1
|
Singh D, Thakur A. A Narrative Review on Metal-Organic Frameworks as Dual-Functional Nanocarriers: Advancing Chemo-Photothermal Therapy for Precision Cancer Treatment. Photobiomodul Photomed Laser Surg 2025. [PMID: 40337794 DOI: 10.1089/photob.2025.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Background: Metal-organic frameworks (MOFs) have emerged as promising multifunctional nanocarriers in cancer therapy due to their high porosity, tunable architecture, and ability to integrate dual treatment modalities. Objective: Among these, MOF-based chemo-photothermal therapy (CPTT) has gained significant attention as it enhances the efficacy of traditional chemotherapy through localized hyperthermia, thereby overcoming drug resistance and improving tumor targeting. Materials and Methods: MOFs can encapsulate chemotherapeutic agents while simultaneously acting as photothermal conversion agents upon near-infrared irradiation. Results: This mini-review explores the recent advancements in MOF-based CPTT, highlighting key developments such as stimuli-responsive drug release, metal-enhanced photothermal effects, and hybrid MOF nanostructures. Furthermore, we discuss their potential for theranostic applications, integrating imaging and therapy, and address the key challenges associated with biocompatibility, stability, and clinical translation. The enhanced therapeutic efficacy, biocompatibility, and remarkable targeting make the system as dual system for theranostics as well as targeting purpose. Conclusions: The future of MOF-based CPTT lies in the development of biodegradable, targeted, and multifunctional MOFs, offering a pathway toward personalized, precision-driven oncological treatments.
Collapse
Affiliation(s)
- Dilpreet Singh
- School of Pharmaceutical Sciences, CT University, Sidhwan Khurd, India
| | - Akshay Thakur
- School of Pharmaceutical Sciences, CT University, Sidhwan Khurd, India
| |
Collapse
|
2
|
Xing W, Li T, Yang G, Wu S, Pang B, Xu Y, Qian X, Zhu W. Thermo-responsive gold nanorod vesicles for combined NIR-II photothermal therapy and chemotherapy of solid tumors. Acta Biomater 2025; 192:353-365. [PMID: 39603577 DOI: 10.1016/j.actbio.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Photothermal therapy (PTT) is a promising treatment strategy for malignant tumors. Photothermal agents which can achieve efficient photothermal conversion in the NIR-II region plays crucial roles in this remedy. Here, we report one type of thermo-responsive gold nanorod vesicles USGRV-17-AAG for combined NIR-II photothermal therapy and chemotherapy of solid tumors. The nanovesicles are formed by self-assembly of gold nanorods modified with amphiphilic polymers (PEG45-b-PS450) and UCST-type polymers (P(AAm-co-AN)), and are loaded with the heat shock protein inhibitor 17-AAG. Upon 1064 nm laser irradiation, USGRV-17-AAG exhibits a high photothermal conversion efficiency (65.1 %) and thus can achieve temperature responsive release of tanespimycin (17-AAG), an inhibitor of HSP90. The combination of NIR-II photothermal therapy and chemotherapy can effectively eliminate tumor cells and inhibit the expression of HSP90. Intravenous injection of USGRV-17-AAG followed by 1064 nm laser irradiation revealed efficacious tumor ablation of tumor-bearing mice, with a tumor growth inhibition rate of 98.86 %. Therefore, USGRV-17-AAG can produce efficient anti-tumor effects and provides an alternative approach to the treatment of malignant tumors. STATEMENT OF SIGNIFICANCE: Photothermal conversion agents (PTAs) based on the near-infrared II (NIR-II) window are currently attracting significant attention for their promising development and diverse applications. In this study, thermosensitive drug-loaded nanovesicles, USGRV-17-AAG, were designed to enable NIR-II photothermal therapy in combination with chemotherapy. These nanovesicles were loaded with the heat shock protein 90 (HSP90) inhibitor 17-AAG, which effectively inhibits HSP90 expression and enhances the therapeutic efficacy of photothermal treatment. Additionally, USGRV-17-AAG exhibited efficient photothermal conversion (65.1 %) under 1064 nm laser irradiation and enabled temperature-responsive drug release through the action of surface-modified upper critical solution temperature (UCST) polymers. This nanocarrier, with enhanced NIR-II photothermal therapy, might offer a promising solution for anti-tumor treatment.
Collapse
Affiliation(s)
- Wenqian Xing
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ting Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guangze Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuqin Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bailu Pang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Pallod S, Fuller G, Chowdhury T, Rege K. Gold nanobipyramids-based laser-activated sealants for effective skin sealing and repair. Int J Hyperthermia 2024; 41:2301035. [PMID: 38318887 DOI: 10.1080/02656736.2023.2301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Anisotropic gold nanostructures have gained increased attention for biomedical applications because of their remarkable optical properties. An emerging type of gold nanostructure-gold nanobipyramids (AuNBP)-has been shown to exhibit superior absorption properties compared to conventionally used gold nanoparticles, which makes them attractive for photothermal applications. We generated a high-shape-purity dispersion of AuNBP using a seed-mediated method and embedded them as photothermal conversion agents in a silk fibroin matrix to investigate their efficacy in photothermal sealing of incisional wounds in immunocompetent mice. These AuNBP-doped laser-activated sealants, or AuNBP-LASE were able to absorb near-infrared laser energy and convert it to heat, thereby inducing transient hyperthermia in the wound and the surrounding tissue. This photothermal conversion facilitated rapid sealing of the skin tissue by the AuNBP-LASE, which resulted in faster functional recovery of skin barrier function compared to nylon sutures at the early stages of repair. Further, the biomechanical properties of the healing skin closed with AuNBP-LASE those of intact skin more rapidly compared to incisions approximated with sutures. Histology studies indicated higher penetration of the LASE within the volume of the incision in skin tissue, lower scab formation, and a similar epidermal gap compared to conventional suturing. These results demonstrate that AuNBP-LASEs can be effective as wound approximation devices for photothermal sealing.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Gareth Fuller
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Trishita Chowdhury
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Ferreira LAD, Rambo C, Gomes MJK, Ribeiro KDP, Nishimoto GDA, Tisatto LGDR, Fritzen LD, da Cruz YB, Kambara AL, Rodrigues MJVB, Nogueira GA, Salvador HD, Oliveira-Toré CDF, Reason IJDM, Telles JEQ, Tomiotto-Pellissier F. Nanoparticles and phototherapy combination as therapeutic alternative in prostate cancer: A scoping review. Eur J Pharmacol 2023; 939:175421. [PMID: 36435234 DOI: 10.1016/j.ejphar.2022.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, the development of more efficient therapies has become a field of great interest, and photothermal therapy (PTT) and photodynamic therapy (PDT) are promising alternatives, given their high capacity to cause cell injury and consequent tumor ablation. Phototherapy, along with chemotherapy, has also been shown to be more effective than pharmacotherapy alone. Free molecules used as photosensitizers are rapidly cleared from the body, do not accumulate in the tumor, and are primarily hydrophobic and require toxic solvents. Thus, the use of nanoparticles can be an effective strategy, given their ability to carry or bind to different molecules, protecting them from degradation and allowing their association with other surface ligands, which favors permeation and retention at the tumor site. Despite this, there is still a gap in the literature regarding the use of phototherapy in association with nanotechnology for the treatment of CaP. In this scoping review, it was found that most of the particles studied could act synergistically through PDT and PTT. In addition, fluorescent quenchers can act as diagnostic and therapeutic tools. However, future clinical studies should be performed to confirm the benefits and safety of the combination of nanoparticles and phototherapy for CaP.
Collapse
Affiliation(s)
| | - Camila Rambo
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucas Diego Fritzen
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Aline Lika Kambara
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | - Fernanda Tomiotto-Pellissier
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil; Laboratory of Immunopathology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Application of the in-situ biological detoxification polymer for the improvement of AFB1 detoxification. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Fu Z, Jia B. Advances in the role of heat shock protein 90 in prostate cancer. Andrologia 2022; 54:e14376. [PMID: 35075667 DOI: 10.1111/and.14376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is one of the most common tumours in adult men and heat shock proteins play an important biological function in prostate cancer as molecular chaperones involved in the pathogenesis, diagnosis, treatment and prognosis of a wide range of tumours. Among them, increased expression of HSP90, a member of the heat shock protein family, is associated with resistance to prostate cancer denervation and can promote tumour resistance, invasion and bone metastasis, thus making prostate cancer more difficult to treat. Therefore, targeting HSP90 in prostate cancer could be a promising strategy for oncology treatment. This paper reviews the structure and function of HSP90, HSP90-mediated denudation resistance in prostate cancer and HSP90-targeted antitumor therapy, with the aim of providing a new theoretical basis for prostate cancer treatment options in the clinical setting.
Collapse
Affiliation(s)
- Zheng Fu
- Guizhou Medical University, Guiyang, China
| | - Benzhong Jia
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Su Z, Kim C, Renner JN. Quantification of the effects of hydrophobicity and mass loading on the effective coverage of surface-immobilized elastin-like peptides. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Clearable Nanoparticles for Cancer Photothermal Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33543458 DOI: 10.1007/978-3-030-58174-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Nanoparticles are important mediators for cancer photothermal therapy (PTT) where they can efficiently convert photon energy into heat and ablate the surrounding cancer cells with superior spatial and temporal precision. Recent decades have witnessed a booming development of numerous formulations of PTT nanoparticles that exhibit outstanding anti-tumor efficacy in preclinical studies. However, their clinical translation has been mined by safety concerns, especially their long-term impact on human body. Biodegradable nanoparticles that can be excreted after PTT, therefore, are gaining popularity due to their biocompatibility and improved safety profiles. This chapter provides an update on the progress in clearable PTT nanoparticles for cancer treatment. We discuss their design, synthesis strategy, and physicochemical properties relevant to photothermal performance. We also review their biodistribution patterns and in vivo anti-tumor efficacy, along with their degradation mechanism and clearance kinetics. Lastly, we present a brief overview of the imaging techniques to noninvasively monitor the degradation of PTT nanoparticles.
Collapse
|
9
|
Preliminary Assays towards Melanoma Cells Using Phototherapy with Gold-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10081536. [PMID: 32764377 PMCID: PMC7466595 DOI: 10.3390/nano10081536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Cancer like melanoma is a complex disease, for which standard therapies have significant adverse side effects that in most cases are ineffective and highly unspecific. Thus, a new paradigm has come with the need of achieving alternative (less invasive) and effective therapies. In this work, biocompatible gold nanoparticles (GNPs) coated with hyaluronic acid and oleic acid were prepared and characterized in terms of size, morphology and cytotoxicity in the presence of Saccharomyces cerevisiae, and two cell lines, the keratinocytes (healthy skin cells, HaCat) and the melanoma cells (B16F10). Results showed that these GNPs absorb within the near-infrared region (750–1400 nm), in the optical therapeutic window (from 650 to 1300 nm), in contrast to other commercial gold nanoparticles, which enables light to penetrate into deep skin layers. A laser emitting in this region was applied and its effect also analyzed. The coated GNPs showed a spherical morphology with a mean size of 297 nm without cytotoxic effects towards yeast and tested cell lines. Nevertheless, after laser irradiation, a reduction of 20% in B16F10 cell line viability was observed. In summary, this work appears to be a promising strategy for the treatment of non-metastatic melanoma or other superficial tumors.
Collapse
|
10
|
Sun J, Li Y, Teng Y, Wang S, Guo J, Wang C. NIR-controlled HSP90 inhibitor release from hollow mesoporous nanocarbon for synergistic tumor photothermal therapy guided by photoacoustic imaging. NANOSCALE 2020; 12:14775-14787. [PMID: 32627780 DOI: 10.1039/d0nr02896g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photothermal therapy (PTT) has been widely studied for tumor therapy. However, the clinical transformation of PTT has encountered significant challenges in tumor recurrence, because the uneven hyperthermia in tumor tissues can result in the survival of cancer cells in the lower temperature regions close to blood vessels (as the blood flow can dissipate the localized heat). It is therefore important for clinical treatments to retain the excellent therapeutic efficiency of PTT at relatively low temperatures. In this article, innocuous hollow mesoporous carbon spheres (HMCS) with a high photothermal conversion efficiency were obtained by a one-pot synthesis method. After modification with DSPE-PEG, the HMCS-PEG exhibited a superior stability in biomedia, which is beneficial for further biological applications. Interestingly, combined with hydrophobic gambogic acid (GA) which can downregulate heat shock protein 90 (HSP90), the HMCS-PEG-GA system showed a significant NIR-enhanced tumor therapeutic effect in vitro and in vivo under mild temperature conditions (∼43 °C), and the combination index (CI) value of HMCS-PEG-GA was found to be 0.72. Meanwhile, this nano-system possessed good photothermal imaging and photoacoustic imaging abilities. Guided by the photoacoustic imaging signal, HMCS-PEG-GA showed enormous potential for use in accurate tumor diagnosis and mild-temperature PPT treatment applications, which is very important for clinical transformation of this nano-system.
Collapse
Affiliation(s)
- Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.
| | - Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.
| | - Yilong Teng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.
| | - Sheng Wang
- Department of Colorectal Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.
| |
Collapse
|
11
|
Gao G, Jiang YW, Sun W, Guo Y, Jia HR, Yu XW, Pan GY, Wu FG. Molecular Targeting-Mediated Mild-Temperature Photothermal Therapy with a Smart Albumin-Based Nanodrug. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900501. [PMID: 31282114 DOI: 10.1002/smll.201900501] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Photothermal therapy (PTT) usually requires hyperthermia >50 °C for effective tumor ablation, which inevitably induces heating damage to the surrounding normal tissues/organs. Moreover, low tumor retention and high liver accumulation are the two main obstacles that significantly limit the efficacy and safety of many nanomedicines. To solve these problems, a smart albumin-based tumor microenvironment-responsive nanoagent is designed via the self-assembly of human serum albumin (HSA), dc-IR825 (a cyanine dye and a photothermal agent), and gambogic acid (GA, a heat shock protein 90 (HSP90) inhibitor and an anticancer agent) to realize molecular targeting-mediated mild-temperature PTT. The formed HSA/dc-IR825/GA nanoparticles (NPs) can escape from mitochondria to the cytosol through mitochondrial disruption under near-infrared (NIR) laser irradiation. Moreover, the GA molecules block the hyperthermia-induced overexpression of HSP90, achieving the reduced thermoresistance of tumor cells and effective PTT at a mild temperature (<45 °C). Furthermore, HSA/dc-IR825/GA NPs show pH-responsive charge reversal, effective tumor accumulation, and negligible liver deposition, ultimately facilitating synergistic mild-temperature PTT and chemotherapy. Taken together, the NIR-activated NPs allow the release of molecular drugs more precisely, ablate tumors more effectively, and inhibit cancer metastasis more persistently, which will advance the development of novel mild-temperature PTT-based combination strategies.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xin-Wang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Guang-Yu Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
12
|
Yang Q, Li P, Ran H, Wan J, Chen H, Chen H, Wang Z, Zhang L. Polypyrrole-coated phase-change liquid perfluorocarbon nanoparticles for the visualized photothermal-chemotherapy of breast cancer. Acta Biomater 2019; 90:337-349. [PMID: 30936037 DOI: 10.1016/j.actbio.2019.03.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
A theranostic nanoplatform (DTX/PFH@PPy-FA) for multi-modal imaging-guided photothermal-chemotherapy has been constructed. Lipid-perfluorohexane (PFH) nanodroplet loaded with docetaxel (DTX) was coated with a polypyrrole (PPy) shell. Then the folic acid (FA) molecule with active tumor-targeting function was modified on the surface of PPy shell. Due to the good photothermal conversion performance, PPy shell can raise the temperature under the near infrared laser irradiation, which not only produces photothermal effect to kill tumor cells, but also promotes liquid-gas phase change of PFH, and produces ultrasound imaging effect. The results of photothermal experiment and imaging experiment confirmed that the obtained DTX/PFH@PPy-FA possessed good photothermal, photoacoustic imaging and ultrasound imaging effects in vitro and in vivo. The results of in vitro cell experiments showed that DTX/PFH@PPy-FA had a active targeting ability to tumor cells, and its photothermal-chemotherapy synergistically inhibited the proliferation of tumor cells. In vivo study on 4T1-bearing BALB/c mice indicated that the photothermal-chemotherapy of DTX/PFH@PPy-FA not only effectively inhibited the growth of 4T1 breast cancer, but also inhibited lung metastasis. This multifunctional nanoparticle is expected to become a new nanoplatform for the visualized photothermal-chemotherapy of cancer. STATEMENT OF SIGNIFICANCE: In this work, we presented a multi-modal imaging-guided photothermal-chemotherapy theranostic nanoplatform (DTX/PFH@PPy-FA) for visualized treatment of breast cancer. The docetaxel (DTX) loaded perfluorohexane (PFH) nanodroplets (DTX/PFH@SPC) were firstly prepared and then coated with polypyrrole shell (PPy). Then, PEGylated folic acid was covalently modified to obtain the folate-targeted multifunctional nanoparticle (DTX/PFH@PPy-FA). Due to the good photothermal conversion performance, PPy shell can raise the temperature under the near infrared laser irradiation, which not only produces photothermal effect to kill tumor cells, but also promotes liquid-gas phase change of PFH, and produces good ultrasound imaging effect. The PPy shell also imparts photoacoustic imaging characteristics to the nanoparticles. Experimental results show that our prepared DTX/PFH@PPy-FA possesses folic acid-mediated tumor targeting ability, ultrasound and photoacoustic imaging, and photothermal-chemotherapy synergistic effect. This multi-functional nanoparticle is expected to become a new platform for the visualized photothermal-chemotherapy of breast cancer.
Collapse
Affiliation(s)
- Qiang Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400016, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400016, PR China
| | - Jingyuan Wan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Huan Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Huali Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400016, PR China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
13
|
Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello J. Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2019; 2:100007. [PMID: 32159144 PMCID: PMC7061623 DOI: 10.1016/j.mtbio.2019.100007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The topic of self-assembled structures based on elastin-like recombinamers (ELRs, i.e., elastin-like polymers recombinantly bio-produced) has released a noticeable amount of references in the last few years. Most of them are intended for biomedical applications. In this review, a complete revision of the bibliography is carried out. Initially, the self-assembly (SA) concept is considered from a general point of view, and then ELRs are described and characterized based on their intrinsic disorder. A classification of the different self-assembled ELR-based structures is proposed based on their morphologies, paying special attention to their tentative modeling. The impact of the mechanism of SA on these biomaterials is analyzed. Finally, the implications of ELR SA in biological systems are considered.
Collapse
Affiliation(s)
| | | | - J.C. Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
14
|
Zhang X, Du J, Guo Z, Yu J, Gao Q, Yin W, Zhu S, Gu Z, Zhao Y. Efficient Near Infrared Light Triggered Nitric Oxide Release Nanocomposites for Sensitizing Mild Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801122. [PMID: 30775223 PMCID: PMC6364593 DOI: 10.1002/advs.201801122] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/15/2018] [Indexed: 04/14/2023]
Abstract
Mild photothermal therapy (PTT), as a new anticancer therapeutic strategy, faces big challenges of limited therapeutic accuracy and side-effects due to uneven heat distribution. Here, near infrared triggered nitric oxide (NO) release nanocomposites based on bismuth sulfide (Bi2S3) nanoparticles and bis-N-nitroso compounds (BNN) are constructed for NO-enhanced mild photothermal therapy. Upon 808 nm irradiation, the high photothermal conversion efficiency and on-demand NO release are realized simultaneously. Due to the unique properties of NO, enhanced antitumor efficacy of mild PTT based on BNN-Bi2S3 nanocomposites is achieved in vitro and in vivo. Mechanism studies reveal that the exogenous NO from BNN-Bi2S3 could not only impair the autophagic self-repairing ability of tumor cells in situ, but also diffuse to the surrounding cells to enhance the therapeutic effect. This work points out a strategy to overcome the difficulties in mild PTT, and has potentials for further exploitation of NO-sensitized synergistic cancer therapy.
Collapse
Affiliation(s)
- Xiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Medical UniversityTaiyuanShanxi030001China
| | - Zhao Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jie Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of EducationSchool of Life Science and TechnologyXidian UniversityXi'anShaanxi710126China
| | - Qin Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanosciences and TechnologyChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
15
|
Zong J, Cobb SL, Cameron NR. Short elastin-like peptide-functionalized gold nanoparticles that are temperature responsive under near-physiological conditions. J Mater Chem B 2018; 6:6667-6674. [PMID: 32254875 DOI: 10.1039/c8tb01827h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thermally-responsive, short elastin-like peptides (ELPs) of sequence VPGVG (V, P and G represent valine, proline and glycine respectively), bearing different N-terminal functional groups (amino-, N-acetyl and thiol) and a non-ionisable C-terminal group, were prepared by solid phase synthesis. The conformation and aggregation properties of the ELPs were studied in different pH aqueous buffer solutions using UV-vis spectroscopy and circular dichroism (CD). The thiol-capped ELPs were used to prepare functionalized gold nanoparticles (GNPs), which were found to undergo thermally-triggered reversible aggregation at 40 °C. The peptide conformation and nanoparticle aggregation behaviour of the ELP-GNPs in aqueous solution were investigated by transmission electron microscopy (TEM), circular dichroism (CD) and UV-vis spectroscopy. It was found that the ELP-GNP conjugates were capable of reversible, thermally triggered aggregation at near-physiological temperatures (transition temperature of 40 °C at pH = 7.4), opening up applications in photothermal cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Jingyi Zong
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | | | | |
Collapse
|
16
|
Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo. Target Oncol 2018; 13:481-494. [DOI: 10.1007/s11523-018-0577-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Lin FC, Hsu CH, Lin YY. Nano-therapeutic cancer immunotherapy using hyperthermia-induced heat shock proteins: insights from mathematical modeling. Int J Nanomedicine 2018; 13:3529-3539. [PMID: 29950833 PMCID: PMC6016258 DOI: 10.2147/ijn.s166000] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nano-therapeutic utilizing hyperthermia therapy in combination with chemotherapy, surgery, and radiation is known to treat various types of cancer. These cancer treatments normally focus on reducing tumor burden. Nevertheless, it is still challenging to confine adequate thermal energy in a tumor and obtain a complete tumor ablation to avoid recurrence and metastasis while leaving normal tissues unaffected. Consequently, it is critical to attain an alternative tumor-killing mechanism to circumvent these challenges. Studies have demonstrated that extracellular heat shock proteins (HSPs) activate antitumor immunity during tumor cell necrosis. Such induced immunity was further shown to assist in regressing tumor and reducing recurrence and metastasis. However, only a narrow range of thermal dose is reported to be able to acquire the optimal antitumor immune outcome. Consequently, it is crucial to understand how extracellular HSPs are generated. MATERIALS AND METHODS In this work, a predictive model integrating HSP synthesis mechanism and cell death model is proposed to elucidate the HSP involvement in hyperthermia cancer immune therapy and its relation with dead tumor cells. This new model aims to provide insights into the thermally released extracellular HSPs by dead tumor cells for a more extensive set of conditions, including various temperatures and heating duration time. RESULTS Our model is capable of predicting the optimal thermal parameters to generate maximum HSPs for stimulating antitumor immunity, promoting tumor regression, and reducing metastasis. The obtained nonlinear relation between extracellular HSP concentration and increased dead cell number, along with rising temperature, shows that only a narrow range of thermal dose is able to generate the optimal antitumor immune result. CONCLUSION Our predictive model is capable of predicting the optimal temperature and exposure time to generate HSPs involved in the antitumor immune activation, with a goal to promote tumor regression and reduce metastasis.
Collapse
Affiliation(s)
- Fang-Chu Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Chao-Hsiung Hsu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Yung-Ya Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Wang S, Xin J, Zhang L, Zhou Y, Yao C, Wang B, Wang J, Zhang Z. Cantharidin-encapsulated thermal-sensitive liposomes coated with gold nanoparticles for enhanced photothermal therapy on A431 cells. Int J Nanomedicine 2018; 13:2143-2160. [PMID: 29692611 PMCID: PMC5901154 DOI: 10.2147/ijn.s156240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Plasmonic nanostructure-mediated photothermal therapy (PTT) is a promising alternative therapy for the treatment of skin cancer and other diseases. However, the insufficient efficiency of PTT at irradiation levels tolerable to tissues and the limited biodegradability of nanomaterials are still crucial challenges. In this study, a novel nanosystem for PTT based on liposome–nanoparticle assemblies (LNAs) was established. Materials and methods Thermal-sensitive liposomes (TSLs) encapsulating cantharidin (CTD) were coated with gold nanoparticles (GNPs) and used in near-infrared (NIR) illumination-triggered PTT and thermally induced disruption on A431 cells. Results The coated GNPs disintegrated into small particles of 5–6 nm after disruption of TSLs, allowing their clearance by the liver and kidneys. CTD encapsulated in the TSLs was released into cytoplasm after PTT. The released CTD increased the apoptosis of PTT-treated tumor cells by blocking the heat shock response (HSR) and inhibiting the expression of HSP70 and BAG3 inhibiting the expression of HSP70 and BAG3 with the synergistic enhancement of CTD, the new nanosystem CTD-encapsulated TSLs coated with GNPs (CTD-TSL@GNPs) had an efficient PTT effect using clinically acceptable irradiation power (200 mW//cm2) on A431 cells. Conclusion The developed CTD-TSL@GNPs may be a promising PTT agent for clinical skin cancer therapy.
Collapse
Affiliation(s)
- Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yicheng Zhou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Bing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
19
|
Gutiérrez-Valenzuela CA, Esquivel R, Guerrero-Germán P, Zavala-Rivera P, Rodríguez-Figueroa JC, Guzmán-Z R, Lucero-Acuña A. Evaluation of a combined emulsion process to encapsulate methylene blue into PLGA nanoparticles. RSC Adv 2018. [DOI: 10.1039/c7ra12296a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The delivery of photosensitizer compounds using biodegradable nanoparticles could improve dosage, controlled release and its bioavailability.
Collapse
Affiliation(s)
| | - Reynaldo Esquivel
- National Council of Science and Technology of Mexico
- Ciudad de Mexico
- Mexico
| | | | - Paul Zavala-Rivera
- Department of Chemical and Metallurgical Engineering
- University of Sonora
- Hermosillo
- Mexico
| | | | - Roberto Guzmán-Z
- Department of Chemical and Environmental Engineering
- University of Arizona
- Tucson
- USA
| | - Armando Lucero-Acuña
- Department of Chemical and Metallurgical Engineering
- University of Sonora
- Hermosillo
- Mexico
| |
Collapse
|
20
|
Crawford BM, Shammas RL, Fales AM, Brown DA, Hollenbeck ST, Vo-Dinh T, Devi GR. Photothermal ablation of inflammatory breast cancer tumor emboli using plasmonic gold nanostars. Int J Nanomedicine 2017; 12:6259-6272. [PMID: 28894365 PMCID: PMC5584896 DOI: 10.2147/ijn.s141164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Inflammatory breast cancer (IBC) is rare, but it is the most aggressive subtype of breast cancer. IBC has a unique presentation of diffuse tumor cell clusters called tumor emboli in the dermis of the chest wall that block lymph vessels causing a painful, erythematous, and edematous breast. Lack of effective therapeutic treatments has caused mortality rates of this cancer to reach 20%–30% in case of women with stage III–IV disease. Plasmonic nanoparticles, via photothermal ablation, are emerging as lead candidates in next-generation cancer treatment for site-specific cell death. Plasmonic gold nanostars (GNS) have an extremely large two-photon luminescence cross-section that allows real-time imaging through multiphoton microscopy, as well as superior photothermal conversion efficiency with highly concentrated heating due to its tip-enhanced plasmonic effect. To effectively study the use of GNS as a clinically plausible treatment of IBC, accurate three-dimensional (3D) preclinical models are needed. Here, we demonstrate a unique in vitro preclinical model that mimics the tumor emboli structures assumed by IBC in vivo using IBC cell lines SUM149 and SUM190. Furthermore, we demonstrate that GNS are endocytosed into multiple cancer cell lines irrespective of receptor status or drug resistance and that these nanoparticles penetrate the tumor embolic core in 3D culture, allowing effective photothermal ablation of the IBC tumor emboli. These results not only provide an avenue for optimizing the diagnostic and therapeutic application of GNS in the treatment of IBC but also support the continuous development of 3D in vitro models for investigating the efficacy of photothermal therapy as well as to further evaluate photothermal therapy in an IBC in vivo model.
Collapse
Affiliation(s)
- Bridget M Crawford
- Fitzpatrick Institute for Photonics, Duke University.,Department of Biomedical Engineering, Duke University
| | | | - Andrew M Fales
- Fitzpatrick Institute for Photonics, Duke University.,Department of Biomedical Engineering, Duke University
| | - David A Brown
- Department of Surgery, Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center
| | - Scott T Hollenbeck
- Department of Surgery, Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University.,Department of Biomedical Engineering, Duke University.,Department of Chemistry, Duke University
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences.,Duke Cancer Institute, Women's Cancer Program, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
21
|
Engineering of multifunctional temperature-sensitive liposomes for synergistic photothermal, photodynamic, and chemotherapeutic effects. Int J Pharm 2017. [PMID: 28642202 DOI: 10.1016/j.ijpharm.2017.06.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heterogeneity of cancer cells and drug resistance require multiple therapeutic approaches for comprehensive treatment. In this study, temperature-sensitive liposomes containing anti-cancer agent tanespimycin (17-AAG) and photosensitizer IR 820 were developed for combination of phototherapy and chemotherapy. The temperature-sensitive liposomes composed of DPPC, cholesterol, DSPE-PEG, 17-AAG, and IR 820 (LP-AI) at weight ratio of 35/15/3/2/2 were formulated as a thin film using extrusion and evaluated for particle size, morphology and drug release profile. Furthermore, the anticancer effect of combined therapy was examined in vitro and in vivo in SCC-7 and MCF-7 cell lines. As a result, LP-AI was prepared at particle size of 166.7±1.3nm, PDI of 0.153±0.012, and ζ-potential of -32.6±0.8mV. After NIR irradiation (660 and 808nm laser), LP-AI could generate heat and ROS and enhance drug release from nanoparticles which were useful to kill the cancer cells. These were confirmed by in vitro cytotoxicity as well as in vivo effective ablation of tumors. In conclusion, fast drug release and enhanced treatment efficacy of LP-AI indicate the potential of integrating photo- and chemotherapy for synergistic anti-cancer effects.
Collapse
|
22
|
Yang Y, Zhu L, Xia F, Gong B, Xie A, Li S, Huang F, Wang S, Shen Y, Weaver DT. A novel 5-FU/rGO/Bce hybrid hydrogel shell on a tumor cell: one-step synthesis and synergistic chemo/photo-thermal/photodynamic effect. RSC Adv 2017. [DOI: 10.1039/c6ra25834d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A novel drug-loaded inorganic nanoparticle–biomolecule hybrid hydrogel shell on tumor cells was firstly prepared.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Lin Zhu
- Institute of Health Sciences
- Anhui University
- Hefei 230601
- P. R. China
| | - Feng Xia
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Baoyou Gong
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Anjian Xie
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Shikuo Li
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - Yuhua Shen
- School of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230601
- P. R. China
| | - David T. Weaver
- Institute of Health Sciences
- Anhui University
- Hefei 230601
- P. R. China
| |
Collapse
|
23
|
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics 2017; 1:1-22. [PMID: 28191450 PMCID: PMC5298883 DOI: 10.7150/ntno.17109] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response, and, if required, initiate secondary treatments. Recent in vivo experiments demonstrate the promise of using theranostics in the clinic. In this paper, we review the use of remotely triggered theranostic nanoparticles for cancer applications, focusing heavily on advances in the past five years. Remote triggering mechanisms covered include photodynamic, photothermal, phototriggered chemotherapeutic release, ultrasound, electro-thermal, magneto-thermal, X-ray, and radiofrequency therapies. Each section includes a brief overview of the triggering mechanism and summarizes the variety of nanoparticles employed in each method. Emphasis in each category is placed on nano-theranostics with in vivo success. Some of the nanotheranostic platforms highlighted include photoactivatable multi-inhibitor nanoliposomes, plasmonic nanobubbles, reduced graphene oxide-iron oxide nanoparticles, photoswitching nanoparticles, multispectral optoacoustic tomography using indocyanine green, low temperature sensitive liposomes, and receptor-targeted iron oxide nanoparticles loaded with gemcitabine. The studies reviewed here provide strong evidence that the field of nanotheranostics is rapidly evolving. Such nanoplatforms may soon enable unique advances in the clinical management of cancer. However, reproducibility in the synthesis procedures of such "smart" platforms that lend themselves to easy scale-up in their manufacturing, as well as the development of new and improved models of cancer that are more predictive of human responses, need to happen soon for this field to make a rapid clinical impact.
Collapse
Affiliation(s)
| | | | | | - Prakash Rai
- ✉ Corresponding author: Prakash Rai, Phone 978-934-4971,
| |
Collapse
|
24
|
Peng CL, Chen YI, Liu HJ, Lee PC, Luo TY, Shieh MJ. A novel temperature-responsive micelle for enhancing combination therapy. Int J Nanomedicine 2016; 11:3357-69. [PMID: 27524894 PMCID: PMC4966578 DOI: 10.2147/ijn.s100469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A novel thermosensitive polymer p(N-isopropylacrylamide-co-poly[ethylene glycol] methyl ether acrylate)-block-poly(epsilon-caprolactone), p(NIPAAM-co-PEGMEA)-b-PCL, was synthesized and developed as nanomicelles. The hydrophobic heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin and the photosensitizer cyanine dye infrared-780 were loaded into the core of the micelles to achieve both chemotherapy and photothermal therapy simultaneously at the tumor site. The release of the drug could be controlled by varying the temperature due to the thermosensitive nature of the micelles. The micelles were less than 200 nm in size, and the drug encapsulation efficiency was >50%. The critical micelle concentrations were small enough to allow micelle stability upon dilution. Data from cell viability and animal experiments indicate that this combination treatment using photothermal therapy with chemotherapy had synergistic effects while decreasing side effects.
Collapse
Affiliation(s)
- Cheng-Liang Peng
- Isotope application Division, Institute of Nuclear energy research, Taoyuan
| | - Yuan-I Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei; Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hung-Jen Liu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei
| | - Pei-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei
| | - Tsai-Yueh Luo
- Isotope application Division, Institute of Nuclear energy research, Taoyuan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei; Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
25
|
Abstract
Background: Photothermal response of plasmonic nanomaterials can be utilized for a number of therapeutic applications such as the ablation of solid tumors. Methods & results: Gold nanoparticles were prepared using different methods. After optimization, we applied an aqueous plant extract as the reducing and capping agent of gold and maximized the near-infrared absorption (650–900 nm). Resultant nanoparticles showed good biocompatibility when tested in vitro in human keratinocytes and yeast Saccharomyces cerevisiae. Gold nanoparticles were easily activated by controlled temperature with an ultrasonic water bath and application of a pulsed laser. Conclusion: These gold nanoparticles can be synthesized with reproducibility, modified with seemingly limitless chemical functional groups, with adequate controlled optical properties for laser phototherapy of tumors and targeted drug delivery.
Collapse
|
26
|
Fekrazad R, Naghdi N, Nokhbatolfoghahaei H, Bagheri H. The Combination of Laser Therapy and Metal Nanoparticles in Cancer Treatment Originated From Epithelial Tissues: A Literature Review. J Lasers Med Sci 2016; 7:62-75. [PMID: 27330701 DOI: 10.15171/jlms.2016.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several methods have been employed for cancer treatment including surgery, chemotherapy and radiation therapy. Today, recent advances in medical science and development of new technologies, have led to the introduction of new methods such as hormone therapy, Photodynamic therapy (PDT), treatments using nanoparticles and eventually combinations of lasers and nanoparticles. The unique features of LASERs such as photo-thermal properties and the particular characteristics of nanoparticles, given their extremely small size, may provide an interesting combined therapeutic effect. The purpose of this study was to review the simultaneous application of lasers and metal nanoparticles for the treatment of cancers with epithelial origin. A comprehensive search in electronic sources including PubMed, Google Scholar and Science Direct was carried out between 2000 and 2013. Among the initial 400 articles, 250 articles applied nanoparticles and lasers in combination, in which more than 50 articles covered the treatment of cancer with epithelial origin. In the future, the combination of laser and nanoparticles may be used as a new or an alternative method for cancer therapy or diagnosis. Obviously, to exclude the effect of laser's wavelength and nanoparticle's properties more animal studies and clinical trials are required as a lack of perfect studies.
Collapse
Affiliation(s)
- Reza Fekrazad
- Laser Research Center in Medical Sciences (LRCMS), Department of Periodontics, Faculty of Dentistry, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Naghdi
- Laser Research Center of Dentistry, Tehran Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Bagheri
- Dental Materials Research Center and Department of Operative Dentistry, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Samantara AK, Maji S, Ghosh A, Bag B, Dash R, Jena BK. Good's buffer derived highly emissive carbon quantum dots: excellent biocompatible anticancer drug carrier. J Mater Chem B 2016; 4:2412-2420. [DOI: 10.1039/c6tb00081a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile one-step approach has been developed for the synthesis of carbon quantum dots (CQDs) from Good’s buffer.
Collapse
Affiliation(s)
- Aneeya K. Samantara
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar 751013
- India
- Academy of Scientific & Innovative Research (AcSIR)
- New Delhi-110 001
| | - Santanu Maji
- Institute of Life Sciences
- Bhubaneswar 751023
- India
- Manipal University
- India
| | | | - Bamaprasad Bag
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar 751013
- India
- Academy of Scientific & Innovative Research (AcSIR)
- New Delhi-110 001
| | - Rupesh Dash
- Institute of Life Sciences
- Bhubaneswar 751023
- India
| | - Bikash Kumar Jena
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar 751013
- India
- Academy of Scientific & Innovative Research (AcSIR)
- New Delhi-110 001
| |
Collapse
|
28
|
Yang R, Tang Q, Miao F, An Y, Li M, Han Y, Wang X, Wang J, Liu P, Chen R. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice. Int J Nanomedicine 2015; 10:7345-58. [PMID: 26677324 PMCID: PMC4677660 DOI: 10.2147/ijn.s93758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. METHODS CD90(+) LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90(+) LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. RESULTS CD90(+) LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90(+) LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90(+) LCSCs to magnetic hyperthermia. CONCLUSION The inhibition of HSP90 could sensitize CD90(+) LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Yang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Qiusha Tang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Fengqin Miao
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing, People’s Republic of China
| | - Mengfei Li
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yong Han
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Juan Wang
- Department of Infectious Disease, The Third People’s Hospital of Nantong, Nangtong, People’s Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Nangjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
29
|
Urie R, Quraishi S, Jaffe M, Rege K. Gold Nanorod-Collagen Nanocomposites as Photothermal Nanosolders for Laser Welding of Ruptured Porcine Intestines. ACS Biomater Sci Eng 2015; 1:805-815. [DOI: 10.1021/acsbiomaterials.5b00174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Russell Urie
- Chemical
Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Sana Quraishi
- Chemical
Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Jaffe
- College
of Veterinary Medicine, Midwestern University, Glendale, Arizona 85308, United States
| | - Kaushal Rege
- Chemical
Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
30
|
Zhou J, Wang Z, Li Q, Liu F, Du Y, Yuan H, Hu F, Wei Y, You J. Hybridized doxorubicin-Au nanospheres exhibit enhanced near-infrared surface plasmon absorption for photothermal therapy applications. NANOSCALE 2015; 7:5869-5883. [PMID: 25757809 DOI: 10.1039/c4nr07279k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photothermal therapy (PTT) employs photosensitizing agents, which are taken up by cells and generate heat when irradiated with near-infrared (NIR) light, to enable the photoablation of cancer cells. High absorption in the NIR region is crucial for a photosensitizing agent to achieve efficient PTT. Different combinations between gold nanoparticles and fluorescent agents always influence their spectrum properties. Herein, we fabricated a novel combination of a fluorescent agent (doxorubicin, DOX, also a popular chemotherapeutic agent) with gold nanospheres by synthesizing hybridized DOX-Au nanospheres (DAuNS), where a part of the DOX molecules and Au co-formed a hybridized matrix as the shell and the remaining DOX molecules precipitated as the core. The unique structure of DAuNS induced interesting changes in the characteristics including spectrum properties, morphology, drug loading and antitumor activity. We observed that DAuNS exhibited a significantly enhanced surface plasmon absorption in the NIR region, inducing a more efficient photothermal conversion and stronger tumor-cell killing ability under NIR laser irradiation. In addition, our study presents a new and simple platform to load a drug into nanoparticles. DAuNS could be a promising nanoparticle with the "two punch" efficacy of PTT and chemotherapy and could be used in clinical applications due to its controllable synthesis, small size, and narrow size distribution.
Collapse
Affiliation(s)
- Jialin Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang L, Tseng YT, Suo G, Chen L, Yu J, Chiu WJ, Huang CC, Lin CH. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5097-5106. [PMID: 25705789 DOI: 10.1021/am508117e] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was to synthesize a nanocomposite, aptamer-gold nanoparticle-hybridized graphene oxide (Apt-AuNP-GO), to facilitate targeted treatment of tumor cells by near-infrared (NIR) light-activatable photothermal therapy. We also investigated whether Apt-AuNP-GO with NIR illumination modulates heat shock proteins (HSPs) expression leading to therapeutic response in human breast cancer cells. These findings can provide strategies for improving the photothermal therapy efficacy of cancer. The self-assembled Apt-AuNP-GO nanocomposite could selectively target MUC1-positive human breast cancer cells (MCF-7) due to the specific interaction between the MUC1-binding-aptamer and the MUC1 (type I transmembrane mucin glycoprotein) on cell membrane. In addition, Apt-AuNP-GO has a high light-to-heat conversion capability for photoabsorption of NIR light, and it is able to exert therapeutic effects on MCF-7 cells at an ultralow concentration without inducing adverse effects in healthy cells. The Apt-AuNP-GO nanocomposites combine the advantages of GOs, AuNPs, and Apts, possess specific targeting capability, excellent biocompatibility, and tumor cell destruction ability, suggesting great potential for application in the photothermal therapy of breast cancer. Under NIR illumination, Apt-AuNP-GO induced transient increase in HSP70 expression, which decreased thereafter. This phenomenon may cause irreversible damage to Apt-AuNP-GO-treated MCF-7 cell under NIR illumination. We also demonstrated that the combination therapy of heat and HSP70 inhibitor could synergistically generate marked tumoricidal effects against breast cancer. These results suggest that the degree and duration of HSP70 protein expression are correlated with therapeutic effects against breast cancer for Apt-AuNP-GO-assisted photothermal therapy. We believe that such a nanocomposite can be readily extended to the construction of HSP70 inhibitors-loaded Apt-AuNP-GO, which could deliver both heat and HSP70 inhibitors to tumorigenic regions for the chemo-photothermal therapy.
Collapse
Affiliation(s)
- Lingyan Yang
- Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Solárová Z, Mojžiš J, Solár P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol 2014; 46:907-26. [PMID: 25501619 DOI: 10.3892/ijo.2014.2791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Hsp90 is a molecular chaperone that maintains the structural and functional integrity of various client proteins involved in signaling and many other functions of cancer cells. The natural inhibitors, ansamycins influence the Hsp90 chaperone function by preventing its binding to client proteins and resulting in their proteasomal degradation. N- and C-terminal inhibitors of Hsp90 and their analogues are widely tested as potential anticancer agents in vitro, in vivo as well as in clinical trials. It seems that Hsp90 competitive inhibitors target different tumor types at nanomolar concentrations and might have therapeutic benefit. On the contrary, some Hsp90 inhibitors increased toxicity and resistance of cancer cells induced by heat shock response, and through the interaction of survival signals, that occured as side effects of treatments, could be very effectively limited via combination of therapies. The aim of our review was to collect the data from experimental and clinical trials where Hsp90 inhibitor was combined with other therapies in order to prevent resistance as well as to potentiate the cytotoxic and/or antiproliferative effects.
Collapse
Affiliation(s)
- Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Peter Solár
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| |
Collapse
|
33
|
MacEwan SR, Chilkoti A. Applications of elastin-like polypeptides in drug delivery. J Control Release 2014; 190:314-30. [PMID: 24979207 DOI: 10.1016/j.jconrel.2014.06.028] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
Elastin-like polypeptides (ELPs) are biopolymers inspired by human elastin. Their lower critical solution temperature phase transition behavior and biocompatibility make them useful materials for stimulus-responsive applications in biological environments. Due to their genetically encoded design and recombinant synthesis, the sequence and size of ELPs can be exactly defined. These design parameters control the structure and function of the ELP with a precision that is unmatched by synthetic polymers. Due to these attributes, ELPs have been used extensively for drug delivery in a variety of different embodiments-as soluble macromolecular carriers, self-assembled nanoparticles, cross-linked microparticles, or thermally coacervated depots. These ELP systems have been used to deliver biologic therapeutics, radionuclides, and small molecule drugs to a variety of anatomical sites for the treatment of diseases including cancer, type 2 diabetes, osteoarthritis, and neuroinflammation.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Research Triangle MRSEC, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Research Triangle MRSEC, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
34
|
Bhirde AA, Chikkaveeraiah BV, Srivatsan A, Niu G, Jin AJ, Kapoor A, Wang Z, Patel S, Patel V, Gorbach AM, Leapman RD, Gutkind JS, Hight Walker AR, Chen X. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS NANO 2014; 8:4177-89. [PMID: 24708375 PMCID: PMC4046789 DOI: 10.1021/nn501223q] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Resistance to chemotherapy is the primary cause of treatment failure in over 90% of cancer patients in the clinic. Research in nanotechnology-based therapeutic alternatives has helped provide innovative and promising strategies to overcome multidrug resistance (MDR). By targeting CD44-overexpressing MDR cancer cells, we have developed in a single-step a self-assembled, self-targetable, therapeutic semiconducting single-walled carbon nanotube (sSWCNT) drug delivery system that can deliver chemotherapeutic agents to both drug-sensitive OVCAR8 and resistant OVCAR8/ADR cancer cells. The novel nanoformula with a cholanic acid-derivatized hyaluronic acid (CAHA) biopolymer wrapped around a sSWCNT and loaded with doxorubicin (DOX), CAHA-sSWCNT-DOX, is much more effective in killing drug-resistant cancer cells compared to the free DOX and phospholipid PEG (PL-PEG)-modified sSWCNT formula, PEG-sSWCNT-DOX. The CAHA-sSWCNT-DOX affects the viscoelastic property more than free DOX and PL-PEG-sSWCNT-DOX, which in turn allows more drug molecules to be internalized. Intravenous injection of CAHA-sSWCNT-DOX (12 mg/kg DOX equivalent) followed by 808 nm laser irradiation (1 W/cm(2), 90 s) led to complete tumor eradication in a subcutaneous OVCAR8/ADR drug-resistant xenograft model, while free DOX alone failed to delay tumor growth. Our newly developed CAHA-sSWCNT-DOX nanoformula, which delivers therapeutics and acts as a sensitizer to influence drug uptake and induce apoptosis with minimal resistance factor, provides a novel effective means of counteracting the phenomenon of multidrug resistance.
Collapse
Affiliation(s)
- Ashwinkumar A. Bhirde
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bhaskara V. Chikkaveeraiah
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Ankur Kapoor
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sachin Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander M. Gorbach
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Angela R. Hight Walker
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Address correspondence to (X. Chen)
| |
Collapse
|
35
|
Bu X, Zhou D, Li J, Zhang X, Zhang K, Zhang H, Yang B. Copper sulfide self-assembly architectures with improved photothermal performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1416-23. [PMID: 24446661 DOI: 10.1021/la404009d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Copper chalcogenide nanomaterials are promising photothermal materials for establishing novel diagnostic and therapeutic methods owing to the low cost but high photothermal transduction efficiency. Further progresses of the correlated technologies greatly depend on the efforts on design and construction of novel nanostructures. In this paper, we demonstrate a facile one-pot route for constructing CuS nanostructures in aqueous media via a spontaneous assembly process. In the presence of polyvinylpyrrolidone (PVP) as the capping agents, a decomposition of Cu(CH3COSH)x precursors is induced by ammonia, which produces hexagonal CuS nanoparticles (NPs) with the diameter around 22 nm. The primary CuS NPs greatly tend to self-assembly into one-dimensional structures, which are triggered by short-range anisotropic dipolar attraction and enforced by long-range isotropic electrostatic repulsion. The further fusion of the assembled NPs generates 480 × 50 nm(2) CuS nanorods. Because the formation of nanorods enhances the internanorod van der Waals attraction, the nanorods finally self-assembly into shuttle-like bundles in micrometer size. In comparison to isolated NPs, the regular CuS assembly structures exhibit improved molar extinction coefficient up to 9.7 × 10(16) cm(-1) M(-1) by shortening the distance of neighboring CuS NPs and therewith generating new electronic structures of the CuS indirect transition. Consequently, better photothermal performance is achieved.
Collapse
Affiliation(s)
- Xinyuan Bu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | | | | | | | | | | | | |
Collapse
|
36
|
TURNER PAULA, JOSHI GAURAVV, WEEKS CANDREW, WILLIAMSON RSCOTT, PUCKETT AAROND, JANORKAR AMOLV. NANO AND MICRO-STRUCTURES OF ELASTIN-LIKE POLYPEPTIDE-BASED MATERIALS AND THEIR APPLICATIONS: RECENT DEVELOPMENTS. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984413430022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Elastin-like polypeptide (ELP) containing materials have spurred significant research interest for biomedical applications exploiting their biocompatible, biodegradable and nonimmunogenic nature while maintaining precise control over their chemical structure and functionality through genetic engineering. Physical, mechanical and biological properties of ELPs could be further manipulated using genetic engineering or through conjugation with a variety of chemical moieties. These chemical and physical modifications also achieve interesting micro- and nanostructured ELP-based materials. Here, we review the recent developments during the past decade in the methods to engineer elastin-like materials, available genetic and chemical modification methods and applications of ELP micro and nanostructures in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- PAUL A. TURNER
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - GAURAV V. JOSHI
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - C. ANDREW WEEKS
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - R. SCOTT WILLIAMSON
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AARON D. PUCKETT
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AMOL V. JANORKAR
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
37
|
Grandhi TSP, Rege K. Design, Synthesis, and Functionalization of Nanomaterials for Therapeutic Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 811:157-82. [DOI: 10.1007/978-94-017-8739-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Walker CR, Pushpavanam K, Nair DG, Potta T, Sutiyoso C, Kodibagkar VD, Sapareto S, Chang J, Rege K. Generation of polypeptide-templated gold nanoparticles using ionizing radiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10166-10173. [PMID: 23786455 DOI: 10.1021/la400567d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.
Collapse
Affiliation(s)
- Candace Rae Walker
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang HC, Walker CR, Nanda A, Rege K. Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders. ACS NANO 2013; 7:2988-2998. [PMID: 23530530 DOI: 10.1021/nn303202k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Approximately 1.5 million people suffer from colorectal cancer and inflammatory bowel disease in the United States. Occurrence of leakage following standard surgical anastomosis in intestinal and colorectal surgery is common and can cause infection leading to life-threatening consequences. In this report, we demonstrate that plasmonic nanocomposites, generated from elastin-like polypeptides (ELPs) cross-linked with gold nanorods, can be used to weld ruptured intestinal tissue upon exposure to near-infrared (NIR) laser irradiation. Mechanical properties of these nanocomposites can be modulated based on the concentration of gold nanorods embedded within the ELP matrix. We employed photostable, NIR-absorbing cellularized and noncellularized GNR-ELP nanocomposites for ex vivo laser welding of ruptured porcine small intestines. Laser welding using the nanocomposites significantly enhanced the tensile strength, leakage pressure, and bursting pressure of ruptured intestinal tissue. This, in turn, provided a liquid-tight seal against leakage of luminal liquid from the intestine and resulting bacterial infection. This study demonstrates the utility of laser tissue welding using plasmonic polypeptide nanocomposites and indicates the translational potential of these materials in intestinal and colorectal repair.
Collapse
Affiliation(s)
- Huang-Chiao Huang
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| | | | | | | |
Collapse
|
40
|
Size- and Ligand-Specific Bioresponse of Gold Clusters and Nanoparticles: Challenges and Perspectives. STRUCTURE AND BONDING 2013. [DOI: 10.1007/430_2013_127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Yang C, Sui H, Li X, Han J, Luo X, Zhang H, Sun H, Sun H, Zhou Y, Yang B. Gold nanoparticle superstructures with enhanced photothermal effect. CrystEngComm 2013. [DOI: 10.1039/c3ce26975b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Wei A, Mehtala JG, Patri AK. Challenges and opportunities in the advancement of nanomedicines. J Control Release 2012; 164:236-46. [PMID: 23064314 PMCID: PMC3504169 DOI: 10.1016/j.jconrel.2012.10.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/16/2022]
Abstract
Nanomedicine-based approaches to cancer treatment face several challenges that differ from those encountered by conventional medicines during clinical development. A systematic exploration of these issues has led us to identify the following needs and opportunities for further development: (1) robust and general methods for the accurate characterization of nanoparticle size, shape, and composition; (2) scalable approaches for producing nanomedicines with optimized bioavailability and excretion profiles; (3) particle engineering for maintaining low levels of nonspecific cytotoxicity and sufficient stability during storage; (4) optimization of surface chemistries for maximum targeted delivery and minimum nonspecific adsorption; (5) practical methods for quantifying ligand density and distributions on multivalent nanocarriers; and (6) the design of multifunctional nanomedicines for novel combination therapies with supportable levels of bioaccumulation.
Collapse
Affiliation(s)
- Alexander Wei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907 USA
| | - Jonathan G. Mehtala
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907 USA
| | - Anil K. Patri
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702 USA
| |
Collapse
|
43
|
Lukianova-Hleb EY, Ren X, Townley D, Wu X, Kupferman ME, Lapotko DO. Plasmonic nanobubbles rapidly detect and destroy drug-resistant tumors. Theranostics 2012; 2:976-87. [PMID: 23139725 PMCID: PMC3493199 DOI: 10.7150/thno.5116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/22/2012] [Indexed: 12/28/2022] Open
Abstract
The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment.
Collapse
|
44
|
Lukianova-Hleb EY, Ren X, Zasadzinski JA, Wu X, Lapotko DO. Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3831-7. [PMID: 22407874 PMCID: PMC3407535 DOI: 10.1002/adma.201103550] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 05/04/2023]
|
45
|
Yang P, Xu QZ, Jin SY, Lu Y, Zhao Y, Yu SH. Synthesis of Multifunctional Ag@Au@Phenol Formaldehyde Resin Particles Loaded with Folic Acids for Photothermal Therapy. Chemistry 2012; 18:9294-9. [DOI: 10.1002/chem.201201173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Indexed: 01/10/2023]
|
46
|
Huang HC, Nanda A, Rege K. Investigation of phase separation behavior and formation of plasmonic nanocomposites from polypeptide-gold nanorod nanoassemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6645-6655. [PMID: 22394160 DOI: 10.1021/la203340y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Genetically engineered elastin-like polypeptides (ELP) can be interfaced with cetyltrimethyl ammonium bromide (CTAB)-stabilized gold nanorods (GNRs) resulting in the formation of stable dispersions (nanoassemblies). Increasing the dispersion temperature beyond the ELP transition temperature results in phase separation and formation of solid-phase ELP-GNR matrices (nanocomposites). Here, we investigated different physicochemical conditions that influence nanocomposite formation from temperature-induced phase separation of ELP-GNR nanoassemblies. The presence of cetyltrimethyl ammonium bromide (CTAB), used to template the formation of gold nanorods, plays a significant role in the phase separation behavior, with high concentrations of the surfactant leading to dramatic enhancements in ELP transition temperature. Nanocomposites could be generated at 37 °C in the presence of low CTAB concentrations (<1.5 mM); higher concentrations of CTAB necessitated higher temperatures (60 °C) due to elevated transition temperatures. The concentration of gold nanorods, however, had minimal influence on the phase separation behavior and nanocomposite formation. Further analysis of the kinetics of nanocomposite formation using a mathematical model indicated that CTAB largely influenced the early event of coacervation of ELP-GNR nanoassemblies leading to nanocomposites, but had minimal effect on nanocomposite maturation, which is a later-stage longer event. Finally, nanocomposites prepared in the presence of low CTAB concentrations demonstrated a superior photothermal response following laser irradiation compared to those generated using higher CTAB concentrations. Our results on understanding the formation of plasmonic/photothermal ELP-GNR nanocomposites have significant implications for tissue engineering, regenerative medicine, and drug delivery.
Collapse
Affiliation(s)
- Huang-Chiao Huang
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| | | | | |
Collapse
|
47
|
Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 2012; 83:995-1004. [PMID: 22120678 PMCID: PMC3299878 DOI: 10.1016/j.bcp.2011.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or synergistically with many other drugs in the treatment of both solid tumors and leukemias in murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B, as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the drug. A phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this combination therapy has anticancer activity in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this might have in understanding the effects of genetic variation in treating cancer in humans.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Li Xiao
- University of Alabama at Birmingham, Department of Immunology and Rheumatology, Birmingham, AL 35294
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
48
|
HUANG HUANGCHIAO, RAMOS JAMES, GRANDHI TARAKASAIPAVAN, POTTA THRIMOORTHY, REGE KAUSHAL. GOLD NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984410000274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of nanomedicine in the war on cancer diseases has progressed significantly in the recent past. Liposomal- and albumin-based chemotherapeutic agents as well as tumor contrast agents (e.g. Gd-DTPA, ferumoxides) have received FDA approval for human clinical use, while many other agents are in different phases of pre-clinical investigation and clinical trials. Plasmonic gold nanoparticles hold great promise as potential theranostic devices for detection and ablation of cancer diseases. This review discusses recent progress in the imaging, photothermal therapy, and nucleic acid/drug delivery using gold nanoparticles (spheres, shells, rods, cages) in vitro and in vivo. Issues relating to toxicity, biocompatibility, biodistribution, cellular uptake, and targeting efficiency are also discussed.
Collapse
Affiliation(s)
- HUANG-CHIAO HUANG
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - JAMES RAMOS
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - TARAKA SAI PAVAN GRANDHI
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - THRIMOORTHY POTTA
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - KAUSHAL REGE
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| |
Collapse
|
49
|
Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012; 41:2885-911. [DOI: 10.1039/c2cs15260f] [Citation(s) in RCA: 857] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|