1
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Piscopo S, Beley N, Dzyha S, Smetanina K, Shanaida V, Resimont S, Bjorklund G. The Possible Roles of β-alanine and L-carnosine in Anti-aging. Curr Med Chem 2025; 32:6-22. [PMID: 38243982 DOI: 10.2174/0109298673263561231117054447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024]
Abstract
β-alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-- fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective are presented.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Svitlana Dzyha
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Kateryna Smetanina
- Faculty of Postgraduate Education, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Stephane Resimont
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
2
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
3
|
Aggarwal N, Singh G, Panda HS, Panda JJ. Unravelling the potential of L-carnosine analog-based nano-assemblies as pH-responsive therapeutics in treating glioma: an in vitro perspective. J Mater Chem B 2024; 12:10665-10681. [PMID: 39314035 DOI: 10.1039/d4tb01262c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Self-assembled small peptide-based nanoparticles (NPs) constitute a major section of the biomimetic smart NPs owing to their excellent compatibility and minimal adverse effects in the biological system. Here, we have designed a modified L-carnosine dipeptide analog, "Fmoc-β-Ala-L-His-(Trt)-o-methyl formate", which was assembled along with a modified single amino acid, Fmoc-Arg-(Pbf)-OH and zinc ions to form stable and mono-dispersed L-carnosine analog NPs (CaNPs) with inherent anti-cancer properties. Furthermore, the CaNPs demonstrated an average size of ∼200 nm, making them suitable to invade the tumor site by following the enhanced permeability and retention (EPR) effect. Our studies depicted a remarkable cancer cell killing ability of the NPs of ∼82% in C6 glioma cells. Thereafter, cellular investigations were performed in C6 cells to analyze the influence of the NPs on cellular cytoskeleton integrity by using a phalloidin assay and anti-cancer efficacy by using calcein AM/PI, and an apoptosis assay further indicated their anti-cancer effect. Additionally, the NPs negatively impacted the ability of C6 cells to migrate across a premade scratch (∼44% wound closure) demonstrating their tendency to halt cancer cell migration and metastasis. Also, our NPs depicted ∼19.51 ± 0.17% permeability across the bEnd.3 transwell model establishing their BBB penetrability. Collectively, our results could positively implicate the successful anti-cancer potential of the minimalistic, biologically compliant, L-carnosine analog (Ca)-based nanostructures in glioma.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Gurjot Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Himanshu Sekhar Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
4
|
Melhem SA, Saadah LM, Attallah ZS, Mansi IA, Hamed SH, Talib WH. Deciphering angiotensin converting enzyme 2 (ACE2) inhibition dynamics: Carnosine's modulatory role in breast cancer proliferation - A clinical sciences perspective. Heliyon 2024; 10:e38685. [PMID: 39398078 PMCID: PMC11471176 DOI: 10.1016/j.heliyon.2024.e38685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is a pivotal molecular nexus linking novel coronavirus disease to breast cancer. In-silico investigations have repurposed carnosine for both these conditions based on its potential ACE2 inhibitory properties. Methods Utilizing an ACE2 inhibitor screening kit, we determined the inhibitory range of carnosine doses. Subsequently, we examined the effect of carnosine on ACE2 expression in supernatants from various breast cancer cell lines (MCF-7, MDA-MB-231, and EMT-6). Additionally, we compared ACE2 activity in cell line pellets with and without carnosine and a putative ACE2 activator using a fluorometric activity assay kit. Finally, we performed a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay across overlapping concentrations. Results Carnosine exhibited dose-dependent ACE2 inhibition within the 100-300 mM range. ACE2 expression significantly diminished after exposure to carnosine for 2 and 24 h in MDA-MB-231 and MCF-7 cell lines, respectively. MTT assay unveiled notable antiproliferative effects in MDA-MB-231 (50 % survival at approximately 265 mM) and EMT-6 cell lines (unquantifiable 50 % survival dose). Conversely, the MCF-7 cell line displayed a modest increase in proliferation (Effective concentration 50-186 mM, ∼40 % increased survival). Conclusion This pioneering study delineates evident dose-dependent ACE2 inhibition by carnosine. Moreover, it unveils the modulatory impact of this ACE2 inhibitor in breast cancer cell lines. Carnosine demonstrated a significant antiproliferative effect on aggressive cell lines while sparing luminal cell lines from substantial toxic or proliferative effects.
Collapse
Affiliation(s)
- Sarah A. Melhem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Loai M. Saadah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Zeena S. Attallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Iman A. Mansi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Saja H. Hamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University. Amman, Jordan
| |
Collapse
|
5
|
Hsieh LC, Le TK, Hu FC, Chen YT, Hsieh S, Wu CC, Hsieh SL. Targeted colorectal cancer treatment: In vitro anti-cancer effects of carnosine nanoparticles supported by agar and magnetic iron oxide. Eur J Pharm Biopharm 2024; 203:114477. [PMID: 39209128 DOI: 10.1016/j.ejpb.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The usage of peptides in the colorectal cancer (CRC) treatment promises to be a new anti-cancer therapy with improved treatment efficacy. Carnosine, a natural dipeptide molecule, has been demonstrated to be a potential anti-cancer drug. Nonetheless, it shows an exhibition of high-water solubility and is quickly degraded by carnosinase. Meanwhile, agar and magnetic iron oxide are the most used materials for drug delivery due to some of their advantages such as the low cost and the larger biocompatibility feature. The purpose of this study was to investigate the anti-cancer ability of agar-encapsulated carnosine nanoparticles (AgCa-NPs) and agar-encapsulated carnosine nanoparticles-coated magnetic iron oxide nanoparticles (AgCaN-MNPs) in human CRC cells, HCT-116. We evaluated the effects of AgCa-NPs and AgCaN-MNPs with a variety of concentrations (0, 5, 10, 15, 30, 40, or 50 mM) on HCT-116 cells after 72 h and 96 h by using MTT assay and observation cell morphology. We then analyzed the cell cycle progression and assessed the expression changes of genes related to apoptosis, autophagy, necroptosis, and angiogenesis after treatment for 96 h. The results showed that AgCa-NPs and AgCaN-MNPs in vitro study decreased HCT-116 cells viability. This effect was attributed to arrest of cell cycle, induction of programmed cell death, and suppression of angiogenesis by AgCa-NPs and AgCaN-MNPs. These findings revealed the antitumor efficacy of AgCa-NPs or AgCaN-MNPs for CRC treatment.
Collapse
Affiliation(s)
- Lan-Chi Hsieh
- Department of Dietetics, Kaohsiung Municipal United Hospital, Kaohsiung 80457, Taiwan
| | - Thai-Khuong Le
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Fang-Ci Hu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
6
|
Regazzoni L. State of the Art in the Development of Human Serum Carnosinase Inhibitors. Molecules 2024; 29:2488. [PMID: 38893364 PMCID: PMC11173852 DOI: 10.3390/molecules29112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Human serum carnosinase is an enzyme that operates the preferential hydrolysis of dipeptides with a C-terminus histidine. Only higher primates excrete such an enzyme in serum and cerebrospinal fluid. In humans, the serum hydrolytic rate has high interindividual variability owing to gene polymorphism, although age, gender, diet, and also diseases and surgical interventions can modify serum activity. Human genetic diseases with altered carnosinase activity have been identified and associated with neurological disorders and age-related cognitive decline. On the contrary, low peripheral carnosinase activity has been associated with kidney protection, especially in diabetic nephropathy. Therefore, serum carnosinase is a druggable target for the development of selective inhibitors. However, only one molecule (i.e., carnostatine) has been discovered with the purpose of developing serum carnosinase inhibitors. Bestatin is the only inhibitor reported other than carnostatine, although its activity is not selective towards serum carnosinase. Herein, we present a review of the most critical findings on human serum carnosinase, including enzyme expression, localization and substrate selectivity, along with factors affecting the hydrolytic activity, its implication in human diseases and the properties of known inhibitors of the enzyme.
Collapse
Affiliation(s)
- Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
7
|
Niziołek K, Słota D, Sadlik J, Kosińska E, Korzeń K, Jampilek J, Sobczak-Kupiec A. Sideritis raeseri-Modified Coatings on Ti-6Al-4V as a Carrier for Controlled Delivery Systems of Active Substances. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2250. [PMID: 38793317 PMCID: PMC11122947 DOI: 10.3390/ma17102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The search for the ideal metallic material for an implant is still a difficult challenge for scientists due to the phenomenon of corrosion and the consequent disruption of the implant structure. Prevention is the application of coatings that protect the implant, activate the tissues for faster regeneration, and also prevent inflammation through antibacterial and antiviral effects. The present study focuses on the selection of components for a Ti-6Al-4V alloy coating. These days, researchers are taking an intense interest in extracts of natural origin. It was decided to take a look at Sideritis raeseri, which contains vitamins and valuable elements and is rich in polyphenols, as well as antioxidants. The composition of coatings based on a PEG polymer reinforced with brushite and the S. raeseri extract with the proteins L-carnosine, fibroin, or sericin was developed. The samples were subjected to detailed physiochemical analysis, including potentiometry and electrical conductivity analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and UV-VIS spectroscopy. The study demonstrated that polyphenols were successfully released from the coatings during incubation in vitro. The osteointegration process can be supported by a number of factors, such as the release of polyphenols from implant coatings to prevent bacterial, viral, and fungal infections. Subjecting the samples to 14 days of incubation demonstrated their interactions with the incubation fluids, an ion exchange between the medium and the materials. An analysis of the surface morphology exhibited the presence of brushite crystals and their increased number after incubation, indicating the bioactivity of the formed coatings.
Collapse
Affiliation(s)
- Karina Niziołek
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Julia Sadlik
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Edyta Kosińska
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Klaudia Korzeń
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
8
|
M E Gaafar P, Farid RM, Hazzah HA, AbouKilila HY, Helmy MW, Abdallah OY. Magnetic Lipid-Based hybrid nanosystems: A combined stimuli- responsive nanocarriers for enriched chemotherapeutic potential of L-carnosine in induced breast Ehrlich ascites tumor model. Int J Pharm 2024; 655:124000. [PMID: 38493840 DOI: 10.1016/j.ijpharm.2024.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - HussamElDin Y AbouKilila
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
11
|
Maugeri S, Sibbitts J, Privitera A, Cardaci V, Di Pietro L, Leggio L, Iraci N, Lunte SM, Caruso G. The Anti-Cancer Activity of the Naturally Occurring Dipeptide Carnosine: Potential for Breast Cancer. Cells 2023; 12:2592. [PMID: 37998326 PMCID: PMC10670273 DOI: 10.3390/cells12222592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, possessing a multimodal pharmacodynamic profile that includes anti-inflammatory and anti-oxidant activities. Carnosine has also shown its ability to modulate cell proliferation, cell cycle arrest, apoptosis, and even glycolytic energy metabolism, all processes playing a key role in the context of cancer. Cancer is one of the most dreaded diseases of the 20th and 21st centuries. Among the different types of cancer, breast cancer represents the most common non-skin cancer among women, accounting for an estimated 15% of all cancer-related deaths in women. The main aim of the present review was to provide an overview of studies on the anti-cancer activity of carnosine, and in particular its activity against breast cancer. We also highlighted the possible advantages and limitations involved in the use of this dipeptide. The first part of the review entailed a brief description of carnosine's biological activities and the pathophysiology of cancer, with a focus on breast cancer. The second part of the review described the anti-tumoral activity of carnosine, for which numerous studies have been carried out, especially at the preclinical level, showing promising results. However, only a few studies have investigated the therapeutic potential of this dipeptide for breast cancer prevention or treatment. In this context, carnosine has shown to be able to decrease the size of cancer cells and their viability. It also reduces the levels of vascular endothelial growth factor (VEGF), cyclin D1, NAD+, and ATP, as well as cytochrome c oxidase activity in vitro. When tested in mice with induced breast cancer, carnosine proved to be non-toxic to healthy cells and exhibited chemopreventive activity by reducing tumor growth. Some evidence has also been reported at the clinical level. A randomized phase III prospective placebo-controlled trial showed the ability of Zn-carnosine to prevent dysphagia in breast cancer patients undergoing adjuvant radiotherapy. Despite this evidence, more preclinical and clinical studies are needed to better understand carnosine's anti-tumoral activity, especially in the context of breast cancer.
Collapse
Affiliation(s)
- Salvatore Maugeri
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Jay Sibbitts
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Vincenzo Cardaci
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
12
|
Bonaccorso A, Privitera A, Grasso M, Salamone S, Carbone C, Pignatello R, Musumeci T, Caraci F, Caruso G. The Therapeutic Potential of Novel Carnosine Formulations: Perspectives for Drug Development. Pharmaceuticals (Basel) 2023; 16:778. [PMID: 37375726 PMCID: PMC10300694 DOI: 10.3390/ph16060778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide synthesized via the activity of the ATP-dependent enzyme carnosine synthetase 1 and can be found at a very high concentration in tissues with a high metabolic rate, including muscles (up to 20 mM) and brain (up to 5 mM). Because of its well-demonstrated multimodal pharmacodynamic profile, which includes anti-aggregant, antioxidant, and anti-inflammatory activities, as well as its ability to modulate the energy metabolism status in immune cells, this dipeptide has been investigated in numerous experimental models of diseases, including Alzheimer's disease, and at a clinical level. The main limit for the therapeutic use of carnosine is related to its rapid hydrolysis exerted by carnosinases, especially at the plasma level, reason why the development of new strategies, including the chemical modification of carnosine or its vehiculation into innovative drug delivery systems (DDS), aiming at increasing its bioavailability and/or at facilitating the site-specific transport to different tissues, is of utmost importance. In the present review, after a description of carnosine structure, biological activities, administration routes, and metabolism, we focused on different DDS, including vesicular systems and metallic nanoparticles, as well as on possible chemical derivatization strategies related to carnosine. In particular, a basic description of the DDS employed or the derivatization/conjugation applied to obtain carnosine formulations, followed by the possible mechanism of action, is given. To the best of our knowledge, this is the first review that includes all the new formulations of carnosine (DDS and derivatives), allowing a decrease or complete prevention of the hydrolysis of this dipeptide exerted by carnosinases, the simultaneous blood-brain barrier crossing, the maintenance or enhancement of carnosine biological activity, and the site-specific transport to different tissues, which then offers perspectives for the development of new drugs.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Sonya Salamone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
13
|
Tsering Dongsar T, Sonam Dongsar T, Abourehab MA, Gupta N, Kesharwani P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
14
|
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4494. [PMID: 36558344 PMCID: PMC9781272 DOI: 10.3390/nano12244494] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 05/25/2023]
Abstract
Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body. Nanomedicine has rapidly grown to treat certain diseases like brain cancer, lung cancer, breast cancer, cardiovascular diseases, and many others. These nanomedicines can improve drug bioavailability and drug absorption time, reduce release time, eliminate drug aggregation, and enhance drug solubility in the blood. Nanomedicine has introduced a new era for drug carriage by refining the therapeutic directories of the energetic pharmaceutical elements engineered within nanoparticles. In this context, the vital information on engineered nanoparticles was reviewed and conferred towards the role in drug carriage systems to treat many ailments. All these nanocarriers were tested in vitro and in vivo. In the coming years, nanomedicines can improve human health more effectively by adding more advanced techniques into the drug delivery system.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Aqsa Tariq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Naeem Riaz
- Department of Pharmacy, COMSATS University, Abbottabad 22020, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
16
|
Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103303. [PMID: 35630780 PMCID: PMC9143376 DOI: 10.3390/molecules27103303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.
Collapse
|
17
|
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022; 14:883. [PMID: 35456717 PMCID: PMC9026217 DOI: 10.3390/pharmaceutics14040883] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There has been an increasing demand for the development of nanocarriers targeting multiple diseases with a broad range of properties. Due to their tiny size, giant surface area and feasible targetability, nanocarriers have optimized efficacy, decreased side effects and improved stability over conventional drug dosage forms. There are diverse types of nanocarriers that have been synthesized for drug delivery, including dendrimers, liposomes, solid lipid nanoparticles, polymersomes, polymer-drug conjugates, polymeric nanoparticles, peptide nanoparticles, micelles, nanoemulsions, nanospheres, nanocapsules, nanoshells, carbon nanotubes and gold nanoparticles, etc. Several characterization techniques have been proposed and used over the past few decades to control and predict the behavior of nanocarriers both in vitro and in vivo. In this review, we describe some fundamental in vitro, ex vivo, in situ and in vivo characterization methods for most nanocarriers, emphasizing their advantages and limitations, as well as the safety, regulatory and manufacturing aspects that hinder the transfer of nanocarriers from the laboratory to the clinic. Moreover, integration of artificial intelligence with nanotechnology, as well as the advantages and problems of artificial intelligence in the development and optimization of nanocarriers, are also discussed, along with future perspectives.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; or
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Ragwa Mohamed Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Shaimaa Khamis Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| |
Collapse
|
18
|
Omidi Y, Mobasher M, Castejon A, Mahmoudi M. Recent advances in nanoscale targeted therapy of HER2-positive breast cancer. J Drug Target 2022; 30:687-708. [PMID: 35321601 DOI: 10.1080/1061186x.2022.2055045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Breast cancer is the second leading cause of death among women with high mortality rates worldwide. The exceptionally fast rate of metastasis, the emergence of drug-resistant mechanisms, and the occurrence of inadvertent side effects by cytotoxic chemotherapies often make conventional chemotherapy and immunotherapy treatments ineffective. Similar to other solid tumors, breast cancer can develop unique cellular and molecular characteristics forming an atypical permissive tumor microenvironment (TME). Due to the unique features of TME, cancer cells can further proliferate and coadapt with the stromal cells and evade immunosurveillance. aberrantly abundantly express various pieces of molecular machinery (the so-called oncomarkers) in favor of their survival, progression, metastasis, and further invasion. Such overexpressed oncomarkers can be exploited in the targeted therapy of cancer. Among breast cancer oncomarkers, epidermal growth factor receptors, particularly HER2, are considered as clinically valid molecular targets not only for the thorough diagnosis but also for the targeted therapy of the disease using different conventional and advanced nanoscale treatment modalities. This review aims to elaborate on the recent advances in the targeted therapy of HER2-positive breast cancer, and discuss various types of multifunctional nanomedicines/theranostics, and antibody-/aptamer-drug conjugates.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Maha Mobasher
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana Castejon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Morteza Mahmoudi
- Department of Radiology, College of Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
19
|
Grasso M, Caruso G, Godos J, Bonaccorso A, Carbone C, Castellano S, Currenti W, Grosso G, Musumeci T, Caraci F. Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants (Basel) 2021; 10:1075. [PMID: 34356309 PMCID: PMC8301008 DOI: 10.3390/antiox10071075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural compounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through multiple molecular mechanisms. A deficit of transforming growth factor-β1 (TGF-β1) pathway is an early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders, from depression to AD. In the present review, we provide evidence that different nutraceuticals, such as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and carnosine, can target TGF-β1 signaling and increase TGF-β1 production in the central nervous system as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism between nutraceuticals targeting the TGF-β1 pathway and current approved drugs might represent a novel pharmacological approach for reverting cognitive deficits in AD patients.
Collapse
Affiliation(s)
- Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
20
|
Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J Control Release 2021; 335:437-448. [PMID: 34081996 DOI: 10.1016/j.jconrel.2021.05.042] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanoparticles have been broadly studied and emerged as a novel approach in diagnosis and treatment of tumors. Over the last decade, researches have significantly improved magnetic nanoparticle (MNP)'s theranostic potential as nanomedicine for cancer. Newer MNPs have various advantages such as wider operating temperatures, smaller sizes, lower toxicity, simpler preparations and lower production costs. With a series of unique and superior physical and chemical properties, MNPs have great potential in medical applications. In particular, using MNPs as probes for medical imaging and carriers for targeted drug delivery systems. While MNPs are expected to be the future of cancer diagnosis and precision drug delivery, more research is still required to minimize their toxicity and improve their efficacy. An ideal MNP for clinical applications should be precisely engineered to be stable to act as tracers or deliver drugs to the targeted sites, release drug components only at the targeted sites and have minimal health risks. Our review aims to consolidate the recent improvements in MNPs for clinical applications as well as discuss the future research prospects and potential of MNPs in cancer theranostics.
Collapse
Affiliation(s)
- Xuexin Li
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17121, Sweden
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunming 650091, Yunnan, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
21
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv 2021; 28:906-919. [PMID: 33960245 PMCID: PMC8131005 DOI: 10.1080/10717544.2021.1917728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Gaafar PME, El-Salamouni NS, Farid RM, Hazzah HA, Helmy MW, Abdallah OY. Pegylated liquisomes: A novel combined passive targeting nanoplatform of L-carnosine for breast cancer. Int J Pharm 2021; 602:120666. [PMID: 33933646 DOI: 10.1016/j.ijpharm.2021.120666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
PEGylated Liquisomes (P-Liquisomes), a novel drug delivery system was designed for the first time by incorporating phospholipid complex in PEGylated liquid crystalline nanoparticles (P-LCNPs). L-carnosine (CN), a challenging dipeptide, has proven to be a promising anti-cancer drug. However, it exhibits high water solubility and extensive in-vivo degradation that halts its use. The objective of this work was to investigate the ability of our novel system to improve the CN anticancer activity by prolonging it's release and protecting it in-vivo. In-vitro appraisal revealed spherical light-colored vesicles encapsulated in the liquid crystals, confirming the successful formation of the combined system. P-Liquisomes were nano-sized (149.3 ± 1.4 nm), with high ZP (-40.2 ± 1.5 mV), complexation efficiency (97.5 ± 0.9%) and outstanding sustained release of only 75.4% released after 24 h, compared to P-LCNPs and Phytosomes. The results obtained with P-Liquisomes are considered as a break through compared to P-LCNPs or Phytosomes alone, especially when dealing with the hydrophilic CN. In-vitro cytotoxicity evaluation, revealed superior cytotoxic effect of P-Liquisomes (IC50 = 25.9) after 24 h incubation. Besides, P-Liquisomes proved to be non-toxic in-vivo and succeeded to show superior chemopreventive activity manifested by reduction of; % tumor growth (7.1%), VEGF levels (14.3 pg/g tissue), cyclin D1 levels 15.5 ng/g tissue and elevation in caspase-3 level (36.4 ng/g tissue), compared to Phytosomes and CN solution. Conclusively, P-Liquisomes succeded to achieve the maximum therapeutic outcome of CN without altering its activity and might be used as a sustained delivery system for other promising hydrophilic compounds.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|