He
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jayajit Das
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Yiping Yang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Hematology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, USA
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David Carbone
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
24
|
Cury SS, Kuasne H, Souza JDS, Muñoz JJM, da Silva JP, Lopes A, Scapulatempo-Neto C, Faria EF, Delaissé JM, Marchi FA, Rogatto SR. Interplay Between Immune and Cancer-Associated Fibroblasts: A Path to Target Metalloproteinases in Penile Cancer. Front Oncol 2022; 12:935093. [PMID: 35928876 PMCID: PMC9343588 DOI: 10.3389/fonc.2022.935093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular matrix (ECM) remodeling and inflammation have been reported in penile carcinomas (PeCa). However, the cell types and cellular crosstalk involved in PeCa are unexplored. We aimed to characterize the complexity of cells and pathways involved in the tumor microenvironment (TME) in PeCa and propose target molecules associated with the TME. We first investigated the prognostic impact of cell types with a secretory profile to identify drug targets that modulate TME-enriched cells. The secretome analysis using the PeCa transcriptome revealed the enrichment of inflammation and extracellular matrix pathways. Twenty-three secreted factors were upregulated, mainly collagens and matrix metalloproteinases (MMPs). The deregulation of collagens and MMPs was confirmed by Quantitative reverse transcription - polymerase chain reaction (RT-qPCR). Further, the deconvolution method (digital cytometry) of the bulk samples revealed a high proportion of macrophages and dendritic cells (DCs) and B cells. Increased DCs and B cells were associated with better survival. A high proportion of cancer-associated fibroblasts (CAFs) was observed in low-survival patients. Patients with increased CAFs had decreased immune cell proportions. The treatment with the MMP inhibitor GM6001 in CAF cells derived from PeCa resulted in altered cell viability. We reported a crosstalk between immune cells and CAFs, and the proportion of these cell populations was associated with prognosis. We demonstrate that a drug targeting MMPs modulates CAFs, expanding the therapeutic options of PeCa.
Collapse
Affiliation(s)
- Sarah Santiloni Cury
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Hellen Kuasne
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- International Research Center (CIPE), A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Jeferson dos Santos Souza
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Juan Jose Moyano Muñoz
- International Research Center (CIPE), A. C. Camargo Cancer Center, São Paulo, Brazil
- Universidad Señor de Sipán, Chiclayo, Peru
| | | | - Ademar Lopes
- Pelvic Surgery Department, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Department of Pathology, Diagnósticos da América - DASA, Barueri, Brazil
| | - Eliney Ferreira Faria
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Uro-oncology and Robotic Surgery, Hospital Felicio Rocho, Belo Horizonte, Brazil
| | - Jean-Marie Delaissé
- Clinical Cell Biology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Clinical Research, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
| | | | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- *Correspondence: Silvia Regina Rogatto,
| |
Collapse
|
25
|
Kirchhammer N, Trefny MP, Natoli M, Brücher D, Smith SN, Werner F, Koch V, Schreiner D, Bartoszek E, Buchi M, Schmid M, Breu D, Hartmann KP, Zaytseva P, Thommen DS, Läubli H, Böttcher JP, Stanczak MA, Kashyap AS, Plückthun A, Zippelius A. NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Sci Transl Med 2022; 14:eabm9043. [DOI: 10.1126/scitranslmed.abm9043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T cell–directed cancer immunotherapy often fails to generate lasting tumor control. Harnessing additional effectors of the immune response against tumors may strengthen the clinical benefit of immunotherapies. Here, we demonstrate that therapeutic targeting of the interferon-γ (IFN-γ)–interleukin-12 (IL-12) pathway relies on the ability of a population of natural killer (NK) cells with tissue-resident traits to orchestrate an antitumor microenvironment. In particular, we used an engineered adenoviral platform as a tool for intratumoral IL-12 immunotherapy (AdV5–IL-12) to generate adaptive antitumor immunity. Mechanistically, we demonstrate that AdV5–IL-12 is capable of inducing the expression of CC-chemokine ligand 5 (CCL5) in CD49a
+
NK cells both in tumor mouse models and tumor specimens from patients with cancer. AdV5–IL-12 imposed CCL5-induced type I conventional dendritic cell (cDC1) infiltration and thus increased DC-CD8 T cell interactions. A similar observation was made for other IFN-γ–inducing therapies such as Programmed cell death 1 (PD-1) blockade. Conversely, failure to respond to IL-12 and PD-1 blockade in tumor models with low CD49a
+
CXCR6
+
NK cell infiltration could be overcome by intratumoral delivery of CCL5. Thus, therapeutic efficacy depends on the abundance of NK cells with tissue-resident traits and, specifically, their capacity to produce the DC chemoattractant CCL5. Our findings reveal a barrier for T cell–focused therapies and offer mechanistic insights into how T cell–NK cell–DC cross-talk can be enhanced to promote antitumor immunity and overcome resistance.
Collapse
Affiliation(s)
- Nicole Kirchhammer
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Marcel P. Trefny
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Marina Natoli
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Dominik Brücher
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Sheena N. Smith
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Franziska Werner
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Victoria Koch
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - David Schreiner
- Immune Cell Biology, Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Ewelina Bartoszek
- Microscopy Core Facility, Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Mélanie Buchi
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Markus Schmid
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Breu
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | - Polina Zaytseva
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniela S. Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 Amsterdam, Netherlands
| | - Heinz Läubli
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Jan P. Böttcher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Michal A. Stanczak
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Abhishek S. Kashyap
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
26
|
Baumann Z, Auf der Maur P, Bentires‐Alj M. Feed-forward loops between metastatic cancer cells and their microenvironment-the stage of escalation. EMBO Mol Med 2022; 14:e14283. [PMID: 35506376 PMCID: PMC9174884 DOI: 10.15252/emmm.202114283] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent cancer among women, and metastases in distant organs are the leading cause of the cancer-related deaths. While survival of early-stage breast cancer patients has increased dramatically, the 5-year survival rate of metastatic patients has barely improved in the last 20 years. Metastases can arise up to decades after primary tumor resection, hinting at microenvironmental factors influencing the sudden outgrowth of disseminated tumor cells (DTCs). This review summarizes how the environment of the most common metastatic sites (lung, liver, bone, brain) is influenced by the primary tumor and by the varying dormancy of DTCs, with a special focus on how established metastases persist and grow in distant organs due to feed-forward loops (FFLs). We discuss in detail the importance of FFL of cancer cells with their microenvironment including the secretome, interaction with specialized tissue-specific cells, nutrients/metabolites, and that novel therapies should target not only the cancer cells but also the tumor microenvironment, which are thick as thieves.
Collapse
Affiliation(s)
- Zora Baumann
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Mohamed Bentires‐Alj
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| |
Collapse
|
27
|
Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics (Basel) 2022; 12:diagnostics12051116. [PMID: 35626272 PMCID: PMC9139963 DOI: 10.3390/diagnostics12051116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a deadly disease that often exhibits relentless progression and can have both early and late metastases. Recent advances in immunotherapy and targeted therapy have dramatically increased patient survival for patients with melanoma. Similar advances in molecular targeted PET imaging can identify molecular pathways that promote disease progression and therefore offer physiological information. Thus, they can be used to assess prognosis, tumor heterogeneity, and identify instances of treatment failure. Numerous agents tested preclinically and clinically demonstrate promising results with high tumor-to-background ratios in both primary and metastatic melanoma tumors. Here, we detail the development and testing of multiple molecular targeted PET-imaging agents, including agents for general oncological imaging and those specifically for PET imaging of melanoma. Of the numerous radiopharmaceuticals evaluated for this purpose, several have made it to clinical trials and showed promising results. Ultimately, these agents may become the standard of care for melanoma imaging if they are able to demonstrate micrometastatic disease and thus provide more accurate information for staging. Furthermore, these agents provide a more accurate way to monitor response to therapy. Patients will be able to receive treatment based on tumor uptake characteristics and may be able to be treated earlier for lesions that with traditional imaging would be subclinical, overall leading to improved outcomes for patients.
Collapse
|
28
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
29
|
Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, Shomali N, Khiavi FM. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther 2022; 13:140. [PMID: 35365241 PMCID: PMC8974159 DOI: 10.1186/s13287-022-02819-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zeid Alsadoon
- Dentistry Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hasanpoor
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
30
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
31
|
Jeong SH, Kwak C. Immunotherapy for prostate cancer: Requirements for a successful regime transfer. Investig Clin Urol 2022; 63:3-13. [PMID: 34983117 PMCID: PMC8756154 DOI: 10.4111/icu.20210369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the revolutionary progress in cancer treatment using immune checkpoint inhibitors (ICIs), remarkable responses in prostate cancer treatment have not yet been achieved. The disappointing previous results of ICIs have required further studies towards combined treatment targeting other pathways and restricted the eligibility criteria for patients with high mutation burdens, especially those with mismatch repair deficiency. Cancer immunotherapies activate adaptive immune systems, rather than directly attack tumor cells with their own cytotoxicity. Therefore, refractoriness to ICIs can not only be derived from the intractable nature of tumor cells per se , but also from their hostile milieu. Here, we reviewed the prostate cancer immunotherapies exploring clinical trials to date, along with the molecular characteristics of prostate cancer and its microenvironment.
Collapse
Affiliation(s)
- Seung-Hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Allam A, Yakou M, Pang L, Ernst M, Huynh J. Exploiting the STAT3 Nexus in Cancer-Associated Fibroblasts to Improve Cancer Therapy. Front Immunol 2021; 12:767939. [PMID: 34858425 PMCID: PMC8632218 DOI: 10.3389/fimmu.2021.767939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of a heterogenous population of cells that exist alongside the extracellular matrix and soluble components. These components can shape an environment that is conducive to tumor growth and metastatic spread. It is well-established that stromal cancer-associated fibroblasts (CAFs) in the TME play a pivotal role in creating and maintaining a growth-permissive environment for tumor cells. A growing body of work has uncovered that tumor cells recruit and educate CAFs to remodel the TME, however, the mechanisms by which this occurs remain incompletely understood. Recent studies suggest that the signal transducer and activator of transcription 3 (STAT3) is a key transcription factor that regulates the function of CAFs, and their crosstalk with tumor and immune cells within the TME. CAF-intrinsic STAT3 activity within the TME correlates with tumor progression, immune suppression and eventually the establishment of metastases. In this review, we will focus on the roles of STAT3 in regulating CAF function and their crosstalk with other cells constituting the TME and discuss the utility of targeting STAT3 within the TME for therapeutic benefit.
Collapse
Affiliation(s)
- Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Marina Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lokman Pang
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
33
|
Molecular Mechanisms of Resistance to Immunotherapy and Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13235981. [PMID: 34885091 PMCID: PMC8656474 DOI: 10.3390/cancers13235981] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.
Collapse
|
34
|
Li H, Liu W, Zhang X, Wang Y. Cancer-associated fibroblast-secreted collagen triple helix repeat containing-1 promotes breast cancer cell migration, invasiveness and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway. Oncol Lett 2021; 22:814. [PMID: 34671428 PMCID: PMC8503808 DOI: 10.3892/ol.2021.13075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are continuously activated and are one of the most important cellular components of the tumor matrix. The role of CAFs in the tumor microenvironment has been widely recognized. However, the underlying molecular mechanism by which CAFs promote tumor characteristics in breast cancer (BC) remains poorly understood. The aim of the present study was to investigate the potential mechanisms and the possible pathways of collagen triple helix repeat containing-1 (CTHRC1) in the epithelial-mesenchymal transition (EMT) of BC cells. The level of CTHRC1 in BC tissues was found to be higher than that in adjacent-normal tissues. CAFs isolated from BC tissues secreted significantly greater amounts of CTHRC1 than normal fibroblasts. Furthermore, CAFs promoted the migration, invasiveness and EMT of BC cells by secreting CTHRC1, which activates the Wnt/β-catenin signaling pathway. However, the use of neutralizing antibodies towards CTHRC1, or the specific inhibitor Dickkopf-1, to inhibit the Wnt/β catenin pathway significantly alleviated the CAF-induced malignant phenotypes of BC cells. Collectively, the data indicate that CAFs in the tumor microenvironment promote BC cell malignant behaviors via the CTHRC1/Wnt/β-catenin signaling pathway. Furthermore, weakening CAF-BC cell communication by suppressing CTHRC1 expression may be a novel strategy for treating BC.
Collapse
Affiliation(s)
- Huixin Li
- Department III of Thyroid and Breast, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Wei Liu
- Department III of Thyroid and Breast, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xiaoyu Zhang
- Department III of Thyroid and Breast, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yongfeng Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056002, P.R. China
| |
Collapse
|
35
|
Su SF, Ho H, Li JH, Wu MF, Wang HC, Yeh HY, Kuo SW, Chen HW, Ho CC, Li KC. DNA methylome and transcriptome landscapes of cancer-associated fibroblasts reveal a smoking-associated malignancy index. J Clin Invest 2021; 131:e139552. [PMID: 34228648 DOI: 10.1172/jci139552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unlike the better-studied aberrant epigenome in the tumor, the clinicopathologic impact of DNA methylation in the tumor microenvironment (TME), especially the contribution from cancer-associated fibroblasts (CAFs), remains elusive. CAFs exhibit profound patient-to-patient tumorigenic heterogeneity. We asked whether such heterogeneity may be exploited to quantify the level of TME malignancy. We developed a robust and efficient methylome/transcriptome co-analytical system for CAFs and paired normal fibroblasts (NFs) from non-small-cell lung cancer patients. We found 14,781 CpG sites of CAF/NF differential methylation, of which 3,707 sites showed higher methylation changes in ever-smokers than in nonsmokers. Concomitant CAF/NF differential gene expression analysis pointed to a subset of 54 smoking-associated CpG sites with strong methylation-regulated gene expression. A methylation index that summarizes the β values of these CpGs was built for NF/CAF discrimination (MIND) with high sensitivity and specificity. The potential of MIND in detecting premalignancy across individual patients was shown. MIND succeeded in predicting tumor recurrence in multiple lung cancer cohorts without reliance on patient survival data, suggesting that the malignancy level of TME may be effectively graded by this index. Precision TME grading may provide additional pathological information to guide cancer prognosis and open up more options in personalized medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Hao Ho
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Jia-Hua Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ming-Fang Wu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsu-Chieh Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Shuenn-Wen Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Department of Statistics, UCLA, Los Angeles, California, USA
| |
Collapse
|
36
|
Natural Killer Cells in Cancer and Cancer Immunotherapy. Cancer Lett 2021; 520:233-242. [PMID: 34302920 DOI: 10.1016/j.canlet.2021.07.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
The detection and killing of neoplastic cells require coordination of a variety of antitumor effector cells. Natural killer (NK) cells of the innate immune system are at the forefront of the body's defense systems and evidence suggests that the infiltration and cytotoxicity of NK cells in the cancer tissue influence treatment efficacy and survival. As powerful effectors in the anticancer immune response, NK cells rapidly recognize and kill transformed cells with little reactivity against healthy self-tissues, which highlights their potential role in cancer immunotherapy. Modern immunotherapeutic approaches include immune checkpoint inhibitors to revitalize dysfunctional T cells and adoptive cell transfer using CD8+ T cells with chimeric antigen receptors to enhance their functionality. However, treatment responses may be short-lived and risk of discontinuation due to adverse effects necessitates the development of safer immuno-oncologic therapies with improved outcomes. To this end, novel combinatorial interventions using T cells and NK cells and strategies for overcoming associated challenges are currently being investigated. This review summarizes the advances in the research on NK cells in cancer and cancer immunotherapy and discusses the possible implications for future cancer treatment.
Collapse
|
37
|
Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:186. [PMID: 34099013 PMCID: PMC8183071 DOI: 10.1186/s13046-021-01961-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
| | - Mark Myers
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | | | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia.
- Federation University Australia, Ballarat, Victoria, 3350, Australia.
- The Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, 3052, Australia.
| |
Collapse
|
38
|
Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29:1668-1682. [PMID: 33845199 PMCID: PMC8116634 DOI: 10.1016/j.ymthe.2021.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.
Collapse
Affiliation(s)
| | - Anderson J Ryan
- Department Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
39
|
Jain RK, Skelton Iv WP, Pond GR, Naqvi M, Kim Y, Curran C, Freeman D, Nuzzo PV, Alaiwi SA, Nassar AH, Jain RK, Sonpavde G. Angiotensin Blockade Modulates the Activity of PD1/L1 Inhibitors in Metastatic Urothelial Carcinoma. Clin Genitourin Cancer 2021; 19:540-546. [PMID: 34011489 DOI: 10.1016/j.clgc.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The renin-angiotensin system is involved in the regulation of angiogenesis and cell proliferation. Angiotensin inhibition may improve drug delivery by enhancing tumor perfusion partly by downregulating transforming growth factor (TGF)-β. Because TGF-β is associated with resistance in patients with metastatic urothelial carcinoma (mUC) receiving programmed cell death protein 1/programmed cell death ligand 1 (PD1/L1) inhibitors, we hypothesized that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may enhance the outcomes of patients with mUC who receive PD1/L1 inhibitors. PATIENTS AND METHODS Data from patients with mUC who received PD1/L1 inhibitors as monotherapy were obtained; patients from the Dana-Farber Cancer Institute constituted the discovery dataset, and data from Moffitt Cancer Center served as the validation dataset. A logistic regression investigated the impact of concurrent ACEI/ARB primarily on any regression of tumor (ART) after controlling for prognostic factors. RESULTS Data were available for 178 patients from the discovery dataset, of whom 153 (86%) had received prior platinum and 33 (18.5%) concurrent ACEIs/ARBs. Multivariable logistic regression analysis revealed that ACEIs/ARBs were associated with greater probability of ART (odds ratio [OR] = 2.69; 95% confidence interval [CI], 1.15-6.30; P = .022). In the validation dataset, 101 patients were available, of whom 59 (58.4%) had received prior platinum and 22 (21.8%) concurrent ACEIs/ARBs. ACEI/ARB demonstrated a trend for association with ART (OR = 3.28; 95% CI, 0.98-10.99; P = .054) on multivariable analysis of the validation dataset. CONCLUSIONS Concurrent angiotensin blockade was associated with a higher rate of tumor regression in patients with mUC receiving PD1/L1 inhibitors. Validation is warranted in a prospective trial, especially given the cost efficacy of ACEIs/ARBs.
Collapse
Affiliation(s)
- Rohit K Jain
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - Mahrukh Naqvi
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Youngchul Kim
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Catherine Curran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Dory Freeman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Pier Vitale Nuzzo
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Amin H Nassar
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA.
| |
Collapse
|
40
|
Ray SK, Meshram Y, Mukherjee S. Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma with Clinical Insight. Curr Mol Med 2021; 21:221-236. [PMID: 32838717 DOI: 10.2174/1566524020666200824103749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy endeavours in harnessing the delicate strength and specificity of the immune system for therapy of different malignancies, including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include the administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies, including colorectal carcinoma in a recent decade. Despite the considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect the therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review, we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.
Collapse
Affiliation(s)
- Suman K Ray
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Yamini Meshram
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
41
|
Identification of extracellular matrix proteins secreted by human dermal fibroblasts cultured in 3D electrospun scaffolds. Sci Rep 2021; 11:6655. [PMID: 33758206 PMCID: PMC7988018 DOI: 10.1038/s41598-021-85742-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The appreciation that cell interactions in tissues is dependent on their three dimensional (3D) distribution has stimulated the development of 3D cell culture models. We constructed an artificial 3D tumour by culturing human breast cancer JIMT-1 cells and human dermal fibroblasts (HDFs) in a 3D network of electrospun polycaprolactone fibres. Here, we investigate ECM components produced by the cells in the artificial 3D tumour, which is an important step in validating the model. Immunostaining and confocal fluorescence microscopy show that the ECM proteins fibronectin, collagen I, and laminin are deposited throughout the entire 3D structure. Secreted soluble factors including matrix metalloproteinases (MMPs) and interleukine-6 (IL-6) were analysed in collected medium and were found to be mainly derived from the HDFs. Treatment with transforming growth factor-β1 (TGF-β1), a major cytokine found in a tumour, significantly alters the MMP activity and IL-6 concentration. In addition, TGF-β1 treatment, changes the morphology of the HDFs to become more elongated and with increased linearized actin filaments compared to non-treated HDFs. Collectively, these novel findings suggest that the artificial 3D tumour displays a clear cell distribution and ECM deposition that resembles a tumour environment in vivo, suggesting an innovative biological model to study a human tumour.
Collapse
|
42
|
Piscatelli JA, Ban J, Lucas AT, Zamboni WC. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems. Pharmaceutics 2021; 13:114. [PMID: 33477395 PMCID: PMC7830329 DOI: 10.3390/pharmaceutics13010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Major developments in nanomedicines, such as nanoparticles (NPs), nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past four decades. Although nanocarrier agents provide numerous advantages (e.g., greater solubility and duration of systemic exposure) compared to their small-molecule counterparts, there is considerable inter-patient variability seen in the systemic disposition, tumor delivery and overall pharmacological effects (i.e., anti-tumor efficacy and unwanted toxicity) of NP agents. This review aims to provide a summary of fundamental factors that affect the disposition of NPs in the treatment of cancer and why they should be evaluated during preclinical and clinical development. Furthermore, this chapter will highlight some of the translational challenges associated with elements of NPs and how these issues can only be addressed by detailed and novel pharmacology studies.
Collapse
Affiliation(s)
- Joseph A. Piscatelli
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Jisun Ban
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Andrew T. Lucas
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Fibroblast Subsets in Intestinal Homeostasis, Carcinogenesis, Tumor Progression, and Metastasis. Cancers (Basel) 2021; 13:cancers13020183. [PMID: 33430285 PMCID: PMC7825703 DOI: 10.3390/cancers13020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer often develops via the adenoma–carcinoma sequence, a process which is accompanied by (epi) genetic alterations in epithelial cells and gradual phenotypic changes in fibroblast populations. Recent studies have made it clear that these fibroblast populations which, in the context of invasive cancers are termed cancer-associated fibroblasts (CAFs), play an important role in intestinal tumor progression. This review provides an overview on the emerging role of fibroblasts in various stages of colorectal cancer development, ranging from adenoma initiation to metastatic spread of tumor cells. As fibroblasts show considerable heterogeneity in subsets and phenotypes during cancer development, a better functional understanding of stage-specific (alterations in) fibroblast/CAF populations is key to increase the effectiveness of fibroblast-based prognosticators and therapies. Abstract In intestinal homeostasis, continuous renewal of the epithelium is crucial to withstand the plethora of stimuli which can damage the structural integrity of the intestines. Fibroblasts contribute to this renewal by facilitating epithelial cell differentiation as well as providing the structural framework in which epithelial cells can regenerate. Upon dysregulation of intestinal homeostasis, (pre-) malignant neoplasms develop, a process which is accompanied by (epi) genetic alterations in epithelial cells as well as phenotypic changes in fibroblast populations. In the context of invasive carcinomas, these fibroblast populations are termed cancer-associated fibroblasts (CAFs). CAFs are the most abundant cell type in the tumor microenvironment of colorectal cancer (CRC) and consist of various functionally heterogeneous subsets which can promote or restrain cancer progression. Although most previous research has focused on the biology of epithelial cells, accumulating evidence shows that certain fibroblast subsets can also importantly contribute to tumor initiation and progression, thereby possibly providing avenues for improvement of clinical care for CRC patients. In this review, we summarized the current literature on the emerging role of fibroblasts in various stages of CRC development, ranging from adenoma initiation to the metastatic spread of cancer cells. In addition, we highlighted translational and therapeutic perspectives of fibroblasts in the different stages of intestinal tumor progression.
Collapse
|
44
|
Angiotensin Inhibition, TGF-β and EMT in Cancer. Cancers (Basel) 2020; 12:cancers12102785. [PMID: 32998363 PMCID: PMC7601465 DOI: 10.3390/cancers12102785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Angiotensin inhibitors are standard drugs in cardiovascular and renal diseases that have antihypertensive and antifibrotic properties. These drugs also exert their antifibrotic effects in cancer by reducing collagen and hyaluronan deposition in the tumor stroma, thus enhancing drug delivery. Angiotensin II signaling interferes with the secretion of the cytokine TGF-β-a known driver of malignancy. TGF-β stimulates matrix production in cancer-associated fibroblasts, and thus drives desmoplasia. The effect of TGF-β on cancer cells itself is stage-dependent and changes during malignant progression from inhibitory to stimulatory. The intracellular signaling for the TGF-β family can be divided into an SMAD-dependent canonical pathway and an SMAD-independent noncanonical pathway. These capabilities have made TGF-β an interesting target for numerous drug developments. TGF-β is also an inducer of epithelial-mesenchymal transition (EMT). EMT is a highly complex spatiotemporal-limited process controlled by a plethora of factors. EMT is a hallmark of metastatic cancer, and with its reversal, an important step in the metastatic cascade is characterized by a loss of epithelial characteristics and/or the gain of mesenchymal traits.
Collapse
|
45
|
Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8 + T cells in cancer and cancer immunotherapy. Br J Cancer 2020; 124:359-367. [PMID: 32929195 PMCID: PMC7853123 DOI: 10.1038/s41416-020-01048-4] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The functions of, and interactions between, the innate and adaptive immune systems are vital for anticancer immunity. Cytotoxic T cells expressing cell-surface CD8 are the most powerful effectors in the anticancer immune response and form the backbone of current successful cancer immunotherapies. Immune-checkpoint inhibitors are designed to target immune-inhibitory receptors that function to regulate the immune response, whereas adoptive cell-transfer therapies use CD8+ T cells with genetically modified receptors—chimaeric antigen receptors—to specify and enhance CD8+ T-cell functionality. New generations of cytotoxic T cells with genetically modified or synthetic receptors are being developed and evaluated in clinical trials. Furthermore, combinatory regimens might optimise treatment effects and reduce adverse events. This review summarises advances in research on the most prominent immune effectors in cancer and cancer immunotherapy, cytotoxic T cells, and discusses possible implications for future cancer treatment.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
de Hosson LD, Takkenkamp TJ, Kats-Ugurlu G, Bouma G, Bulthuis M, de Vries EGE, van Faassen M, Kema IP, Walenkamp AME. Neuroendocrine tumours and their microenvironment. Cancer Immunol Immunother 2020; 69:1449-1459. [PMID: 32270230 PMCID: PMC7347684 DOI: 10.1007/s00262-020-02556-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Tumours can escape the immune system by expressing programmed death-ligand-1 (PD-L1), which allows them to bind to PD-1 on T-cells and avoid recognition by the immune system. Regulatory T-cells (Tregs), indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) also play a role in immune suppression. Knowledge about the interaction of neuroendocrine tumours (NETs) with their immune microenvironment and the role of immunotherapy in patients with NET is scarce. Here, we investigated the immune microenvironment of serotonin-producing (SP) and non-serotonin-producing NETs (NSP-NETs). Tumours of 33 patients with SP-NET and 18 patients with NSP-NET were studied. Immunohistochemical analyses were performed for PD-L1, T-cells, IDO, TDO, mismatch repair proteins (MMRp) and activated fibroblasts. PD-L1 expression was seen in < 1% of tumour and T-cells. T-cells were present in 33% of NETs, varying between 1 and 10% T-cells per high power field. IDO was expressed in tumour cells in 55% of SP-NETs and 22% of NSP-NETs (p = 0.039). TDO was expressed in stromal cells in 64% of SP-NETs and 13% of NSP-NETs (p = 0.001). No tumours had loss of MMRp. TDO-expressing stromal cells also strongly expressed α-SMA and were identified as cancer-associated fibroblasts (CAFs). Factors that are associated with a response to checkpoint inhibitor treatment were absent or only present to a limited extent in the tumour microenvironment of NETs. The expression of IDO and TDO in a substantial part of NETs and the presence of CAFs suggest two mechanisms that could be responsible for the cold immune microenvironment, which should be explored to enhance anti-tumour immunity and clinical responses.
Collapse
Affiliation(s)
- Lotte D de Hosson
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, DA11, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Tim J Takkenkamp
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, DA11, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Grietje Bouma
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, DA11, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Marian Bulthuis
- Department of Pathology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, DA11, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, DA11, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
47
|
Joshi S. Targeting the Tumor Microenvironment in Neuroblastoma: Recent Advances and Future Directions. Cancers (Basel) 2020; 12:E2057. [PMID: 32722460 PMCID: PMC7465822 DOI: 10.3390/cancers12082057] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is the most common pediatric tumor malignancy that originates from the neural crest and accounts for more than 15% of all the childhood deaths from cancer. The neuroblastoma cancer research has long been focused on the role of MYCN oncogene amplification and the contribution of other genetic alterations in the progression of this malignancy. However, it is now widely accepted that, not only tumor cells, but the components of tumor microenvironment (TME), including extracellular matrix, stromal cells and immune cells, also contribute to tumor progression in neuroblastoma. The complexity of different components of tumor stroma and their resemblance with surrounding normal tissues pose huge challenges for therapies targeting tumor microenvironment in NB. Hence, the detailed understanding of the composition of the TME of NB is crucial to improve existing and future potential immunotherapeutic approaches against this childhood cancer. In this review article, I will discuss different components of the TME of NB and the recent advances in the strategies, which are used to target the tumor microenvironment in neuroblastoma.
Collapse
Affiliation(s)
- Shweta Joshi
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0815, USA
| |
Collapse
|
48
|
Cancer-associated fibroblasts mediate cancer progression and remodel the tumouroid stroma. Br J Cancer 2020; 123:1178-1190. [PMID: 32641866 PMCID: PMC7524802 DOI: 10.1038/s41416-020-0973-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are highly differentiated and heterogeneous cancer-stromal cells that promote tumour growth, angiogenesis and matrix remodelling. Methods We utilised an adapted version of a previously developed 3D in vitro model of colorectal cancer, composed of a cancer mass and the surrounding stromal compartment. We compared cancer invasion with an acellular stromal surround, a “healthy” or normal cellular stroma and a cancerous stroma. For the cancerous stroma, we incorporated six patient-derived CAF samples to study their differential effects on cancer growth, vascular network formation and remodelling. Results CAFs enhanced the distance and surface area of the invasive cancer mass whilst inhibiting vascular-like network formation. These processes correlated with the upregulation of hepatocyte growth factor (HGF), metallopeptidase inhibitor 1 (TIMP1) and fibulin-5 (FBLN5). Vascular remodelling of previously formed endothelial structures occurred through the disruption of complex networks, and was associated with the upregulation of vascular endothelial growth factor (VEGFA) and downregulation in vascular endothelial cadherin (VE-Cadherin). Conclusions These results support, within a biomimetic 3D, in vitro framework, the direct role of CAFs in promoting cancer invasion, and their key function in driving vasculogenesis and angiogenesis.
Collapse
|
49
|
Krämer M, Plum PS, Velazquez Camacho O, Folz-Donahue K, Thelen M, Garcia-Marquez I, Wölwer C, Büsker S, Wittig J, Franitza M, Altmüller J, Löser H, Schlößer H, Büttner R, Schröder W, Bruns CJ, Alakus H, Quaas A, Chon SH, Hillmer AM. Cell type-specific transcriptomics of esophageal adenocarcinoma as a scalable alternative for single cell transcriptomics. Mol Oncol 2020; 14:1170-1184. [PMID: 32255255 PMCID: PMC7266280 DOI: 10.1002/1878-0261.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Single‐cell transcriptomics have revolutionized our understanding of the cell composition of tumors and allowed us to identify new subtypes of cells. Despite rapid technological advancements, single‐cell analysis remains resource‐intense hampering the scalability that is required to profile a sufficient number of samples for clinical associations. Therefore, more scalable approaches are needed to understand the contribution of individual cell types to the development and treatment response of solid tumors such as esophageal adenocarcinoma where comprehensive genomic studies have only led to a small number of targeted therapies. Due to the limited treatment options and late diagnosis, esophageal adenocarcinoma has a poor prognosis. Understanding the interaction between and dysfunction of individual cell populations provides an opportunity for the development of new interventions. In an attempt to address the technological and clinical needs, we developed a protocol for the separation of esophageal carcinoma tissue into leukocytes (CD45+), epithelial cells (EpCAM+), and fibroblasts (two out of PDGFRα, CD90, anti‐fibroblast) by fluorescence‐activated cell sorting and subsequent RNA sequencing. We confirm successful separation of the three cell populations by mapping their transcriptomic profiles to reference cell lineage expression data. Gene‐level analysis further supports the isolation of individual cell populations with high expression of CD3, CD4, CD8, CD19, and CD20 for leukocytes, CDH1 and MUC1 for epithelial cells, and FAP, SMA, COL1A1, and COL3A1 for fibroblasts. As a proof of concept, we profiled tumor samples of nine patients and explored expression differences in the three cell populations between tumor and normal tissue. Interestingly, we found that angiogenesis‐related genes were upregulated in fibroblasts isolated from tumors compared with normal tissue. Overall, we suggest our protocol as a complementary and more scalable approach compared with single‐cell RNA sequencing to investigate associations between clinical parameters and transcriptomic alterations of specific cell populations in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Max Krämer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Patrick S Plum
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Oscar Velazquez Camacho
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin Thelen
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | | | - Christina Wölwer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Sören Büsker
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Jana Wittig
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Marek Franitza
- Cologne Center for Genomics, University of Cologne, Germany
| | | | - Heike Löser
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hans Schlößer
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| |
Collapse
|
50
|
Kang R, Zeh H, Lotze M, Tang D. The Multifaceted Effects of Autophagy on the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:99-114. [PMID: 32030650 DOI: 10.1007/978-3-030-35727-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment is composed of cancer cells, noncancer cells (e.g., immune cells, stromal cells, endothelial cells, and adipocytes), and various mediators (e.g., cytokines, chemokines, growth factors, and humoral factors) that work together to support cancer growth, progression, and resistance to therapies. Autophagy is an evolutionarily conserved degradation mechanism by which various cytosolic cargos (e.g., damaged organelles, unused molecules, or invaded pathogens) are engulfed by double-membrane autophagosomes, and then delivered into the lysosome for degradation and recycling. The level of autophagy is a crucial threshold to either promote cell survival or induce cell death in response to environmental stresses. Autophagy plays a context-dependent role in tumorigenesis and anticancer therapy via shaping the inflammatory, hypoxic, immunosuppressive, and metabolic tumor microenvironment. In particular, impaired autophagy flux is associated with chronic inflammation, immunosuppression, stromal formation, cancer stemness, angiogenesis, metastasis, and metabolic reprogramming in the tumor microenvironment. Understanding the molecular machinery of autophagy and its communication with hallmarks of cancer could lead to potential new anticancer strategies or drugs.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|