1
|
Hu Y, Zhang W, Chu X, Wang A, He Z, Si CL, Hu W. Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. Int J Pharm 2023; 635:122703. [PMID: 36758880 DOI: 10.1016/j.ijpharm.2023.122703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Cancer immunity is dependent on dynamic interactions between T cells and dendritic cells (DCs). Polymer-based nanoparticles target DC receptors to improve anticancer immune responses. In this paper, DC surface receptors and their specific coupling natural ligands and antibodies are reviewed and compared. Moreover, reaction mechanisms are described, and the synergistic effects of immune adjuvants are demonstrated. Also, extracellular-targeting antigen-delivery strategies and intracellular stimulus responses are reviewed to promote the rational design of polymer delivery systems.
Collapse
Affiliation(s)
- Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Xiaozhong Chu
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aoran Wang
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Bhargava A, Srivastava RK, Mishra DK, Tiwari RR, Sharma RS, Mishra PK. Dendritic cell engineering for selective targeting of female reproductive tract cancers. Indian J Med Res 2018; 148:S50-S63. [PMID: 30964081 PMCID: PMC6469378 DOI: 10.4103/ijmr.ijmr_224_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
Female reproductive tract cancers (FRCs) are considered as one of the most frequently occurring malignancies and a foremost cause of death among women. The late-stage diagnosis and limited clinical effectiveness of currently available mainstay therapies, primarily due to the developed drug resistance properties of tumour cells, further increase disease severity. In the past decade, dendritic cell (DC)-based immunotherapy has shown remarkable success and appeared as a feasible therapeutic alternative to treat several malignancies, including FRCs. Importantly, the clinical efficacy of this therapy is shown to be restricted by the established immunosuppressive tumour microenvironment. However, combining nanoengineered approaches can significantly assist DCs to overcome this tumour-induced immune tolerance. The prolonged release of nanoencapsulated tumour antigens helps improve the ability of DC-based therapeutics to selectively target and remove residual tumour cells. Incorporation of surface ligands and co-adjuvants may further aid DC targeting (in vivo) to overcome the issues associated with the short DC lifespan, immunosuppression and imprecise uptake. We herein briefly discuss the necessity and progress of DC-based therapeutics in FRCs. The review also sheds lights on the future challenges to design and develop clinically effective nanoparticles-DC combinations that can induce efficient anti-tumour immune responses and prolong patients' survival.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Dinesh Kumar Mishra
- School of Pharmacy & Technology Management, Narsee Monjee Institute of Management & Studies, Shirpur, India
| | - Rajnarayan R. Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal & Child Health, Indian Council of Medical Research, New Delhi, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
3
|
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:2023-2050. [PMID: 29944981 DOI: 10.1016/j.nano.2018.05.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Over the recent couple of decades, pharmaceutical field has embarked most phenomenal noteworthy achievements in the field of medications as well as drug delivery. The rise of Nanotechnology in this field has reformed the existing drug delivery for targeting, diagnostic, remedial applications and patient monitoring. The convincing usage of nanotechnology in the conveyance of medications that prompts an extension of novel lipid-based nanocarriers and non-liposomal systems has been discussed. Present review deals with the late advances and updates in lipidic nanocarriers, their formulation strategies, challenging aspects, stability profile, clinical applications alongside commercially available products and products under clinical trials. This exploration may give a complete idea viewing the lipid based nanocarriers as a promising choice for the formulation of pharmaceutical products, the challenges looked by the translational process of lipid-based nanocarriers and the combating methodologies to guarantee the headway of these nanocarriers from bench to bedside.
Collapse
Affiliation(s)
- Dinesh K Mishra
- NMIMS, School of Pharmacy & Technology Management, Shirpur (Maharashtra), India.
| | - Ruchita Shandilya
- Department of Molecular Biology ICMR-National Institute for Research in Environmental Health, Bhopal (MP), India
| | - Pradyumna K Mishra
- Department of Molecular Biology ICMR-National Institute for Research in Environmental Health, Bhopal (MP), India
| |
Collapse
|
4
|
Bhargava A, Mishra DK, Jain SK, Srivastava RK, Lohiya NK, Mishra PK. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers. Mol Immunol 2016; 79:98-112. [PMID: 27764711 DOI: 10.1016/j.molimm.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.
Collapse
Affiliation(s)
- Arpit Bhargava
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | | - Subodh K Jain
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Rupesh K Srivastava
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Nirmal K Lohiya
- Centre for Advanced Studies in Zoology, University of Rajasthan, Jaipur, India
| | - Pradyumna K Mishra
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India; Department of Molecular Biology, National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
5
|
Barbosa JP, Neves AR, Silva AM, Barbosa MA, Reis MS, Santos SG. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells. Int J Nanomedicine 2016; 11:3501-16. [PMID: 27555771 PMCID: PMC4970450 DOI: 10.2147/ijn.s108694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are promising targets for drug delivery, as they can induce immunity or tolerance. The current study aims to examine the potential of using nanostructured lipid carriers (NLC) as delivery systems for human DC by evaluating nanoparticle internalization, cell labeling, and drug activity. NLC were formulated incorporating the fluorochrome fluorescein isothiocyanate (FITC-NLC) or the natural anti-inflammatory molecule resveratrol (rsv-NLC). Primary human DCs were differentiated from peripheral blood monocytes, and the innovative imaging flow cytometry technique was used to examine FITC-NLC internalization. The capacity of rsv-NLC to inhibit DC activation in response to proinflammatory cytokine tumor necrosis factor-α (TNF- α) was investigated by conventional flow cytometry. A combination of imaging and conventional flow cytometry was used to assess NLC cytotoxicity. The results obtained indicate that both NLC formulations were stable over time, with mean diameter <200 nm and highly negative zeta potential (about -30 mV). When DCs were placed in contact with NLC, imaging flow cytometry clearly showed that DCs efficiently internalized FITC-NLC, with nearly 100% of cells internalizing nanoparticles upon 1 hour of incubation. Both immature and mature DCs internalized NLC to high and comparable levels, and without cytotoxicity. Stimulating DC with TNF-α in the presence of rsv-NLC revealed that, using these nanoparticles, very small concentrations of rsv were sufficient to significantly decrease surface expression of activation marker CD83 (5 µM) and major histocompatibility complex-class II molecule human leukocyte antigen - antigen D related (10 µM), both upregulated in response to TNF-α stimulation. Rsv-NLC were compared with free rsv; at 5 µM, rsv-NLC were able to inhibit nuclear factor κ beta phosphorylation and significantly decrease the level of interleukin-12/23, both upregulated in response to TNF-α, while 10 µM free rsv were needed to promote a similar effect. Taken together, the results presented show that NLC are suitable carriers of fluorescent labels or bioactive molecules for human DCs, leading to inflammation modulation.
Collapse
Affiliation(s)
- João P Barbosa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- UCIBIO, REQUIMTE, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - Ana R Neves
- UCIBIO, REQUIMTE, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - Andreia M Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - M Salette Reis
- UCIBIO, REQUIMTE, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
| |
Collapse
|
6
|
Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems. Vaccines (Basel) 2016; 4:E18. [PMID: 27258316 PMCID: PMC4931635 DOI: 10.3390/vaccines4020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Afoma C Umeano
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lily Francis
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Nivita Sharma
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Smanla Tundup
- School of Medicine, Department of Pulmonary and Critical Care, University of Virginia, Charlottesville, WV 22908, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Kaur A, Jyoti K, Rai S, Sidhu R, Pandey RS, Jain UK, Katyal A, Madan J. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses. J Microencapsul 2016; 33:263-73. [DOI: 10.3109/02652048.2016.1169324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amandeep Kaur
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Kiran Jyoti
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Shweta Rai
- Dr. B.R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Rupinder Sidhu
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Upendra Kumar Jain
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Anju Katyal
- Dr. B.R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Jitender Madan
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| |
Collapse
|
8
|
Bhargava A, Khare NK, Bunkar N, Lenka RK, Mishra PK. Role of mitochondrial oxidative stress on lymphocyte homeostasis in patients diagnosed with extra-pulmonary tuberculosis. Cell Biol Int 2016; 40:166-176. [PMID: 26431927 DOI: 10.1002/cbin.10549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Extra-pulmonary tuberculosis is often an underrated illness. Recent clinical studies have pointed out that lymphocyte homeostasis is dramatically disturbed as revealed through a series of signs and symptoms. Lymphocytes, the known effector cells of our immune system, play an important role in providing immunologic resistance against Mycobacterium infection. It is important to have quantitative insights into the lifespan of these cells; therefore, we aimed to study the precise effect of gastrointestinal tuberculosis infection on peripheral blood lymphocyte subpopulations and function. Our results indicated that gastrointestinal tuberculosis could increase mitochondrial oxidative stress, lower mitochondrial DNA copy number, promote nuclear DNA damage and repair response, decrease mitochondrial respiratory chain enzyme activities, and upregulate Bcl-2 and caspase-3 gene expression in lymphocytes. We further revealed that Mycobacterium infection induces autophagy for selective sequestration and subsequent degradation of the dysfunctional mitochondrion before activating cellular apoptosis in the peripheral lymphocyte pool. Together, these observations uncover a new role of mitochondrial-nuclear crosstalk that apparently contributes to lymphocyte homeostasis in gastrointestinal tuberculosis infection.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| | - Naveen Kumar Khare
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi Mumbai, Maharashtra, India
| | - Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| | - Rajesh Kumar Lenka
- Department of Microbiology, I.M.S. & SUM Hospital, Bhubaneswar, Odisha, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| |
Collapse
|
9
|
Bhargava A, Bunkar N, Khare NK, Mishra D, Mishra PK. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond) 2014; 9:2187-2202. [PMID: 25405796 DOI: 10.2217/nnm.14.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine may play an important role in improving the clinical efficacy of dendritic cell-based immunotherapy against GI tract malignancies. Dendritic cell-based vaccines have proven their effectiveness against different established GI tract tumors, yet their success is mainly hindered by the strong tumor-induced suppressive microenvironment. The sustained and targeted release of tumor antigens to dendritic cells using different nanoengineered approaches would be an efficient strategy to overcome established immune tolerance. Encapsulation would result in low diffusivity, restricted movement, effective crosspresentation and enhanced T-cell responses. These nanotherapy-based approaches will certainly help with the designing of clinically translatable dendritic cell-based therapeutic vaccines and facilitate the selective removal of residual disease in gastrointestinal cancer patients following standard treatments.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr H. S. Gour Central University, Sagar, India
| | | | | | | | | |
Collapse
|