1
|
Tan R, Wu J, Wang C, Zhao Z, Zhang X, Zhong C, Tang Z, Zheng R, Du B, He Y, Sun Y, Zhou P. The develop of persistent luminescence nanoparticles with excellent performances in cancer targeted bioimaging and killing: a review. J Nanobiotechnology 2025; 23:299. [PMID: 40247320 PMCID: PMC12007383 DOI: 10.1186/s12951-025-03350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
The use of fluorescent nanomaterials in tumor imaging and treatment effectively avoids the original limitations of traditional tumor clinical diagnostic methods. The PLNPs emitted persistent luminescence after the end of excitation light. Owing to their superior optical properties, such as a reduced laser irradiation dose, spontaneous fluorescence interference elimination, and near-infrared imaging, PLNPs show great promise in tumor imaging. Moreover, they also achieve excellent anti-tumor therapeutic effects through surface modification and drug delivery. However, their relatively large size and limited surface modification capacity limit their ability to kill tumors effectively enough for clinical applications. Thus, this article reviews the synthesis and modification of PLNPs and the research progress in targeted tumor imaging and tumor killing. We also discuss the challenges and prospects of their future applications in these fields. This review has value for accelerating the design of PLNPs based platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Rongshuang Tan
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jianing Wu
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chunya Wang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhengyan Zhao
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoyuan Zhang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chang Zhong
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zihui Tang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Zheng
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Binhong Du
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yunhan He
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yuhua Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
- Department of Stomatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Ping Zhou
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Soleimani K, Beyranvand S, Souri Z, Ahmadian Z, Yari A, Faghani A, Shams A, Adeli M. Ferrocene/ β-cyclodextrin based supramolecular nanogels as theranostic systems. Biomed Pharmacother 2023; 166:115402. [PMID: 37660653 DOI: 10.1016/j.biopha.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-β-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.
Collapse
Affiliation(s)
- Khadijeh Soleimani
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zeinab Souri
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdollah Yari
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Azim Shams
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran.
| |
Collapse
|
3
|
Lee D, Shin J, Son H, Cheon SY, Lee Y, Park J, Koo H. Organic and inorganic nanomedicine for combination cancer therapies. NANOSCALE ADVANCES 2023; 5:1600-1610. [PMID: 36926565 PMCID: PMC10012875 DOI: 10.1039/d3na00043e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
In many cases, a single mode of cancer therapy shows limited efficacy in treating complex and heterogeneous tumors. To improve cancer treatment, combining chemo-, photodynamic-, photothermal-, radio-, and immunotherapy is clinically recognized. When different therapeutic treatments are combined, they often show synergetic effects that further improve therapeutic outcomes. In this review, we introduce nanoparticle (NP)-based combination cancer therapies that use organic and inorganic NPs. Liposomes, polymers, and exosomes can be prepared with amphiphilic properties, high physical stability, and low immune response to treat cancers in a multimodal way. Inorganic NPs, including upconversion, plasmonic, and mesoporous silica NPs, have emerged as a new technology for photodynamic-, photothermal-, and immunotherapy. These NPs can simultaneously carry multiple drug molecules and deliver them efficiently to tumor tissue, as demonstrated in many studies. In addition to reviewing recent advances in organic and inorganic NPs used in combination therapy for cancers, we also discuss their rational design and the outlook for future nanomedicine development.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Jeongsu Shin
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Hangyu Son
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Seo Young Cheon
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Yeeun Lee
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Joonhyuck Park
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
- Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| |
Collapse
|
4
|
Nosov VG, Toikka YN, Petrova AS, Butorlin OS, Kolesnikov IE, Orlov SN, Ryazantsev MN, Kolesnik SS, Bogachev NA, Skripkin MY, Mereshchenko AS. Brightly Luminescent (Tb xLu 1-x) 2bdc 3·nH 2O MOFs: Effect of Synthesis Conditions on Structure and Luminescent Properties. Molecules 2023; 28:molecules28052378. [PMID: 36903620 PMCID: PMC10005128 DOI: 10.3390/molecules28052378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.
Collapse
Affiliation(s)
- Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Yulia N. Toikka
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Anna S. Petrova
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Oleg S. Butorlin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Sergey N. Orlov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72 Koporskoe Shosse, 188540 Sosnovy Bor, Russia
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, ul. Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-951-677-5465
| |
Collapse
|
5
|
Grigorjevaite J, Katelnikovas A. Up-Converting K 2Gd(PO 4)(WO 4):20%Yb 3+,Ho 3+ Phosphors for Temperature Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:917. [PMID: 36769930 PMCID: PMC9917978 DOI: 10.3390/ma16030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Inorganic luminescent materials that can be excited with NIR radiation and emit in the visible spectrum have recently gained much scientific interest. Such materials can be utilized as anti-counterfeiting pigments, luminescent thermometers, bio-imaging agents, etc. In this work, we report the synthesis and optical properties of K2Gd(PO4)(WO4):Ho3+ and K2Gd(PO4)(WO4):20%Yb3+,Ho3+ powders. The single-phase samples were prepared by the solid-state reaction method, and the Ho3+ concentration was changed from 0.5% to 10% with respect to Gd3+. It is interesting to note that under 450 nm excitation, no concentration quenching was observed in K2Gd(PO4)(WO4):Ho3+ (at least up to 10% Ho3+) samples. However, adding 20% Yb3+ has caused a gradual decrease in Ho3+ emission intensity with an increase in its concentration. It turned out that this phenomenon is caused by the increasing probability of Ho3+ → Yb3+ energy transfer when Ho3+ content increases. K2Gd(PO4)(WO4):20%Yb3+,0.5%Ho3+ sample showed exceptionally high up-conversion (UC) emission stability in the 77-500 K range. The UC emission intensity reached a maximum at ca. 350 K, and the intensity at 500 K was around four times stronger than the intensity at 77 K. Moreover, the red/green emission ratio gradually increased with increasing temperature, which could be used for temperature sensing purposes.
Collapse
Affiliation(s)
| | - Arturas Katelnikovas
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
6
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
7
|
Krut’ko VA, Komova MG, Pominova DV, Nikiforova GE, Gavrikov AV, Petrova KV, Sadovnikov AA. Spectral-Luminescent Properties of Oxogermanate-Borates La3Gd11 – x – yYbxEryGe2B6O34 Prepared by Coprecipitation. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622602069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Liang L, Everest-Dass AV, Kostyuk AB, Khabir Z, Zhang R, Trushina DB, Zvyagin AV. The Surface Charge of Polymer-Coated Upconversion Nanoparticles Determines Protein Corona Properties and Cell Recognition in Serum Solutions. Cells 2022; 11:cells11223644. [PMID: 36429072 PMCID: PMC9688575 DOI: 10.3390/cells11223644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Applications of nanoparticles (NPs) in the life sciences require control over their properties in protein-rich biological fluids, as an NP quickly acquires a layer of proteins on the surface, forming the so-called "protein corona" (PC). Understanding the composition and kinetics of the PC at the molecular level is of considerable importance for controlling NP interaction with cells. Here, we present a systematic study of hard PC formation on the surface of upconversion nanoparticles (UCNPs) coated with positively-charged polyethyleneimine (PEI) and negatively-charged poly (acrylic acid) (PAA) polymers in serum-supplemented cell culture medium. The rationale behind the choice of UCNP is two-fold: UCNP represents a convenient model of NP with a size ranging from 5 nm to >200 nm, while the unique photoluminescent properties of UCNP enable direct observation of the PC formation, which may provide new insight into this complex process. The non-linear optical properties of UCNP were utilised for direct observation of PC formation by means of fluorescence correlation spectroscopy. Our findings indicated that the charge of the surface polymer coating was the key factor for the formation of PC on UCNPs, with an ensuing effect on the NP-cell interactions.
Collapse
Affiliation(s)
- Liuen Liang
- MQ Photonics Centre, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Alexey B. Kostyuk
- Laboratory of Optical Theranostics, Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia
| | - Zahra Khabir
- MQ Photonics Centre, Macquarie University, Sydney, NSW 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Macquarie University, Sydney, NSW 2109, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
- Correspondence:
| | - Andrei V. Zvyagin
- MQ Photonics Centre, Macquarie University, Sydney, NSW 2109, Australia
- Laboratory of Optical Theranostics, Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
9
|
Interactions of yttrium and lanthanum fluorides with other fluorides. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
11
|
Gerelkhuu Z, Lee YI, Yoon TH. Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3470. [PMID: 36234598 PMCID: PMC9565472 DOI: 10.3390/nano12193470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug delivery, bioimaging, biosensing, and photodynamic therapy for specific cancers. This review describes the general mechanisms of upconversion, synthesis methods, and potential applications in biology and their biological responses. Additionally, the biological toxicity of UCNMs is explained and summarized with the associated intracellular association mechanisms. Finally, the prospects and future challenges of UCNMs at the clinical level in biological applications are described, along with a summary of opportunity for biological as well as clinical applications of UCNMs.
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
12
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
13
|
Pominova D, Romanishkin I, Proydakova V, Kuznetsov S, Grachev P, Ryabova A, Tabachkova NY, Fedorov P, Loschenov V. Study of synthesis temperature effect on β-NaGdF 4: Yb 3+, Er 3+upconversion luminescence efficiency and decay time using maximum entropy method. Methods Appl Fluoresc 2022; 10. [PMID: 35263723 DOI: 10.1088/2050-6120/ac5bdc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/09/2022] [Indexed: 11/11/2022]
Abstract
Upconversion materials have several advantages for many applications due to their great potential in converting infrared light to visible. For practical use, it is necessary to achieve high intensity of UC luminescence, so the studies of the optimal synthesis parameters for upconversion nanoparticles are still going on. In the present work, we analyzed the synthesis temperature effect on the efficiency and luminescence decay of β-NaGd0.78Yb0.20Er0.02F4 (15-25 nm) upconversion nanoparticles with hexagonal crystal structure synthesized by anhydrous solvothermal technique. The synthesis temperature was varied in the 290-320°C range. The synthesis temperature was shown to have a significant influence on the upconversion luminescence efficiency and decay time. The coherent scattering domain linearly depended on the synthesis temperature and was in the range 13.1-22.3 nm, while the efficiency of the upconversion luminescence increases exponentially from 0.02 to 0.10% under 1 W/cm2 excitation. For a fundamental analysis of the reasons for the upconversion luminescence intensity dependence on the synthesis temperature, it was proposed to use the maximum entropy method for luminescence decay kinetics processing. This method does not require a preliminary setting of the number of exponents and, due to this, makes it possible to estimate additional components in the luminescence decay kinetics, which are attributed to different populations of rare-earth ions in different conditions. Two components in the green luminescence and one component in the red luminescence decay kinetics were revealed for nanoparticles prepared at 290-300°C. An intense short and a weak long component in green luminescence decay kinetics could be associated with two different populations of ions in the surface quenching layer and the crystal core volume. With an increase in the synthesis temperature, the second component disappears, and the decay time increases due to an increase in the number of ions in the crystal core volume and a more uniform distribution of dopants.
Collapse
Affiliation(s)
- Daria Pominova
- Prokhorov General Physics Institute RAS, Vavilova str., 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Igor Romanishkin
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Vera Proydakova
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Sergei Kuznetsov
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Pavel Grachev
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Anastasia Ryabova
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Natalie Yu Tabachkova
- Prokhorov General Physics Institute RAS, Vavilova str. 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Pavel Fedorov
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Victor Loschenov
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| |
Collapse
|
14
|
Rodríguez-Sevilla P, Thompson SA, Jaque D. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
| | - Sebastian A. Thompson
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) C/Faraday 9 Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal Ctra. Colmenar km. 9,100 Madrid 28034 Spain
| |
Collapse
|