1
|
Zhou Q, Ma H, Xu H, Bai Y, Tan C, Su Y, Li Y, Ying X, Zheng Y. Effect of Prodrug Activation Rate on In Vivo Drug Release and Antitumor Efficacy of SN38-Prodrug-Entrapped Liposomes. Mol Pharm 2025. [PMID: 40293415 DOI: 10.1021/acs.molpharmaceut.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The aim of this study is to investigate the effects of prodrug activation rates on the in vivo drug release and antitumor activity of prodrug-entrapped liposomes. We performed such an investigation using two liposomes encapsulating hydrophilic SN38-glutathione (GSH) prodrugs (linked at 10- and 20-hydroxy of SN38) with different activation rates. The results showed that SN38-GSH was first released from liposomes and, consequently, activated into SN38. The SN38-GSH release rate from liposomes was similar, but the 10SN38-GSH activated much faster than 20SN38-GSH (t1/2, < 1 min versus ∼60 min) in plasma. Such different activation rates did not influence the prodrug's pharmacokinetics and biodistribution, but the fast prodrug activation rate resulted in 4-6-fold higher SN38 concentration in various organs and led to more potent antitumor efficacy. By contrast, the slowly activated SN38-GSH liposomes failed to exhibit potent antitumor activity, even at the maximum tolerance dose. Our data illustrated how the prodrug activation rate influences in vivo drug release and antitumor activity of prodrug-loaded liposomes, suggesting that sufficient prodrug activation is a prerequisite for potent prodrug-loaded liposomes.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu 610051, China
| | - Hailong Ma
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Hongling Xu
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yuyang Bai
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chang Tan
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yangxue Su
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yang Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xue Ying
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yaxin Zheng
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
2
|
Wang Y, Li J, Li X, Gao B, Chen J, Song Y. Spectroscopic and molecular docking studies on binding interactions of camptothecin drugs with bovine serum albumin. Sci Rep 2025; 15:8055. [PMID: 40055448 PMCID: PMC11889159 DOI: 10.1038/s41598-025-92607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/01/2025] [Indexed: 03/12/2025] Open
Abstract
This study investigates the binding interactions between bovine serum albumin (BSA) and camptothecin (CPT) drugs (camptothecin, 10-hydroxycamptothecin, topotecan, and irinotecan) using UV-Vis spectroscopy, fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, and molecular docking techniques. The fluorescence quenching of BSA by CPT drugs follows a static mechanism, with binding constants (Kb) ranging from 4.23 × 103 M- 1 (CPT) to 101.30 × 103 M- 1 (irinotecan), demonstrating significant drug binding selectivity. Thermodynamic analysis reveals distinct interaction mechanisms: topotecan binding is driven by hydrogen bonding (ΔH = - 10.96 kJ·mol- 1) and hydrophobic interactions (ΔS = 0.066 kJ·mol- 1·K- 1), while irinotecan exhibits stronger binding dominated by electrostatic forces (ΔH = - 86.77 kJ·mol- 1) with significant entropy loss (ΔS = - 0.161 kJ·mol- 1·K- 1). Molecular docking confirms preferential binding at Sudlow site I of BSA, with hydrophobic interactions and hydrogen bonding as the primary driving forces. These findings provide a comprehensive understanding of CPT-BSA interactions, offering valuable insights for the design of albumin-based drug delivery systems with optimized pharmacokinetic profiles.
Collapse
Affiliation(s)
- Yuhe Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Junfeng Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xuanda Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Yun Song
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
3
|
Zhao D, Zhang Y, Wang F, Kaewmanee R, Cui W, Wu T, Du Y. Drug-phospholipid conjugate nano-assembly for drug delivery. SMART MEDICINE 2024; 3:e20240053. [PMID: 39776594 PMCID: PMC11669785 DOI: 10.1002/smmd.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Phospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations. In this review, we summarize recent advances in the design, synthesis, and application of DPCs for drug delivery. We begin by discussing the chemical backbone structures and various design strategies such as phosphate head embedding and mono-/bis-embedding in the sn-1/sn-2 positions. Furthermore, we highlight stimulus-responsive designs of DPCs and their applications in treating diseases such as cancer, inflammation, and malaria. Lastly, we explore future directions for DPCs development and their potential applications in drug delivery.
Collapse
Affiliation(s)
- Ding Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixiang Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rames Kaewmanee
- Department of Materials ScienceFaculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianqi Wu
- Department of Radiation OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Sayed Tabatabaei M, Sayed Tabatabaei FA, Moghimi HR. Drug self-delivery systems: A comprehensive review on small molecule nanodrugs. BIOIMPACTS : BI 2024; 15:30161. [PMID: 40161942 PMCID: PMC11954755 DOI: 10.34172/bi.30161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 04/02/2025]
Abstract
Drug self-delivery systems are nanostructures composed of a drug as the main structural unit, having the ability of intracellular trafficking with no additional carrier. In these systems, the drug itself undertakes the functional and structural roles; thereby, the ancillary role of excipients and carrier-related limitations are circumvented and therapeutic effect is achieved at a much lower dose. Such advantages -which are mainly but not exclusively beneficial in cancer treatment- have recently led to an upsurge of research on these systems. Subsequently, various terminologies were utilized to describe them, referring to the same concept with different words. However, not all the systems developed based on the self-delivery approach are introduced using one of these keywords. Using a scoping strategy, this review aims to encompass the systems that have been developed as yet -inspired by the concept of self-delivery- and classify them in a coherent taxonomy. Two main groups are introduced based on the type of building blocks: small molecule-based nanomedicines and self-assembling hybrid prodrugs. Due to the diversity, covering the whole gamut of topics is beyond the scope of a single article, and, inevitably, the latter is just briefly introduced here, whereas the features of the former group are meticulously presented. Depending on whether the drug is merely a carrier for itself or carries a second drug as cargo, two classes of small molecule-based nanomedicines are defined (i.e., pure nanodrugs and carrier-mimicking systems, respectively), each having sub-branches. After introducing each branch and giving some examples, possible strategies for designing each particular system are visually displayed. The resultant mind map can create a macro view of the taken path and its prospects, give a profound insight into opportunities, spark new ideas, and facilitate overcoming obstacles. Taken together, one can foresee a brilliant future for self-delivery systems as a pioneering candidate for the next generation of drug delivery systems.
Collapse
Affiliation(s)
- Mahsa Sayed Tabatabaei
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Xue YF, Song X, Ling XQ, Lv QY, Xia Y, Cui HF. Self-Assembled PEGylated Nanocubes Based on Hydrophobic Camptothecin and Doxorubicin for Combinational Therapy of Colorectal Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54927-54941. [PMID: 39320506 DOI: 10.1021/acsami.4c13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nanoassemblies based on drug conjugates with high drug loading efficiency and stability have been regarded as promising candidates for the next generation of drug formulations. However, they are mostly amphiphilic. Here, a dual-hydrophobic drug conjugate-based nanoassembly has been created for enhanced synergistic antiproliferation against colorectal cancer cells. Camptothecin (CPT) and doxorubicin (DOX) were chosen as the hydrophobic drugs and covalently linked with a disulfide bond (-ss-). The synthesized CPT-ss-DOX can self-assemble into nanocubes (NCs) in an aqueous solution with the assistance of a small amount of polyethylene glycol (PEG), named PEGylated CPT-ss-DOX NCs. The PEGylated CPT-ss-DOX NCs were approximately 111.8 nm, possessing a crystal structure and a very low critical aggregation concentration (8.36 μg·mL-1). The self-assembly mechanism was studied using molecular docking and molecular dynamic simulation methods. The NCs demonstrated excellent storage stability and improved water solubility of CPT and DOX. These NCs could be taken up by cancer cells and gradually release the drugs. In addition, they had higher toxicity to cancer cells than a mixture of CPT and DOX, while they displayed reduced toxicity to normal cells. Due to assembly and PEG modification, the NCs improved drug retention time and enhanced accumulation at the tumor site. More importantly, they significantly inhibited colorectal tumor growth (58.37%) in vivo, superior to the CPT+DOX mix (42.63%). Moreover, the NCs reduced the cardiac toxicity of free drugs. Therefore, the prepared PEGylated CPT-ss-DOX NCs hold great potential for clinical transformation and provide a novel method for the self-delivery of hydrophobic molecules in cancer therapy.
Collapse
Affiliation(s)
- Yi-Fei Xue
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Xiaojie Song
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Xiao-Qing Ling
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Qi-Yan Lv
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Yu Xia
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Hui-Fang Cui
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| |
Collapse
|
6
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomedicine 2024; 19:7547-7566. [PMID: 39071505 PMCID: PMC11283832 DOI: 10.2147/ijn.s471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.
Collapse
Affiliation(s)
- Weiran Ma
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Xiaoying Wang
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
8
|
Li J, Zhang R, Du Y, Liu G, Dong Y, Zheng M, Cui W, Jia P, Xu Y. Osteophilic and Dual-Regulated Alendronate-Gene Lipoplexes for Reversing Bone Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303456. [PMID: 37438648 DOI: 10.1002/smll.202303456] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The pathogenesis of postmenopausal osteoporosis (PMOP) is mainly determined by the adhesion of osteoclasts to the bone matrix and the involvement of various molecules in bone resorption. The dual regulation strategy of the physical barriers of bone matrix and intracellular gene regulation generated by advanced biomaterials is a decent alternative for the treatment of PMOP. Herein, for the first time, it is identified that hsa-miR-378i/mmu-miR-378a-3p are closely associated with PMOP. Then, an osteophilic and dual-regulated alendronate-gene lipoplex (antagomir@Aln-Lipo), composed of medicative alendronate-functionalized liposomal vehicle and encapsulated specific microRNAs is engineered, for bone-targeting delivery of genes to achieve combined mitigation of bone loss. Alendronate targets hydroxyapatite in the bone matrix and occupies the adhesion site of osteoclasts, thus providing the "physical barriers". Antagomir is coupled precisely to specific endogenous microRNAs, thus providing the "genetic signals". These functionalized lipoplexes exhibited long-term stability and good transfection efficiency. It is proven that antagomir@Aln-Lipo could synergistically regulate osteoclastogenesis and bone resorption in vitro and in vivo. Furthermore, intravenous injection of antagomir@Aln-Lipo efficiently reverses bone loss through a dual mechanism driven by alendronate and antagomir-378a-3p. In conclusion, the osteophilic and dual-regulated antagomir@Aln-Lipo offers a brand-new bifunctional strategy for the precise treatment of PMOP.
Collapse
Affiliation(s)
- Junjie Li
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, 72nd Group Army Hospital of PLA, No.9 Chezhan Road, Huzhou, 313000, P. R. China
| | - Ruizhi Zhang
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.18 Yangsu Road, Suzhou, 215000, P. R. China
| | - Yu Dong
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Miao Zheng
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Peng Jia
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Youjia Xu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| |
Collapse
|
9
|
Sui D, Wang Y, Sun W, Wei L, Li C, Gui Y, Qi Z, Liu X, Song Y, Deng Y. Cleavable-Branched Polymer-Modified Liposomes Reduce Accelerated Blood Clearance and Enhance Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384837 DOI: 10.1021/acsami.3c02762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
In recent years, cationic liposomes have been successfully used as delivery platforms for mRNA vaccines. Poly(ethylene glycol) (PEG)-lipid derivatives are widely used to enhance the stability and reduce the toxicity of cationic liposomes. However, these derivatives are often immunogenic, triggering the rise of anti-PEG antibodies. Understanding the role and impact of PEG-lipid derivatives on PEGylated cationic liposomes is key to solving the PEG dilemma. In this study, we designed linear, branched, and cleavable-branched cationic liposomes modified with PEG-lipid derivatives and investigated the effect of the liposome-induced accelerated blood clearance (ABC) phenomenon on photothermal therapy. Our study indicated that the linear PEG-lipid derivatives mediated the effect of photothermal therapy by stimulating splenic marginal zone (MZ) B cells to secrete anti-PEG antibodies and increasing the level of IgM expression in the follicular region of the spleen. However, the cleavable-branched and branched PEG-lipid derivatives did not activate the complement system and avoided the ABC phenomenon by inducing noticeably lower levels of anti-PEG antibodies. The cleavable-branched PEGylated cationic liposomes improved the effect of photothermal therapy by reversing the charge on the liposome surface. This detailed study of PEG-lipid derivatives contributes to the further development and clinical application of PEGylated cationic liposomes.
Collapse
Affiliation(s)
- Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Yujie Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Lu Wei
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Changzhi Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Yangxu Gui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Zhaowei Qi
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China
| |
Collapse
|
10
|
Cai Z, Huan ML, Zhang YW, Zhao TT, Han TY, He W, Zhou SY, Zhang BL. Tumor targeted combination therapeutic system for the effective treatment of drug resistant triple negative breast cancer. Int J Pharm 2023; 636:122821. [PMID: 36914017 DOI: 10.1016/j.ijpharm.2023.122821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Breast cancer has become the malignant tumor with the largest incidence, especially the drug resistant triple negative breast cancer (TNBC). The combination therapeutic system can play a better role in resisting drug resistant TNBC. In this study, dopamine and tumor targeted folic acid modified dopamine were synthesized as carrier materials to construct melanin-like tumor targeted combination therapeutic system. The optimized nanoparticles of CPT/Fe@PDA-FA10 with efficient loading of camptothecin and iron was achieved, which showed tumor targeted delivery ability, pH sensitive controlled release, effective photothermal conversion performance and excellent anti-tumor efficacy in vitro and in vivo. CPT/Fe@PDA-FA10 plus laser could significantly kill the drug resistant tumor cells, inhibit the growth of the orthotopic drug resistant triple negative breast cancer through apoptosis/ferroptosis/photothermal treatment, and had no significant side effects on the main tissues and organs. This strategy provided a new idea for the construction and clinical application of triple-combination therapeutic system as effective treatment for drug resistant triple negative breast cancer.
Collapse
Affiliation(s)
- Zedong Cai
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ting-Ting Zhao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Tian-Yan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei He
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China; Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China.
| |
Collapse
|
11
|
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3183. [PMID: 36144971 PMCID: PMC9503659 DOI: 10.3390/nano12183183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
With the widespread global impact of cancer on humans and the extensive side effects associated with current cancer treatments, a novel, effective, and safe treatment is needed. Redox-responsive drug delivery systems (DDSs) have emerged as a potential cancer treatment with minimal side effects and enhanced site-specific targeted delivery. This paper explores the physiological and biochemical nature of tumors that allow for redox-responsive drug delivery systems and reviews recent advances in the chemical composition and design of such systems. The five main redox-responsive chemical entities that are the focus of this paper are disulfide bonds, diselenide bonds, succinimide-thioether linkages, tetrasulfide bonds, and platin conjugates. Moreover, as disulfide bonds are the most commonly used entities, the review explored disulfide-containing liposomes, polymeric micelles, and nanogels. While various systems have been devised, further research is needed to advance redox-responsive drug delivery systems for cancer treatment clinical applications.
Collapse
Affiliation(s)
- Heba F. Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
12
|
Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance. Antimicrob Agents Chemother 2022; 66:e0206521. [PMID: 35416709 DOI: 10.1128/aac.02065-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current best practice for the treatment of malaria relies on short half-life artemisinins that are failing against emerging Kelch 13 mutant parasite strains. Here, we introduce a liposome-like self-assembly of a dimeric artesunate glycerophosphocholine conjugate (dAPC-S) as an amphiphilic prodrug for the short-lived antimalarial drug, dihydroartemisinin (DHA), with enhanced killing of Kelch 13 mutant artemisinin-resistant parasites. Cryo-electron microscopy (cryoEM) images and the dynamic light scattering (DLS) technique show that dAPC-S typically exhibits a multilamellar liposomal structure with a size distribution similar to that of the liposomes generated using thin-film dispersion (dAPC-L). Liquid chromatography-mass spectrometry (LCMS) was used to monitor the release of DHA. Sustainable release of DHA from dAPC-S and dAPC-L assemblies increased the effective dose and thus efficacy against Kelch 13 mutant artemisinin-resistant parasites in an in vitro assay. To better understand the enhanced killing effect, we investigated processes for deactivation of both the assemblies and DHA, including the roles of serum components and trace levels of iron. Analysis of parasite proteostasis pathways revealed that dAPC assemblies exert their activity via the same mechanism as DHA. We conclude that this easily prepared multilamellar liposome-like dAPC-S with long-acting efficacy shows potential for the treatment of severe and artemisinin-resistant malaria.
Collapse
|
13
|
Melim C, Magalhães M, Santos AC, Campos EJ, Cabral C. Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opin Drug Deliv 2022; 19:179-197. [PMID: 35166619 DOI: 10.1080/17425247.2022.2041599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The development and application of novel therapeutic medicines for the treatment of cancer are of vital importance to improve the disease's outcome and survival rate. One noteworthy treatment approach is the use of biologically active compounds present in natural products. Even though these phytocompounds present anti-inflammatory, antioxidant, and anticancer properties, their use is limited essentially due to poor systemic delivery, low bioavailability, and water solubility concerns. To make full use of the anticancer potential of natural products, these limitations need to be technologically addressed. In this sense, nanotechnology emerges as a promising drug delivery system strategy. AREAS COVERED In this review, the benefits and potential of nanodelivery systems for natural products encapsulation as promising therapeutic approaches for cancer, which were developed during the last decade, are highlighted. EXPERT OPINION The nanotechnology area has been under extensive research in the medical field given its capacity for improving the therapeutic potential of drugs by increasing their bioavailability and allowing a targeted delivery to the tumor site. Thereby, the nanoencapsulation of phytocompounds can have a direct impact on the recognized therapeutic activity of natural products towards cancer.
Collapse
Affiliation(s)
- Catarina Melim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Mariana Magalhães
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Elisa Julião Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
14
|
Hwang SR, Chakraborty K, An JM, Mondal J, Yoon HY, Lee YK. Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13111875. [PMID: 34834290 PMCID: PMC8619450 DOI: 10.3390/pharmaceutics13111875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to tumor sites using nanotechnology has been demonstrated to overcome the drawbacks of conventional anticancer drugs. Altering the surface shape and geometry of nanocomposites alters their chemical properties, which can confer multiple attributes to nanocarriers for the treatment of cancer and their use as imaging agents for cancer diagnosis. However, heterogeneity and blood flow in human cancer limit the distribution of nanoparticles at the site of tumor tisues. For targeted delivery and controlled release of drug molecules in harsh tumor microenvironments, smart nanocarriers combined with various stimuli-responsive materials have been developed. In this review, we describe nanomaterials for smart anticancer therapy as well as their pharmaceutical aspects including pharmaceutical process, formulation, controlled drug release, drug targetability, and pharmacokinetic or pharmacodynamic profiles of smart nanocarriers. Inorganic or organic-inorganic hybrid nanoplatforms and the electrospinning process have also been briefly described here.
Collapse
Affiliation(s)
- Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea;
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea;
| | - Jagannath Mondal
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Korea;
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Yong-kyu Lee
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea;
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Korea;
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
- Correspondence: ; Tel.: +82-43-841-5224
| |
Collapse
|
15
|
He W, Du Y, Wang T, Wang J, Cheng L, Li X. Dimeric Artesunate-Phosphatidylcholine-Based Liposomes for Irinotecan Delivery as a Combination Therapy Approach. Mol Pharm 2021; 18:3862-3870. [PMID: 34470216 DOI: 10.1021/acs.molpharmaceut.1c00500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, dimeric artesunate-phosphatidylcholine conjugate (dARTPC)-based liposomes encapsulated with irinotecan (Ir) were developed for anticancer combination therapy. First, dARTPC featured with unique amphipathic properties formed liposomes by classical thin-film methods. After that, Ir was encapsulated into dARTPC-based liposomes (Ir/dARTPC-LP) by the triethylammonium sucrose octasulfate gradient method. Physicochemical characterization indicated that Ir/dARTPC-LP had a mean size of around 140 nm and a negative ζ potential of approximately -30 mV. Most noticeably, liposomes displayed an encapsulation efficiency of greater than 98% with a controllable drug loading of 4-22%. The in vitro release of dihydroartemisinin (DHA) and Ir from Ir/dARTPC-LP was investigated by dialysis in different media. It was found that effective release of both DHA (65.42%) and Ir (77.28%) in a weakly acidic medium (pH 5.0) after 48 h was achieved in comparison to very slow release under a neutral environment (DHA 9.90% and Ir 8.72%), indicating the controllable release of both drugs. Confocal laser scanning microscopy confirmed the improved cellular internalization of Ir/dARTPC-LP. The cytotoxicity of Ir/dARTPC-LP was evaluated in the MCF-7, A549, and HepG2 cell lines. The results showed that Ir/dARTPC-LP had significant synergistic efficacy in the loss of cell growth. In vivo anticancer evaluation was performed using a 4T1 xenograft tumor model. Ir/dARTPC-LP had a high tumor inhibition rate of 62.7% without significant toxicity in comparison with the injection of Ir solution. Taken together, dARTPC encapsulated with Ir has great potential for anticancer combination therapy.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lei Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
16
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
17
|
He W, Du Y, Wang T, Wang J, Cheng L, Li X. Redox responsive 7-ethyl-10-hydroxycamptothecin (SN38) lysophospholipid conjugate: synthesis, assembly and anticancer evaluation. Int J Pharm 2021; 606:120856. [PMID: 34229071 DOI: 10.1016/j.ijpharm.2021.120856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
7-Ethyl-10-hydroxycamptothecin (SN38), a potent camptothecin derivative specifically targeting DNA topoisomerase I cleavage complexes, has shown great potential in the treatment of solid tumors. Because of its poor solubility and chemical and metabolic stability, the clinical application of SN38 is highly limited. To address these problems, a novel redox-responsive SN38 conjugate based liposomal formulation is developed in this report. First, SN38 was conjugated with lysophospholipid by using a cleavable disulfide bond linker. After that, the conjugate (SN38-SS-PC) was assembled into liposomes by thin film method. Dynamic lightscattering(DLS) characterization indicated that SN38-SS-PC liposomes possessed a narrow size distribution (172.8 ± 10.5 nm) and negative charged zeta potential (-8.9 ± 0.3 mV). The results of storage and physiological stabilities showed that SN38-SS-PC liposomes was stable under different conditions. More importantly, a reduction responsive release of parent drug SN38 was observed in the medium containing glutathione (GSH). In addition, SN38-SS-PC liposomes had a much more rapid cellular uptake behavior against cancer cells. The enhanced anti-cancer efficacy of SN38-SS-PC liposomes was further demonstrated by in vitro cytotoxicity assay against MCF-7 and A549 cells. Under in vivo evaluation in 4 T1 xenograft tumor model, SN38-SS-PC liposomes were observed to have lower systemic toxicity and higher tumor inhibition rate of 53.3% compared with the commercialized SN38 prodrug Irinotecan (Ir). In summary, SN38-SS-PC liposomes could be a promising redox responsive delivery system of SN38 for cancer therapy.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Lei Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
18
|
Almeida A, Fernandes E, Sarmento B, Lúcio M. A Biophysical Insight of Camptothecin Biodistribution: Towards a Molecular Understanding of Its Pharmacokinetic Issues. Pharmaceutics 2021; 13:pharmaceutics13060869. [PMID: 34204692 PMCID: PMC8231504 DOI: 10.3390/pharmaceutics13060869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
Camptothecin (CPT) is a potent anticancer drug, and its putative oral administration is envisioned although difficult due to physiological barriers that must be overcome. A comprehensive biophysical analysis of CPT interaction with biointerface models can be used to predict some pharmacokinetic issues after oral administration of this or other drugs. To that end, different models were used to mimic the phospholipid composition of normal, cancer, and blood–brain barrier endothelial cell membranes. The logD values obtained indicate that the drug is well distributed across membranes. CPT-membrane interaction studies also confirm the drug’s location at the membrane cooperative and interfacial regions. The drug can also permeate membranes at more ordered phases by altering phospholipid packing. The similar logD values obtained in membrane models mimicking cancer or normal cells imply that CPT has limited selectivity to its target. Furthermore, CPT binds strongly to serum albumin, leaving only 8.05% of free drug available to be distributed to the tissues. The strong interaction with plasma proteins, allied to the large distribution (VDSS = 5.75 ± 0.932 L·Kg−1) and tendency to bioaccumulate in off-target tissues, were predicted to be pharmacokinetic issues of CPT, implying the need to develop drug delivery systems to improve its biodistribution.
Collapse
Affiliation(s)
- Andreia Almeida
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.A.); (B.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Bruno Sarmento
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.A.); (B.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central da Gandra 137, 4585-116 Gandra, Portugal
| | - Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
19
|
Stimulus-responsive liposomes for biomedical applications. Drug Discov Today 2021; 26:1794-1824. [PMID: 34058372 DOI: 10.1016/j.drudis.2021.05.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Liposomes are amphipathic lipidic supramolecular aggregates that are able to encapsulate and carry molecules of both hydrophilic and hydrophobic nature. They have been widely used as in vivo drug delivery systems for some time because they offer features such as synthetic flexibility, biodegradability, biocompatibility, low immunogenicity, and negligible toxicity. In recent years, the chemical modification of liposomes has paved the way to the development of smart liposome-based drug delivery systems, which are characterized by even more tunable and disease-directed features. In this review, we highlight the different types of chemical modification introduced to date, with a particular focus on internal stimuli-responsive liposomes and prodrug activation.
Collapse
|
20
|
|
21
|
Lou J, Best MD. Strategies for altering lipid self-assembly to trigger liposome cargo release. Chem Phys Lipids 2020; 232:104966. [PMID: 32888913 DOI: 10.1016/j.chemphyslip.2020.104966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/21/2023]
Abstract
While liposomes have proven to be effective drug delivery nanocarriers, their therapeutic attributes could be improved through the development of clinically viable triggered release strategies in which encapsulated drug contents could be selectively released at the sites of diseased cells. As such, a significant amount of research has been reported involving the development of stimuli-responsive liposomes and a broad range of strategies have been explored for driving content release. These have included the introduction of trigger groups at either the lipid headgroup or within the acyl chains that alter lipid self-assembly properties of known lipids as well as the rational design of lipid analogs programed to undergo conformational changes induced by events such as binding interactions. This review article describes advances in the design of stimuli-responsive liposome strategies with an eye towards emerging trends in the field.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA.
| |
Collapse
|
22
|
He W, Du Y, Zhou W, Wang T, Li M, Li X. Core-crosslinked nanomicelles based on crosslinkable prodrug and surfactants for reduction responsive delivery of camptothecin and improved anticancer efficacy. Eur J Pharm Sci 2020; 150:105340. [PMID: 32371069 DOI: 10.1016/j.ejps.2020.105340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/18/2022]
Abstract
As an important DNA topoisomerase I inhibitor in oncotherapy, camptothecin (CPT) with traditional formulation only shows a limited clinical application mainly because of its poor solubility. In this study, a novel redox responsive nanoscaled delivery system was developed to overcome the inherent defect of CPT. Firstly, a CPT prodrug (CPT-LA) and two crosslinkable surfactants (SO-LA and MPEG-LA) was synthesized, all of which contained the same lipoic acid (LA) structure. In the preparation, highly core-crosslinked structure was formed by adding a thiol crosslinker, which can induce LA ring opening polymerization and disulfide crosslinking. The resulting CPT-LA core-crosslinked nanomicelles (CPT-LA CNM) were formulated with a highly crosslinked core and a PEG hydrophilic shell. Dynamic light scattering (DLS) characterization indicated that CPT-LA CNM possessed a narrow size distribution (184.6 ± 3.6 nm) and negatively charged zeta potential (-3.5 ± 1.2 mV). The storage and physiological stabilities showed that the size distribution of CPT-LA CNM was relatively stable in both conditions which were neutral PBS at 4 °C (1 week period) and PBS containing 10% serum at 37 °C (24 h period). Moreover, the effective CPT release behavior of CPT-LA CNM was confirmed in the reducing circumstances containing dithiothreitol (DTT). Under confocal laser scanning microscopy (CLSM), CPT-LA CNM demonstrated a rapid cellular uptake behavior against cancer cells when compared to CPT suspension. Finally, the enhanced anticancer efficacy of CPT-LA CNM was also detected by in vitro cytotoxicity and cell apoptosis assay. In summary, the core-crosslinked CPT-LA CNM could be a promising CPT delivery system because of high stability, effectively controlled release as well as improved anticancer activity.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenya Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Man Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|