1
|
Bonilla-Vidal L, Espina M, García ML, Baldomà L, Badia J, Gliszczyńska A, Souto EB, Sánchez-López E. Combination of Apigenin and Melatonin with nanostructured lipid carriers as anti-inflammatory ocular treatment. Int J Pharm 2025; 670:125160. [PMID: 39746583 DOI: 10.1016/j.ijpharm.2024.125160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ocular inflammation is a complex pathology with limited treatment options. While traditional therapies have side effects, novel approaches, such as natural compounds like Apigenin (APG) and Melatonin (MEL) offer promising solutions. APG and MEL, in combination with nanostructured lipid carriers (NLC), may provide a synergistic effect in treating ocular inflammation, potentially improving patient outcomes and reducing adverse effects. NLC could provide chemical protection of these compounds, while offering a sustained release into the ocular surface. Optimized NLC exhibited suitable physicochemical parameters, physical stability, sustained release of APG and MEL, and were biocompatible in vitro with a corneal cell line, and in ovo by using hen's egg chorioallantoic membrane test. In vitro and in vivo studies confirmed the NLC' ability to attenuate inflammation by reducing interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein 1 (MCP-1) cytokine levels and by decreasing inflammation in a rabbit model. These findings suggest that the co-encapsulation of APG and MEL into NLC could represent a promising strategy for managing ocular inflammatory conditions.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield D04 V1W8, Ireland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Alves MD, Clark RA, Hernandez DA, Bucci MP, Chen D, Efron PA, Wallet SM, Keselowsky BG, Maile R. MULTIMODAL NUCLEAR FACTOR-ERYTHROID-2-RELATED FACTOR (NRF2) THERAPY IN THE CONTEXT OF MAMMALIAN TARGET OF RAPAMYCIN (MTOR) INHIBITION REPROGRAMS THE ACUTE SYSTEMIC AND PULMONARY IMMUNE RESPONSE AFTER COMBINED BURN AND INHALATION INJURY. Shock 2024; 62:772-782. [PMID: 39178221 PMCID: PMC11956839 DOI: 10.1097/shk.0000000000002466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Severe burn injuries induce acute and chronic susceptibility to infections, which is largely attributed to a hyper-proinflammatory response followed by a chronic anti-inflammatory response. Concurrent inhalation injury (B + I) causes airway inflammation. Pulmonary macrophages and neutrophils are "hyperactive" with increased reactive oxygen (ROS) and nitrogen species (RONS) activity, but are unable to clear infection, causing airway damage upon activation. Nuclear factor-erythroid-2-related factor (NRF2) is a critical immunomodulatory component that induces compensatory anti-inflammatory pathways when activated. On the other hand, inhibition of mammalian target of rapamycin (mTOR) reduces proinflammatory responses. The therapeutic use of these targets is limited, as known modulators of these pathways are insoluble in saline and require long-term administration. A biocompatible NRF2 agonist (CDDO) and rapamycin (RAPA) poly(lactic-co-glycolic acid) (PLGA) microparticles (MP) were created, which we hypothesized would reduce the acute hyper-inflammatory response in our murine model of B + I injury. BI-injured mice that received CDDO-MP or both CDDO-MP and RAPA-MP (Combo-MP) an hour after injury displayed significant changes in the activation patterns of pulmonary and systemic immune genes and their associated immune pathways 48 h after injury. For example, mice treated with Combo-MP showed a significant reduction in inflammatory gene expression compared to untreated or CDDO-MP-treated mice. We also hypothesized that Combo-MP therapy would acutely decrease bacterial susceptibility after injury. BI-injured mice that received Combo-MP an hour after injury, inoculated 48 h later with Pseudomonas aeruginosa (PAO1), and sacrificed 48 h after infection displayed significantly decreased bacterial counts in the lungs and liver versus untreated B + I mice. This reduction in infection was accompanied by significantly altered lung and plasma cytokine profiles and immune reprogramming of pulmonary and splenic cells. Our findings strongly suggest that multimodal MP-based therapy holds considerable promise for reprogramming the immune response after burn injuries, particularly by mitigating the hyper-inflammatory phase and preventing subsequent susceptibility to infection.
Collapse
Affiliation(s)
- Matthew D. Alves
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Ryan A. Clark
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Denise A. Hernandez
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Madelyn P. Bucci
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Duo Chen
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Ben G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Yuan Z, Yan R, Fu Z, Wu T, Ren C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172240. [PMID: 38582114 DOI: 10.1016/j.scitotenv.2024.172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Lipid nanoparticles (LNPs) are promising materials and human-use approved excipients, with manifold applications in biomedicine. Researchers have tended to focus on improving the pharmacological efficiency and organ targeting of LNPs, while paid relatively less attention to the negative aspects created by their specific physicochemical properties. Here, we discuss the impacts of LNPs' physicochemical properties (size, surface hydrophobicity, surface charge, surface modification and lipid composition) on the adsorption-transportation-distribution-clearance processes and bio-nano interactions. In addition, since there is a lack of review emphasizing on toxicological profiles of LNPs, this review outlined immunogenicity, inflammation, hemolytic toxicity, cytotoxicity and genotoxicity induced by LNPs and the underlying mechanisms, with the aim to understand the properties that underlie the biological effects of these materials. This provides a basic strategy that increased efficacy of medical application with minimized side-effects can be achieved by modulating the physicochemical properties of LNPs. Therefore, addressing the effects of physicochemical properties on toxicity induced by LNPs is critical for understanding their environmental and health risks and will help clear the way for LNPs-based drugs to eventually fulfill their promise as a highly effective therapeutic agents for diverse diseases in clinic.
Collapse
Affiliation(s)
- Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zuyi Fu
- College of Rehabilitation, Captital Medical University, Beijing, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Maisel K, McClain CA, Bogseth A, Thomas SN. Nanotechnologies for Physiology-Informed Drug Delivery to the Lymphatic System. Annu Rev Biomed Eng 2023; 25:233-256. [PMID: 37000965 PMCID: PMC10879987 DOI: 10.1146/annurev-bioeng-092222-034906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Accompanying the increasing translational impact of immunotherapeutic strategies to treat and prevent disease has been a broadening interest across both bioscience and bioengineering in the lymphatic system. Herein, the lymphatic system physiology, ranging from its tissue structures to immune functions and effects, is described. Design principles and engineering approaches to analyze and manipulate this tissue system in nanoparticle-based drug delivery applications are also elaborated.
Collapse
Affiliation(s)
- Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA;
| | - Claire A McClain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
| | - Amanda Bogseth
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA;
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Hall HR, Mahung C, Dunn JLM, Kartchner LM, Seim RF, Cairns BA, Wallet SM, Maile R. Characterization of the Basal and mTOR-Dependent Acute Pulmonary and Systemic Immune Response in a Murine Model of Combined Burn and Inhalation Injury. Int J Mol Sci 2022; 23:8779. [PMID: 35955914 PMCID: PMC9368856 DOI: 10.3390/ijms23158779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Severe burn injury leads to a cascade of local and systemic immune responses that trigger an extreme state of immune dysfunction, leaving the patient highly susceptible to acute and chronic infection. When combined with inhalation injury, burn patients have higher mortality and a greater chance of developing secondary respiratory complications including infection. No animal model of combined burn and inhalation injury (B+I) exists that accurately mirrors the human clinical picture, nor are there any effective immunotherapies or predictive models of the risk of immune dysfunction. Our earlier work showed that the mechanistic/mammalian target of rapamycin (mTOR) pathway is activated early after burn injury, and its chemical blockade at injury reduced subsequent chronic bacterial susceptibility. It is unclear if mTOR plays a role in the exacerbated immune dysfunction seen after B+I injury. We aimed to: (1) characterize a novel murine model of B+I injury, and (2) investigate the role of mTOR in the immune response after B+I injury. Pulmonary and systemic immune responses to B+I were characterized in the absence or presence of mTOR inhibition at the time of injury. Data describe a murine model of B+I with inhalation-specific immune phenotypes and implicate mTOR in the acute immune dysfunction observed.
Collapse
Affiliation(s)
- Hannah R. Hall
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cressida Mahung
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julia L. M. Dunn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laurel M. Kartchner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roland F. Seim
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bruce A. Cairns
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shannon M. Wallet
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC 27599, USA
| | - Robert Maile
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|
7
|
Landh E, Wang R, Moir LM, Traini D, Young PM, Ong HX. Prospective nanoparticle treatments for lymphangioleiomyomatosis. Expert Opin Drug Deliv 2022; 19:75-86. [DOI: 10.1080/17425247.2022.2029401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Roger Wang
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Lyn M. Moir
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
8
|
Blei F. Update October 2020. Lymphat Res Biol 2020. [DOI: 10.1089/lrb.2020.29092.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Landh E, Moir LM, Traini D, Young PM, Ong HX. Properties of rapamycin solid lipid nanoparticles for lymphatic access through the lungs & part II: the effect of nanoparticle charge. Nanomedicine (Lond) 2020; 15:1947-1963. [PMID: 32812483 DOI: 10.2217/nnm-2020-0192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Lymphangioleiomyomatosis is characterized by smooth muscle-like cells in the lungs that spread to other organs via lymphatic vessels. Oral rapamycin is restricted by low bioavailability approximately 15%. The aim of the present study is to systematically investigate the effect of inhaled rapamycin solid lipid nanoparticles (Rapa-SLN) surface charge on efficacy and penetration into the lymphatics. Materials & methods: Rapa-SLN formulations with different charge: neutral, positive and negative, were produced and assessed for their physicochemical particle characteristics and efficacy in vitro. Results: Negative Rapa-SLNs were significantly faster at entering the lymphatic endothelium and more potent at inhibiting lymphanigiogenesis compared with neutral and positive Rapa-SLNs. Conclusion: Negative Rapa-SLNs showed efficient lymphatic access and should therefore be investigated further as a treatment for targeting extrapulmonary lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Lyn M Moir
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Hui X Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| |
Collapse
|