1
|
Padti AC, Bhavi SM, Thokchom B, Singh SR, Bhat SS, Harini BP, Sillanpää M, Yarajarla RB. Nanoparticle Interactions with the Blood Brain Barrier: Insights from Drosophila and Implications for Human Astrocyte Targeted Therapies. Neurochem Res 2025; 50:80. [PMID: 39832031 DOI: 10.1007/s11064-025-04333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport. The ability to engineer nanoparticles with specific physicochemical properties-such as size, surface charge, and functionalization-enhances their targeting capabilities, particularly towards astrocytes, which play a crucial role in maintaining BBB integrity and responding to neuroinflammation. Insights gained from Drosophila studies have informed the design of personalized nanomedicine strategies aimed at treating neurodegenerative diseases, including Alzheimer's, Parkinson's disease etc. As research progresses, the integration of findings from Drosophila models with emerging humanized BBB systems will pave the way for innovative therapeutic approaches that improve drug delivery and patient outcomes in neurological disorders.
Collapse
Affiliation(s)
- Akshata Choudhari Padti
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Santosh Mallikarjun Bhavi
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Bothe Thokchom
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sapam Riches Singh
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Shivanand S Bhat
- Department of Botany, Smt. Indira Gandhi Government First Grade Women's College, Sagar, Karnataka, 577401, India
| | - B P Harini
- Department of Zoology and Centre for Applied Genetics, Bangalore University, Bangaluru, Karnataka, 560056, India
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, Aarhus C, 8000, Denmark
| | - Ramesh Babu Yarajarla
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
2
|
Bezerra I, Santos ERSD, Bisneto JSR, Perruci PP, Ferreira AID, Macêdo DCDS, Luz MA, Galdino TP, Machado G, Magalhães NS, Nogueira MCBL, Gubert P. Synthesis and Physicochemical Stability of a Copaiba Balsam Oil ( Copaifera sp.) Nanoemulsion and Prospecting of Toxicological Effects on the Nematode Caenorhabditis elegans. ACS OMEGA 2024; 9:39100-39118. [PMID: 39310144 PMCID: PMC11411554 DOI: 10.1021/acsomega.4c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Nanoemulsions are dispersions of oil-in-water (O/W) and water-in-oil (W/O) immiscible liquids. Thus, our main goal was to formulate a nanoemulsion with low surfactant concentrations and outstanding stability using Copaiba balsam oil (Copaifera sp.). The high-energy cavitation homogenization with low Tween 80 levels was employed. Then, electrophoretic and physical mobility properties were assessed, in addition to a one- and two-year physicochemical characterization studies assessment. Copaiba balsam oil and nanoemulsions obtained caryophyllene as a major constituent. The nanoemulsions stored at 4 ± 2 °C exhibited better physical stability. Two years after formulation, the nanoemulsion showed a reduction in the particle size. The size underwent changes in gastric, intestinal, and blood pH, and the PdI was not changed. In FTIR, characteristic bands of sesquiterpenes and overlapping bands were detected. When subjected to freezing and heating cycles, nanoemulsions did not show macroscopic changes in higher concentrations. Nanoemulsions subjected to centrifuge force by 1000 rpm do not show macroscopic instability and phase inversion or destabilization characteristics when diluted. Therefore, the nanoemulsion showed stability for long-term storage. The nematode Caenorhabditis elegans was used to assess the potential toxicity of nanoemulsions. The nanoemulsion did not cause toxicity in the animal model, except in the highest concentration tested, which decreased the defecation cycle interval and body length. The toxicity and stability outcomes reinforce the nanoemulsions' potential for future studies to explore pharmacological mechanisms in superior experimental designs.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Charles dos Santos Macêdo
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of Pernambuco, Recife 50670-901, Brazil
| | - Mateus Araújo
da Luz
- Northeast
Biomaterials Assessment and Development Laboratory (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Taynah Pereira Galdino
- Northeast
Biomaterials Assessment and Development Laboratory (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Giovanna Machado
- Northeast
Strategic Technologies Center (CETENE), Recife 50740-545, Brazil
| | - Nereide Stela
Santos Magalhães
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of Pernambuco, Recife 50670-901, Brazil
| | | | - Priscila Gubert
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Federal
University of Western Bahia (UFOB), Barreiras 47800-000, Brazil
| |
Collapse
|
3
|
Parwana KAK, Kaur Gill P, Njanike R, Yiu HHP, Adams CF, Chari DM, Jenkins SI. Investigating Internalization of Reporter-Protein-Functionalized Polyhedrin Particles by Brain Immune Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2330. [PMID: 38793398 PMCID: PMC11122724 DOI: 10.3390/ma17102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Achieving sustained drug delivery to the central nervous system (CNS) is a major challenge for neurological injury and disease, and various delivery vehicles are being developed to achieve this. Self-assembling polyhedrin crystals (POlyhedrin Delivery System; PODS) are being exploited for the delivery of therapeutic protein cargo, with demonstrated efficacy in vivo. However, to establish the utility of PODS for neural applications, their handling by neural immune cells (microglia) must be documented, as these cells process and degrade many biomaterials, often preventing therapeutic efficacy. Here, primary mouse cortical microglia were cultured with a GFP-functionalized PODS for 24 h. Cell counts, cell morphology and Iba1 expression were all unaltered in treated cultures, indicating a lack of acute toxicity or microglial activation. Microglia exhibited internalisation of the PODS, with both cytosolic and perinuclear localisation. No evidence of adverse effects on cellular morphology was observed. Overall, 20-40% of microglia exhibited uptake of the PODS, but extracellular/non-internalised PODS were routinely present after 24 h, suggesting that extracellular drug delivery may persist for at least 24 h.
Collapse
Affiliation(s)
| | | | - Runyararo Njanike
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
| | - Humphrey H. P. Yiu
- School of Engineering & Physical Sciences, University of Edinburgh, Edinburgh EH14 4AS, UK;
| | - Chris F. Adams
- School of Life Sciences, Keele University, Keele ST5 5BG, UK; (K.A.K.P.); (C.F.A.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Divya Maitreyi Chari
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Stuart Iain Jenkins
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| |
Collapse
|
4
|
Nayak D, Rathnanand M, Tippavajhala VK. Unlocking the Potential of Bilosomes and Modified Bilosomes: a Comprehensive Journey into Advanced Drug Delivery Trends. AAPS PharmSciTech 2023; 24:238. [PMID: 37989979 DOI: 10.1208/s12249-023-02696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Vesicular drug delivery systems have revolutionized the pharmaceutical field, offering a promising path for achieving targeted and sustained drug delivery. The oral, transdermal, and ocular routes of administration offer optimal ease in attaining desired therapeutic outcomes. However, conventional treatment strategies are all plagued with several challenges, such as poor skin permeability, ocular barriers, and gastrointestinal (GIT) degradation leading to vesicular disruption with the release of the encapsulated drug before reaching the targeted site of action. In recent years, bilosomes-stabilized nanovesicles containing bile salts have received considerable attention due to their versatility and adaptability for diverse applications. These bilayered vesicles enhance the solubility of lipophilic drugs and improve formulation stability in the gastrointestinal tract. They exhibit ultra-deformable properties, improving stratum corneum permeability, making them ideal candidates for oral and transdermal drug delivery. In addition, bilosomes find utility in topical drug delivery, making them applicable for ocular administration. Over the past decade, extensive research has highlighted bilosomes' potential as superior vesicular carriers surpassing liposomes and niosomes. Advances in this field have led to the development of modified bilosomes, such as probilosomes and surface-modified bilosomes, further enhancing their capabilities and therapeutic potential. Thus, the present review provides a comprehensive summary of bilosomes, modified bilosomes, surface modifications with their mechanism of action, formulation components, preparation methods, patents, and a wide array of recent pharmaceutical applications in oral, transdermal, and ocular drug delivery. The enhanced properties of bilosomes offer promising prospects for targeted and effective drug delivery, providing potential solutions for addressing various therapeutic challenges.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
5
|
Hossain SI, Sportelli MC, Picca RA, Gentile L, Palazzo G, Ditaranto N, Cioffi N. Green Synthesis and Characterization of Antimicrobial Synergistic AgCl/BAC Nanocolloids. ACS APPLIED BIO MATERIALS 2022; 5:3230-3240. [PMID: 35738566 PMCID: PMC9297327 DOI: 10.1021/acsabm.2c00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All over the world, one of the major challenges is the green synthesis of potential materials against antimicrobial resistance and viruses. This study demonstrates a simple method like chemistry lab titration to synthesize green, facile, scalable, reproducible, and stable synergistic silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC) colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of AgCl in an aqueous medium are prepared by using silver nitrate (AgNO3) as precursor and BAC as both sources of chloride and stabilizer, holding an asymmetric molecular structure. The synthetic approach is scalable and green. Both the morphology and stability of AgCl/BAC nanocolloids (NCs) were investigated as a function of different molar fractions of the reagents. AgCl/BAC NCs were characterized by transmission electron microscopy (TEM) and X-ray photoelectron and UV-vis spectroscopies. Zeta potential measurements revealed increasing positive potential values at every stage of the synthesis. Size distribution and hydrodynamic diameter of the particles were measured by dynamic light scattering (DLS), which predicted the formation of BAC layered structures associated with the AgCl nanoparticles (NPs). Small-angle X-ray scattering (SAXS) experiments verify the thickness of the BAC bilayer around AgCl. The produced AgCl/BAC NCs probably have synergistic antimicrobial properties from the AgCl core and the biocide BAC shell. AgCl/BAC NCs stability over months was investigated. The experimental evidence supports the morphological stability of the AgCl/BAC NCs, while higher positive zeta potential values anticipate a long-term antimicrobial effect: a higher surface charge causes NPs to be potentially more lethal to bacteria. AgCl/BAC antimicrobial aqueous colloidal suspensions will be used as additives for the industrial production of antimicrobial coatings.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Luigi Gentile
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Gerardo Palazzo
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
6
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
7
|
Shakhatreh MAK, Al-Rawi OF, Swedan SF, Alzoubi KH, Khabour OF, Al-Fandi M. Biosynthesis of Silver Nanoparticles from Citrobacter freundii as Antibiofilm Agents with their Cytotoxic Effects on Human Cells. Curr Pharm Biotechnol 2021; 22:1254-1263. [PMID: 33081683 DOI: 10.2174/1389201021666201020162158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanomaterials have recently been identified for their potential benefits in the areas of medicine and pharmaceuticals. Among these nanomaterials, silver nanoparticles (Ag-NPs) have been widely utilized in the fields of diagnostics, antimicrobials, and catalysis. OBJECTIVE To investigate the potential utility of Citrobacter freundii in the synthesis of silver Nanoparticles (Ag-NPs), and to determine the antimicrobial activities of the Ag-NPs produced. METHODS Aqueous Ag+ ions were reduced when exposed to C. freundii extract and sunlight, leading to the formation of Ag-NPs. Qualitative microanalysis for the synthesized Ag-NPs was done using UVvis spectrometry, Energy Dispersive X-ray analysis (EDX), and scanning and transmission electron microscopy. The hydrodynamic size and stability of the particles were detected using Dynamic Light Scattering (DLS) analysis. The Ag-NPs' anti-planktonic and anti-biofilm activities against Staphylococcus aureus and Pseudomonas aeruginosa, which are two important skin and wound pathogens, were investigated. The cytotoxicity on human dermal fibroblast cell line was also determined. RESULTS Ag-NPs were spherical with a size range between 15 to 30 nm. Furthermore, Ag-NPs displayed potent bactericidal activities against both S. aureus and P. aeruginosa and showed noticeable anti-biofilm activity against S. aureus biofilms. Ag-NPs induced minor cytotoxic effects on human cells as indicated by a reduction in cell viability, a disruption of plasma membrane integrity, and apoptosis induction. CONCLUSION Ag-NPs generated in this study might be a future potential alternative to be used as antimicrobial agents in pharmaceutical applications for wound and skin related infections.
Collapse
Affiliation(s)
- Muhamad A K Shakhatreh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Al-Rawi
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Samer F Swedan
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohamed Al-Fandi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
8
|
Pacoste LC, Jijana AN, Feleni U, Iwuoha E. Mercaptoalkanoic Acid‐Induced Band Gap Attenuation of Copper Selenide Quantum Dot. ChemistrySelect 2020. [DOI: 10.1002/slct.201903668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Laura C. Pacoste
- SensorLab, Department of ChemistryUniversity of Western Cape Private Bag X17 Bellville 7535 South Africa
- Uppsala University Husargatan 3 752 37 Uppsala
| | - Abongile N. Jijana
- SensorLab, Department of ChemistryUniversity of Western Cape Private Bag X17 Bellville 7535 South Africa
| | - Usisipho Feleni
- Nanotechnology and Water Sustainability Research UnitUniversity of South Africa, College of Science, Engineering and Technology, Florida Campus Johannesburg South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of ChemistryUniversity of Western Cape Private Bag X17 Bellville 7535 South Africa
| |
Collapse
|
9
|
Tickle JA, Chari DM. Less is more: Investigating the influence of cellular nanoparticle load on transfection outcomes in neural cells. J Tissue Eng Regen Med 2019; 13:1732-1737. [PMID: 31162797 DOI: 10.1002/term.2909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 11/07/2022]
Abstract
Genetic engineering of cell transplant populations offers potential for delivery of neurotherapeutic factors to modify the regenerative microenvironment of the injured spinal cord. The use of magnetic nanoparticle (MNP)-based vectors has reduced the traditional reliance on viral methods and their associated obstacles in terms of scale up and safety. Studies utilizing magnetic assistive platforms for MNP-mediated gene delivery have found transfection efficiency in astrocytes (a major transplant and homeostatic neural cell type) to be both frequency- and amplitude-dependent. It is widely assumed that increased intracellular particle load will enhance transfection efficiency in a cell population. Therefore, we tested repeat delivery of MNP:plasmid complexes in conjunction with oscillating magnetic field parameters-a process termed "magneto-multifection"-in astrocytes of primary origin in an attempt to enhance transfection levels. We show (a) levels of transfection using magneto-multifection equal that seen with viral methods; (b) reporter protein expression using two reporter plasmids shows a diverse profile of single/dual transfected cells with implications for delivery of a "cocktail" of neurotherapeutic proteins; and (c) contrary to expectation, an inverse relationship exists between particle load and reporter protein expression.
Collapse
Affiliation(s)
- Jacqueline A Tickle
- Neural Tissue Engineering Group, Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Divya M Chari
- Neural Tissue Engineering Group, Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
10
|
Zelepukin IV, Yaremenko AV, Petersen EV, Deyev SM, Cherkasov VR, Nikitin PI, Nikitin MP. Magnetometry based method for investigation of nanoparticle clearance from circulation in a liver perfusion model. NANOTECHNOLOGY 2019; 30:105101. [PMID: 30572321 DOI: 10.1088/1361-6528/aafa3a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are among the most promising agents for advanced theranostics. However, their functioning in vivo is severely inhibited by the mononuclear phagocyte system (MPS), which rapidly removes all foreign entities from blood circulation. Little is known about the sequestration mechanisms and the ways to counteract them. New methods are highly demanded for investigation with high scrutiny of each aspect of NP clearance from blood. For example, while liver macrophages capture the majority of the administered particles, reliable investigation of this process in absence of other MPS components is hard to implement in vivo. Here, we demonstrate a novel method for real-time investigation hepatic uptake of NPs in an isolated perfused liver based on an extremely accurate magnetometric registration technique. The signal is obtained solely from the magnetic NPs without any 'background' from blood or tissues, which is a significant advantage over other techniques, e.g. optical ones. We illustrate the method capacity by investigation of behavior of different particles and show good correlation with in vivo studies. We also demonstrate notable suitability of the method for studying the NP clearance from the flow in the user-defined mediums, e.g. those containing specific serum components. Finally, the method was applied to reveal an interesting effect of short-term decrease of liver macrophage activity after the first interaction with small amounts of NPs. The developed perfusion model based on the high-performance magnetometry can be used for finding new mechanisms of NP sequestration and for development of novel 'stealth' nanoagents.
Collapse
Affiliation(s)
- I V Zelepukin
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
11
|
Das BK, Verma SK, Das T, Panda PK, Parashar K, Suar M, Parashar S. Altered electrical properties with controlled copper doping in ZnO nanoparticles infers their cytotoxicity in macrophages by ROS induction and apoptosis. Chem Biol Interact 2019; 297:141-154. [DOI: 10.1016/j.cbi.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023]
|
12
|
Chen J, Yang X, Huang L, Lai H, Gan C, Luo X. Development of dual-drug-loaded stealth nanocarriers for targeted and synergistic anti-lung cancer efficacy. Drug Deliv 2018; 25:1932-1942. [PMID: 30472899 PMCID: PMC6263111 DOI: 10.1080/10717544.2018.1477856] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Combination chemotherapy is widely exploited for suppressing drug resistance and achieving synergistic anticancer efficacy in the clinic. In this paper, the nanostructured targeting methotrexate (MTX) plus pemetrexed (PMX) chitosan nanoparticles (CNPs) were developed by modifying methoxy polye (thylene glycol) (mPEG), in which PEGylation CNPs was used as stealth nanocarriers (PCNPs) and MTX was employed as a targeting ligand and chemotherapeutic agent as well. Studies were undertaken on human lung adenocarcinoma epithelial (A549) and Lewis lung carcinoma (LLC) cell lines, revealing the anti-tumor efficacy of nanoparticle drug delivery system. The co-delivery nanoparticles (MTX-PMX-PCNPs) had well-dispersed with sustained release behavior. Cell counting kit-8 (CCK8) has been used to measure A549 cell viability and the research showed that MTX-PMX-PCNPs were much more effective than free drugs when it came to the inhibition of growth and proliferation. Cell cycle assay by flow cytometry manifested that the MTX-PMX-PCNPs exhibited stronger intracellular taken up ability than free drugs at the same concentration. In vivo anticancer effect results indicated that MTX-PMX-PCNPs exhibited a significantly prolong blood circulation, more tumoral location accumulation, and resulted in a robust synergistic anticancer efficacy in lung cancer in mice. The results clearly demonstrated that such unique synergistic anticancer efficacy of co-delivery of MTX and PMX via stealth nanocarriers, providing a prospective strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacy, Zhongshan Hospital Xiamen University, Xiamen, P. R. China
| | - Xiaobing Yang
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, P. R. China
| | - Liuqing Huang
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Huixian Lai
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Chuanhai Gan
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Xuetao Luo
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
13
|
Kumari P, Panda PK, Jha E, Pramanik N, Nisha K, Kumari K, Soni N, Mallick MA, Verma SK. Molecular insight to in vitro biocompatibility of phytofabricated copper oxide nanoparticles with human embryonic kidney cells. Nanomedicine (Lond) 2018; 13:2415-2433. [DOI: 10.2217/nnm-2018-0175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the biocompatibility of green synthesized copper oxide nanoparticles (CuO Np) using floral extract of Calotropis gigantea in room condition. Materials & methods: Green synthesized and characterized CuO Np was evaluated for their cellular and molecular biocompatibility by experimentally and computational molecular docking. Results: Synthesized CuO NP was found to have a size 32 ± 09 nm with ζ potential -35 ± 12 mV. LC50 value was found to be 190 μg/ml. In vitro and in silico cytotoxicity analysis with HEK293 cells revealed the cytotoxic effect of CuO Np as consequences of interaction with histidine and arginine amino acid residues of Sod3 and p53 proteins via hydrogen bond of length 3.09 and 3.32 Å leading to oxidative stress ensuing toward apoptosis and cell cycle arrest. Conclusion: The outcomes proved the synthesized material as an alternative to the conventional method of synthesizing copper nanoparticles for biomedical and clinical applications.
Collapse
Affiliation(s)
- Puja Kumari
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Pritam Kumar Panda
- Division of Pediatric Hematology & Oncology, University Children's Hospital, University of Freiburg, 79106, Germany
| | - Ealisha Jha
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, NL A1C 5S7 Canada
| | - Nandini Pramanik
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Kumari Nisha
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Khushboo Kumari
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Nikita Soni
- School of Biotechnology & Bioinformatics, D. Y. Patil (deemed to be university), Navi Mumbai, India
| | - M Anwar Mallick
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
14
|
miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. Eur J Pharm Sci 2018; 123:28-42. [PMID: 30010029 DOI: 10.1016/j.ejps.2018.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Osteosarcoma (OS), the main primary malignancy of bone, is the second leading cause of cancer in children and young adults. Despite the advances in modern treatments, the 5-year survival rate is retained in 60-70%, since the conventional treatment options available are associated with relapse, chemoresistance, and development of metastases, which frequently lead to patients death. In this regard, there is an increasing need to search and develop novel and alternative therapeutic approaches. Concerning this, gene therapy appears as an innovative and promising treatment option. This therapeutic option aims to deliver genetic material, through nanosystems, to repress or replace the expression of mutated genes involved in important regulatory pathways. To attain this goal, gene therapy is decidedly dependent on the efficiency of utilized vectors, constituting such a very important parameter to take in consideration. In this work, the main goal was centered on the development and full characterization of an efficient micellar nanosystem, based on the chemical conjugation between the amphiphilic copolymer Pluronic® L64 and the cationic polymer polyethyleneimine (PEI), to deliver the therapeutic miRNA-145 into OS cells leading to inhibition of cell proliferation and migration, and ultimately inducing cell death, crafting a novel anticancer therapeutic approach to OS.
Collapse
|
15
|
Zhao W, Yang Y, Song L, Kang T, Du T, Wu Y, Xiong M, Luo L, Long J, Men K, Zhang L, Chen X, Huang M, Gou M. A Vesicular Stomatitis Virus-Inspired DNA Nanocomplex for Ovarian Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700263. [PMID: 29593949 PMCID: PMC5867128 DOI: 10.1002/advs.201700263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/31/2017] [Indexed: 02/05/2023]
Abstract
Gene therapy provides a novel method for cancer therapy. This study shows a DNA nanocomplex that is inspired from vesicular stomatitis virus (VSV) for ovarian cancer therapy. This DNA nanocomplex consists of a cationized monomethoxy poly (ethylene glycol)-poly (d,l-lactide) (MPEG-PLA) nanoparticle and a plasmid encoding the matrix protein of vesicular stomatitis virus (VSVMP) that plays a critical role in the VSV-induced apoptosis of cancer cells. The cationized MPEG-PLA nanoparticle that is self-assembled by MPEG-PLA copolymer and N -[1-(2,3-dioleoyloxy) propyl]-N,N,N-trimethylammonium chloride (DOTAP) has low cytotoxicity and high transfection efficiency (>80%). Intraperitoneal administration of the p VSVMP nanocomplex remarkably inhibits the intraperitoneal metastasis of ovarian cancer and does not cause significant systemic toxicity. The apoptosis induction and anti-angiogenesis are involved in the anticancer mechanism. This work demonstrates a VSV-inspired DNA nanocomplex that has potential application for the treatment of intraperitoneal metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
- Department of Thoracic OncologyCancer Center and State Key Laboratory of BiotherapyWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041P. R. China
| | - Yuping Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Lingling Song
- Community Health Service Administration CenterShenzhen Longhua New District Central HospitalShenzhen518110P. R. China
| | - Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Yujiao Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Li Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Jianlin Long
- Department of Thoracic OncologyCancer Center and State Key Laboratory of BiotherapyWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041P. R. China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Lan Zhang
- Research and Development DepartmentGuangdong Zhongsheng PharmacyDongguan523325China
| | - Xiaoxin Chen
- Research and Development DepartmentGuangdong Zhongsheng PharmacyDongguan523325China
| | - Meijuan Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
- Department of Thoracic OncologyCancer Center and State Key Laboratory of BiotherapyWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041P. R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| |
Collapse
|
16
|
Huang Y, Cheng Q, Jin X, Ji JL, Guo S, Zheng S, Wang X, Cao H, Gao S, Liang XJ, Du Q, Liang Z. Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. Biomater Sci 2017; 4:494-510. [PMID: 26783563 DOI: 10.1039/c5bm00429b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The drug development of siRNA has been seriously hindered by the lack of an effective, safe and clinically applicable delivery system. The cyclic NGR motif and its isomerization product isoDGR recruit CD13 and integrin as their specific receptors, both of which are overexpressed by tumor and neovascular cells. In this study, a bi-functional peptide, named NGR-10R, was designed and tested for siRNA delivery in vitro and in vivo. Through the formation of peptide/siRNA nanoparticles, RNase resistance was greatly enhanced for the siRNAs. Both FACS and confocal assays revealed that the peptide/siRNA complexes were effectively internalized by MDA-MB-231 cells. Gene silencing assays indicated that anti-Lamin A/C siRNA delivered by NGR-10R robustly repressed gene expression in MDA-MB-231 and HUVEC (a CD13(+)/αvβ3(+) cell). Importantly, the siRNAs were efficiently delivered into tumor tissues and localized around the nuclei, as revealed by in vivo imaging and cryosection examination. In summary, NGR-10R not only efficiently delivered siRNAs into MDA-MB-231 cells in vitro but also delivered siRNAs into tumor cells in vivo, taking advantage of its specific binding to CD13 (neovascular) or αvβ3 (MDA-MB-231). Therefore, the NGR-10R peptide provides a promising siRNA delivery reagent that could be used for drug development, particularly for anti-tumor therapeutics.
Collapse
Affiliation(s)
- Yuanyu Huang
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Qiang Cheng
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Xingyu Jin
- Suzhou Ribo Life Science Co. Ltd, Jiangsu 215300, China
| | - Jia-Li Ji
- Suzhou Ribo Life Science Co. Ltd, Jiangsu 215300, China
| | - Shutao Guo
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Shuquan Zheng
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Xiaoxia Wang
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Huiqing Cao
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Shan Gao
- Suzhou Ribo Life Science Co. Ltd, Jiangsu 215300, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Quan Du
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Zicai Liang
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
17
|
Gerile G, Ganbold T, Li Y, Baigude H. Head group configuration increases the biocompatibility of cationic lipids for nucleic acid delivery. J Mater Chem B 2017. [DOI: 10.1039/c7tb00317j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intracellular delivery of genetic material is a potentially powerful therapeutic approach for the treatment of genetic diseases.
Collapse
Affiliation(s)
- Gerile Gerile
- School of Chemistry & Chemical Engineering
- Inner Mongolia University
- Hohhot
- P. R. China
| | - Tsogzolmaa Ganbold
- School of Chemistry & Chemical Engineering
- Inner Mongolia University
- Hohhot
- P. R. China
| | - Yizheng Li
- School of Chemistry & Chemical Engineering
- Inner Mongolia University
- Hohhot
- P. R. China
| | - Huricha Baigude
- School of Chemistry & Chemical Engineering
- Inner Mongolia University
- Hohhot
- P. R. China
| |
Collapse
|
18
|
Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J Control Release 2016; 244:63-73. [PMID: 27840166 DOI: 10.1016/j.jconrel.2016.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022]
Abstract
Clinically, combined therapy of cisplatin (CDDP) and metformin is an effective treatment for non-small cell lung cancer (NSCLC). The success is attributed to synergistic effects between the two drugs. Therefore, we hypothesize that co-encapsulation of CDDP and metformin will avoid the prominent toxicity of CDDP while maintaining the synergy between the regimens. CDDP was first conjugated to polyglutamic acid (PGA) to form anionic PGA-CDDP which was electrostatically complexed with the cationic polymeric metformin (polymet). The nano-sized complex was then stabilized with cationic liposomes composed of DOTAP (2, 3-Dioleoyloxy-propyl)-trimethylammonium/Cholesterol/DSPE-PEG-anisamide aminoethyl. Both in vitro and in vivo experiments confirmed the synergy between polymet and CDDP. CDDP delivered with nanoparticles (NPs) exhibited significantly increased tumor accumulation over free CDDP and suppressed tumor growth through apoptosis in NSCLC H460 tumor-bearing mice without nephrotoxicity. The synergistic effect of polymet alongside CDDP demonstrates that polymet-CDDP NPs can activate the AMP-activated protein kinase α (AMPKα) pathway and inhibit mammalian target rapamycin (mTOR) activity to enhance growth suppression. In all, this platform is the first to successfully co-load polymet, a polymeric metformin, and CDDP into the same nanoparticle for successful treatment of NSCLC.
Collapse
|
19
|
Coccini T, Caloni F, Ramírez Cando LJ, De Simone U. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol 2016; 37:361-373. [DOI: 10.1002/jat.3367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Teresa Coccini
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET); Università degli Studi di Milano; Milano Italy
| | - Lenin Javier Ramírez Cando
- Centro de Investigación y Valoración de la Biodiversidad (CIVABI); Universidad Politécnica Salesiana; Quito Ecuador
| | - Uliana De Simone
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| |
Collapse
|
20
|
McConnell HL, Schwartz DL, Richardson BE, Woltjer RL, Muldoon LL, Neuwelt EA. Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1535-42. [PMID: 27071335 DOI: 10.1016/j.nano.2016.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Abstract
Ferumoxytol ultrasmall superparamagnetic iron oxide nanoparticles can enhance contrast between neuroinflamed and normal-appearing brain tissue when used as a contrast agent for high-sensitivity magnetic resonance imaging (MRI). Here we used an anti-dextran antibody (Dx1) that binds the nanoparticle's carboxymethyldextran coating to differentiate ferumoxytol from endogenous iron and localize it unequivocally in brain tissue. Intravenous injection of ferumoxytol into immune-competent rats that harbored human tumor xenograft-induced inflammatory brain lesions resulted in heterogeneous and lesion-specific signal enhancement on MRI scans in vivo. We used Dx1 immunolocalization and electron microscopy to identify ferumoxytol in affected tissue post-MRI. We found that ferumoxytol nanoparticles were taken up by astrocyte endfeet surrounding cerebral vessels, astrocyte processes, and CD163(+)/CD68(+) macrophages, but not by tumor cells. These results provide a biological basis for the delayed imaging changes seen with ferumoxytol and indicate that ferumoxytol-MRI can be used to assess the inflammatory component of brain lesions in the clinic.
Collapse
Affiliation(s)
- Heather L McConnell
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Daniel L Schwartz
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Brian E Richardson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
| | - Randall L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA.
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Neurosurgery, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs, Portland Veterans Affairs Medical Center, Portland, OR, USA.
| |
Collapse
|
21
|
Jenkins SI, Weinberg D, al-Shakli AF, Fernandes AR, Yiu HH, Telling ND, Roach P, Chari DM. ‘Stealth’ nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics. J Control Release 2016; 224:136-145. [DOI: 10.1016/j.jconrel.2016.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
|
22
|
Tickle JA, Jenkins SI, Polyak B, Pickard MR, Chari DM. Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance. Nanomedicine (Lond) 2016; 11:345-58. [PMID: 26785794 DOI: 10.2217/nnm.15.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MATERIALS & METHODS MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. RESULTS Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly 'asymmetric'. CONCLUSION These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization.
Collapse
Affiliation(s)
- Jacqueline A Tickle
- Institute for Science & Technology in Medicine, School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, UK
| | - Stuart I Jenkins
- Institute for Science & Technology in Medicine, School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, UK
| | - Boris Polyak
- Department of Surgery & Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mark R Pickard
- Institute for Science & Technology in Medicine, School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, UK
| | - Divya M Chari
- Institute for Science & Technology in Medicine, School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
23
|
Petters C, Thiel K, Dringen R. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology 2015; 10:332-42. [DOI: 10.3109/17435390.2015.1071445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Charlotte Petters
- Center for Biomedical Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany,
- Center for Environmental Research and Sustainable Technology, Bremen, Germany, and
| | - Karsten Thiel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Bremen, Germany
| | - Ralf Dringen
- Center for Biomedical Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany,
- Center for Environmental Research and Sustainable Technology, Bremen, Germany, and
| |
Collapse
|
24
|
Fernandes AR, Chari DM. A multicellular, neuro-mimetic model to study nanoparticle uptake in cells of the central nervous system. Integr Biol (Camb) 2015; 6:855-61. [PMID: 25017718 DOI: 10.1039/c4ib00085d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evaluating the uptake and handling of biomedically relevant nanoparticles by cells of the nervous system critically underpins the effective use of nanoparticle platforms for neuro-regenerative therapies. The lack of biologically relevant and 'neuromimetic' models for nanomaterials testing (that can simulate the cellular complexity of neural tissue) currently represents a bottleneck. Further, propagation of individual cell types, in different neural cell-specific media (as commonly occurs in the nanotechnology field), can result in non-standardised corona formation around particles, confounding analyses of intercellular differences between neural cells in nanoparticle uptake. To address these challenges, we have developed a facile multicellular model that broadly simulates the ratios of neurons, astrocytes and oligodendrocytes found in vivo. All cell types in the model are derived from a single neural stem cell source, and propagated in the same medium overcoming the issue of variant corona formation. Using a fluorescent transfection-grade magnetic particle (MP), we demonstrate dramatic differences in particle uptake and resultant gene transfer between neural cell subtypes, with astrocytes being the dominant population in terms of particle uptake and transfection. We demonstrate the compatibility of the model with a high resolution scanning electron microscopy technique, allowing for membrane features of MP stimulated cells to be examined. Using this approach, astrocytes displayed high membrane activity in line with extensive particle uptake/transfection, relative to neurons and oligodendrocytes. We consider that the stem cell based model described here can provide a simple and versatile tool to evaluate interactions of neural cells with nanoparticle systems developed for neurological applications. Models of greater complexity can be evolved from this basic system, to further enhance its neuromimetic capacity.
Collapse
Affiliation(s)
- A R Fernandes
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.
| | | |
Collapse
|
25
|
Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. J Funct Biomater 2015; 6:259-76. [PMID: 25918990 PMCID: PMC4493511 DOI: 10.3390/jfb6020259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022] Open
Abstract
Genetically engineered neural stem cell (NSC) transplants offer a key strategy to augment neural repair by releasing therapeutic biomolecules into injury sites. Genetic modification of NSCs is heavily reliant on viral vectors but cytotoxic effects have prompted development of non-viral alternatives, such as magnetic nanoparticle (MNPs). NSCs are propagated in laboratories as either 3-D suspension “neurospheres” or 2-D adherent “monolayers”. MNPs deployed with oscillating magnetic fields (“magnetofection technology”) mediate effective gene transfer to neurospheres but the efficacy of this approach for monolayers is unknown. It is important to address this issue as oscillating magnetic fields dramatically enhance MNP-based transfection in transplant cells (e.g., astrocytes and oligodendrocyte precursors) propagated as monolayers. We report for the first time that oscillating magnetic fields enhanced MNP-based transfection with reporter and functional (basic fibroblast growth factor; FGF2) genes in monolayer cultures yielding high transfection versus neurospheres. Transfected NSCs showed high viability and could re-form neurospheres, which is important as neurospheres yield higher post-transplantation viability versus monolayer cells. Our results demonstrate that the combination of oscillating magnetic fields and a monolayer format yields the highest efficacy for MNP-mediated gene transfer to NSCs, offering a viable non-viral alternative for genetic modification of this important neural cell transplant population.
Collapse
|
26
|
Tickle JA, Jenkins SI, Pickard MR, Chari DM. Influence of Amplitude of Oscillating Magnetic Fields on Magnetic Nanoparticle-Mediated Gene Transfer to Astrocytes. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s1793984414500068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Functionalized magnetic nanoparticles (MNPs) are emerging as a major nanoplatform for regenerative neurology, particularly as transfection agents for gene delivery. Magnetic assistive technology, particularly the recent innovation of applied oscillating magnetic fields, can significantly enhance MNP-mediated gene transfer to neural cells. While transfection efficiency varies with oscillation frequency in various neural cell types, the influence of oscillation amplitude has not yet been investigated. We have addressed this issue using cortical astrocytes that were transfected using MNPs functionalized with plasmid encoding a reporter protein. Cells were exposed to a range of oscillation amplitudes (100–1000 μm), using a fixed oscillation frequency of 1 Hz. No significant differences were found in the proportions of transfected cells at the amplitudes tested, but GFP-related optical density measurements (indicative of reporter protein expression) were significantly enhanced at 200 μm. Safety data show no amplitude-dependent toxicity. Our data suggest that the amplitude of oscillating magnetic fields influences MNP-mediated transfection, and a tailored combination of amplitude and frequency may further enhance transgene expression. Systematic testing of these parameters in different neural subtypes will enable the development of a database of neuro-magnetofection protocols — an area of nanotechnology research where little information currently exists.
Collapse
Affiliation(s)
- Jacqueline A. Tickle
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Stuart I. Jenkins
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Mark R. Pickard
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Divya M. Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
27
|
Petters C, Dringen R. Accumulation of iron oxide nanoparticles by cultured primary neurons. Neurochem Int 2015; 81:1-9. [DOI: 10.1016/j.neuint.2014.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 01/13/2023]
|
28
|
Development of a nanomaterial bio-screening platform for neurological applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:77-87. [DOI: 10.1016/j.nano.2014.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/05/2014] [Accepted: 07/22/2014] [Indexed: 11/23/2022]
|
29
|
Adams CF, Rai A, Sneddon G, Yiu HH, Polyak B, Chari DM. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:19-29. [DOI: 10.1016/j.nano.2014.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/04/2014] [Accepted: 07/10/2014] [Indexed: 01/23/2023]
|
30
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 11/21/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a 'multifunctional nanoplatform' that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive 'magnetic cell targeting' to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- />School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
31
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053 DOI: 10.1186/2052-8426-2-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 01/12/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin – the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a ‘multifunctional nanoplatform’ that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive ‘magnetic cell targeting’ to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
32
|
Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014; 39:1648-60. [PMID: 25011394 DOI: 10.1007/s11064-014-1380-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Petters
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | | | | | | |
Collapse
|
33
|
Gulin-Sarfraz T, Zhang J, Desai D, Teuho J, Sarfraz J, Jiang H, Zhang C, Sahlgren C, Lindén M, Gu H, Rosenholm JM. Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres. Biomater Sci 2014; 2:1750-1760. [DOI: 10.1039/c4bm00221k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The joint effect of surface functionalization and an external magnetic field on cellular labeling was studied.
Collapse
Affiliation(s)
- Tina Gulin-Sarfraz
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
| | - Jixi Zhang
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
- Med-X Research Institute and School of Biomedical Engineering
- Shanghai Jiao Tong University
| | - Diti Desai
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre
- Turku University Hospital
- Turku, Finland
| | - Jawad Sarfraz
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
| | - Hua Jiang
- Department of Applied Physics
- Aalto University
- Espoo, Finland
| | - Chunfu Zhang
- Med-X Research Institute and School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, P.R. China
| | - Cecilia Sahlgren
- Turku Centre of Biotechnology
- Åbo Akademi University and University of Turku
- Turku, Finland
- Eindhoven University of Technology
- Eindhoven, The Netherlands
| | - Mika Lindén
- Inorganic Chemistry II
- University of Ulm
- Ulm, Germany
| | - Hongchen Gu
- Med-X Research Institute and School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, P.R. China
| | | |
Collapse
|
34
|
Petters C, Bulcke F, Thiel K, Bickmeyer U, Dringen R. Uptake of Fluorescent Iron Oxide Nanoparticles by Oligodendroglial OLN-93 Cells. Neurochem Res 2013; 39:372-83. [DOI: 10.1007/s11064-013-1234-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
|
35
|
Petters C, Dringen R. Comparison of primary and secondary rat astrocyte cultures regarding glucose and glutathione metabolism and the accumulation of iron oxide nanoparticles. Neurochem Res 2013; 39:46-58. [PMID: 24190598 DOI: 10.1007/s11064-013-1189-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
Astrocyte-rich primary cultures (APCs) are frequently used as a model system for the investigation of properties of brain astrocytes. However, as APCs contain a substantial number of microglial and oligodendroglial cells, biochemical parameters determined for such cultures may at least in part reflect also the presence of the contaminating cell types. To lower the potential contributions of microglial and oligodendroglial cells on properties of the astrocytes in APCs we prepared rat astrocyte-rich secondary cultures (ASCs) by subculturing of APCs and compared these ASCs with APCs regarding basal metabolic parameters, specific enzyme activities and the accumulation of iron oxide nanoparticles. Immunocytochemical characterization revealed that ASCs contained only minute amounts of microglial and oligodendroglial cells. ASCs and APCs did not significantly differ in their specific glucose consumption and lactate production rates, in their specific iron and glutathione contents, in their specific activities of various enzymes involved in glucose and glutathione metabolism nor in their accumulation of iron oxide nanoparticles. Thus, the absence or presence of some contaminating microglial and oligodendroglial cells appears not to substantially modulate the investigated metabolic parameters of astrocyte cultures.
Collapse
Affiliation(s)
- Charlotte Petters
- Center for Biomolecular Interactions Bremen, University of Bremen, PO. Box 330440, 28334, Bremen, Germany
| | | |
Collapse
|