1
|
Huang C, Wang M, Yu S, Yu DG, Bligh SWA. Electrospun Fenoprofen/Polycaprolactone @ Tranexamic Acid/Hydroxyapatite Nanofibers as Orthopedic Hemostasis Dressings. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:646. [PMID: 38607180 PMCID: PMC11013851 DOI: 10.3390/nano14070646] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Dressings with multiple functional performances (such as hemostasis, promoting regeneration, analgesia, and anti-inflammatory effects) are highly desired in orthopedic surgery. Herein, several new kinds of medicated nanofibers loaded with several active ingredients for providing multiple functions were prepared using the modified coaxial electrospinning processes. With an electrospinnable solution composed of polycaprolactone and fenoprofen as the core working fluid, several different types of unspinnable fluids (including pure solvent, nanosuspension containing tranexamic acid and hydroxyapatite, and dilute polymeric solution comprising tranexamic acid, hydroxyapatite, and polyvinylpyrrolidone) were explored to implement the modified coaxial processes for creating the multifunctional nanofibers. Their morphologies and inner structures were assessed through scanning and transmission electron microscopes, which all showed a linear format without the discerned beads or spindles and a diameter smaller than 1.0 μm, and some of them had incomplete core-shell nanostructures, represented by the symbol @. Additionally, strange details about the sheaths' topographies were observed, which included cracks, adhesions, and embedded nanoparticles. XRD and FTIR verified that the drugs tranexamic acid and fenoprofen presented in the nanofibers in an amorphous state, which resulted from the fine compatibility among the involved components. All the prepared samples were demonstrated to have a fine hydrophilic property and exhibited a lower water contact angle smaller than 40° in 300 ms. In vitro dissolution tests indicated that fenoprofen was released in a sustained manner over 6 h through a typical Fickian diffusion mechanism. Hemostatic tests verified that the intentional distribution of tranexamic acid on the shell sections was able to endow a rapid hemostatic effect within 60 s.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Menglong Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| | - Siyou Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
2
|
Giorgi Z, Veneruso V, Petillo E, Veglianese P, Perale G, Rossi F. Biomaterials and Cell Therapy Combination in Central Nervous System Treatments. ACS APPLIED BIO MATERIALS 2024; 7:80-98. [PMID: 38158393 PMCID: PMC10792669 DOI: 10.1021/acsabm.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Current pharmacological and surgical therapies for the central nervous system (CNS) show a limited capacity to reduce the damage progression; that together with the intrinsic limited capability of the CNS to regenerate greatly reduces the hopes of recovery. Among all the therapies proposed, the tissue engineering strategies supplemented with therapeutic stem cells remain the most promising. Neural tissue engineering strategies are based on the development of devices presenting optimal physical, chemical, and mechanical properties which, once inserted in the injured site, can support therapeutic cells, limiting the effect of a hostile environment and supporting regenerative processes. Thus, this review focuses on the employment of hydrogel and nanofibrous scaffolds supplemented with stem cells as promising therapeutic tools for the central and peripheral nervous systems in preclinical and clinical applications.
Collapse
Affiliation(s)
- Zoe Giorgi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Valeria Veneruso
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Emilia Petillo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Pietro Veglianese
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Perale
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
- Ludwig
Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Filippo Rossi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| |
Collapse
|
3
|
Li X, Ren Y, Xue Y, Zhang Y, Liu Y. Nanofibrous scaffolds for the healing of the fibrocartilaginous enthesis: advances and prospects. NANOSCALE HORIZONS 2023; 8:1313-1332. [PMID: 37614124 DOI: 10.1039/d3nh00212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
With the current developmental advancements in nanotechnology, nanofibrous scaffolds are being widely used. The healing of fibrocartilaginous enthesis is a slow and complex process, and while existing treatments have a certain effect on promoting their healing, these are associated with some limitations. The nanofibrous scaffold has the advantages of easy preparation, wide source of raw materials, easy adjustment, easy modification, can mimic the natural structure and morphology of the fibrocartilaginous enthesis, and has good biocompatibility, which can compensate for existing treatments and be combined with them to promote the repair of fibrocartilaginous enthesis. The nanofibrous scaffold can promote the healing of fibrocartilaginous enthesis by controlling the morphology and ensuring controlled drug release. Hence, the use of nanofibrous scaffold with stimulative response features in the musculoskeletal system has led us to imagine its potential application in fibrocartilaginous enthesis. Therefore, the healing of fibrocartilaginous enthesis based on a nanofibrous scaffold may be a novel therapeutic approach.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| |
Collapse
|
4
|
Investigating the bone regeneration activity of PVA nanofibers scaffolds loaded with simvastatin/chitosan nanoparticles in an induced bone defect rabbit model. Int J Biol Macromol 2022; 222:2399-2413. [DOI: 10.1016/j.ijbiomac.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
5
|
Wang N, Xie Y, Xi Z, Mi Z, Deng R, Liu X, Kang R, Liu X. Hope for bone regeneration: The versatility of iron oxide nanoparticles. Front Bioeng Biotechnol 2022; 10:937803. [PMID: 36091431 PMCID: PMC9452849 DOI: 10.3389/fbioe.2022.937803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Although bone tissue has the ability to heal itself, beyond a certain point, bone defects cannot rebuild themselves, and the challenge is how to promote bone tissue regeneration. Iron oxide nanoparticles (IONPs) are a magnetic material because of their excellent properties, which enable them to play an active role in bone regeneration. This paper reviews the application of IONPs in bone tissue regeneration in recent years, and outlines the mechanisms of IONPs in bone tissue regeneration in detail based on the physicochemical properties, structural characteristics and safety of IONPs. In addition, a bibliometric approach has been used to analyze the hot spots and trends in the field in order to identify future directions. The results demonstrate that IONPs are increasingly being investigated in bone regeneration, from the initial use as magnetic resonance imaging (MRI) contrast agents to later drug delivery vehicles, cell labeling, and now in combination with stem cells (SCs) composite scaffolds. In conclusion, based on the current research and development trends, it is more inclined to be used in bone tissue engineering, scaffolds, and composite scaffolds.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Balakrishnan NK, Ostheller ME, Aldeghi N, Schmitz C, Groten R, Seide G. Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additives. Polymers (Basel) 2022; 14:polym14152989. [PMID: 35893953 PMCID: PMC9330496 DOI: 10.3390/polym14152989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Fibers with diameters in the lower micrometer range have unique properties suitable for applications in the textile and biomedical industries. Such fibers are usually produced by solution electrospinning, but this process is environmentally harmful because it requires the use of toxic solvents. Melt electrospinning is a sustainable alternative but the high viscosity and low electrical conductivity of molten polymers produce thicker fibers. Here, we used multifunctional biobased dyes as additives to improve the spinnability of polylactic acid (PLA), improving the spinnability by reducing the electrical resistance of the melt, and incorporating antibacterial activity against Staphylococcus aureus. Spinning trials using our 600-nozzle pilot-scale melt-electrospinning device showed that the addition of dyes produced narrower fibers in the resulting fiber web, with a minimum diameter of ~9 µm for the fiber containing 3% (w/w) of curcumin. The reduction in diameter was low at lower throughputs but more significant at higher throughputs, where the diameter reduced from 46 µm to approximately 23 µm. Although all three dyes showed antibacterial activity, only the PLA melt containing 5% (w/w) curcumin retained this property in the fiber web. Our results provide the basis for the development of environmentally friendly melt-electrospinning processes for the pilot-scale manufacturing of microfibers.
Collapse
Affiliation(s)
- Naveen Kumar Balakrishnan
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
- Correspondence:
| | - Maike-Elisa Ostheller
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Niccolo Aldeghi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Christian Schmitz
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Moenchengladbach, Webschulstrasse 31, 41065 Moenchengladbach, Germany;
| | - Gunnar Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| |
Collapse
|
7
|
Esdaille CJ, Washington KS, Laurencin CT. Regenerative engineering: a review of recent advances and future directions. Regen Med 2021; 16:495-512. [PMID: 34030463 PMCID: PMC8356698 DOI: 10.2217/rme-2021-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Regenerative engineering is defined as the convergence of the disciplines of advanced material science, stem cell science, physics, developmental biology and clinical translation for the regeneration of complex tissues and organ systems. It is an expansion of tissue engineering, which was first developed as a method of repair and restoration of human tissue. In the past three decades, advances in regenerative engineering have made it possible to treat a variety of clinical challenges by utilizing cutting-edge technology currently available to harness the body's healing and regenerative abilities. The emergence of new information in developmental biology, stem cell science, advanced material science and nanotechnology have provided promising concepts and approaches to regenerate complex tissues and structures.
Collapse
Affiliation(s)
- Caldon J Esdaille
- Howard University College of Medicine, Washington, DC 20011, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| | - Kenyatta S Washington
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
8
|
Kchaou M, Alquraish M, Abuhasel K, Abdullah A, Ali AA. Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing Process, and Possible Applications for COVID-19. Polymers (Basel) 2021; 13:916. [PMID: 33809662 PMCID: PMC8002202 DOI: 10.3390/polym13060916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last twenty years, researchers have focused on the potential applications of electrospinning, especially its scalability and versatility. Specifically, electrospun nanofiber scaffolds are considered an emergent technology and a promising approach that can be applied to biosensing, drug delivery, soft and hard tissue repair and regeneration, and wound healing. Several parameters control the functional scaffolds, such as fiber geometrical characteristics and alignment, architecture, etc. As it is based on nanotechnology, the concept of this approach has shown a strong evolution in terms of the forms of the materials used (aerogels, microspheres, etc.), the incorporated microorganisms used to treat diseases (cells, proteins, nuclei acids, etc.), and the manufacturing process in relation to the control of adhesion, proliferation, and differentiation of the mimetic nanofibers. However, several difficulties are still considered as huge challenges for scientists to overcome in relation to scaffolds design and properties (hydrophilicity, biodegradability, and biocompatibility) but also in relation to transferring biological nanofibers products into practical industrial use by way of a highly efficient bio-solution. In this article, the authors review current progress in the materials and processes used by the electrospinning technique to develop novel fibrous scaffolds with suitable design and that more closely mimic structure. A specific interest will be given to the use of this approach as an emergent technology for the treatment of bacteria and viruses such as COVID-19.
Collapse
Affiliation(s)
- Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Mohammed Alquraish
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Khaled Abuhasel
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Ahmad Abdullah
- Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
- Department of Civil Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
| | - Ashraf A. Ali
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| |
Collapse
|
9
|
Ghorbani-Choghamarani A, Taherinia Z, Heidarnezhad Z, Moradi Z. Application of Nanofibers Based on Natural Materials as Catalyst in Organic Reactions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Liu R, Zhang S, Zhao C, Yang D, Cui T, Liu Y, Min Y. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. NANOSCALE RESEARCH LETTERS 2021; 16:4. [PMID: 33404823 PMCID: PMC7788154 DOI: 10.1186/s11671-020-03457-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Conductive and degradable nanofibrous scaffolds have great potential in promoting cell growth, proliferation, and differentiation under an external electric field. Although the issue of inferior electrical conductivity in body fluids still exists, polyaniline (PANI)-based degradable nanofibers can promote cell adhesion, growth, and proliferation. To investigate whether the effect is caused by the PANI morphology, we selected three inorganic acids as dopants in the process of PANI in situ oxidative polymerization: hydrochloric acid, sulfuric acid, and perchloric acid. The obtained polyaniline/polylactic acid (PANI/PLA) composite nanofibers were characterized via SEM, FTIR, and XPS analysis, and we confirmed that the PLA nanofibers were successfully coated by PANI without any change to the porous structure of the PLA nanofibers. The in vitro mechanical properties and degradability indicated that the oxidation of acid dopants should be considered and that it was likely to have a higher oxidation degradation effect on PLA nanofibers. The contact angle test demonstrated that PANI/PLA composite nanofibers with different surface morphologies have good wettability, implying that they meet the requirements of bone tissue engineering scaffolds. The surface roughness and cell viability demonstrated that different PANI morphologies on the surface can promote cell proliferation. The higher the surface roughness of the PANI, the better the biocompatibility. Consequently, the regulated surface morphology of PANI/PLA composite nanofibers via different acids doping has positive effect on biocompatibility in tissue engineering.
Collapse
Affiliation(s)
- Rongtao Liu
- School of Materials and Energy, Guangdong University of Technology (GDUT), Guangzhou, 510006, China
- Dongguan South China Design Innovation Institute, Dongguan, 523808, Guangdong, China
| | - Shiyang Zhang
- School of Materials and Energy, Guangdong University of Technology (GDUT), Guangzhou, 510006, China
- Dongguan South China Design Innovation Institute, Dongguan, 523808, Guangdong, China
| | - Chen Zhao
- School of Materials and Energy, Guangdong University of Technology (GDUT), Guangzhou, 510006, China
| | - Dong Yang
- School of Materials and Energy, Guangdong University of Technology (GDUT), Guangzhou, 510006, China
| | - Tingting Cui
- School of Materials and Energy, Guangdong University of Technology (GDUT), Guangzhou, 510006, China
| | - Yidong Liu
- School of Materials and Energy, Guangdong University of Technology (GDUT), Guangzhou, 510006, China.
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology (GDUT), Guangzhou, 510006, China.
- Dongguan South China Design Innovation Institute, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
11
|
Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:9508-9530. [PMID: 33551566 PMCID: PMC7857485 DOI: 10.1021/acs.chemmater.0c03018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and stem cell-based treatments have several limitations, such as source restriction, low stability, difficulties in predicting long-term efficacy, and high costs, among others. These issues have promoted the development of material-based therapy with properties of accessibility, high stability, tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because of their unique hydrophilic nature and tunable physicochemical properties to mimic the native bone environment. However, current hydrogel materials are not ideal candidates due to minimal osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to counterbalance these issues by modifying their biophysical properties. In this article, we review recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies developed to precisely control its bone healing properties.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
12
|
The Effect of Dye and Pigment Concentrations on the Diameter of Melt-Electrospun Polylactic Acid Fibers. Polymers (Basel) 2020; 12:polym12102321. [PMID: 33050563 PMCID: PMC7599908 DOI: 10.3390/polym12102321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Sub-microfibers and nanofibers produce more breathable fabrics than coarse fibers and are therefore widely used in the textiles industry. They are prepared by electrospinning using a polymer solution or melt. Solution electrospinning produces finer fibers but requires toxic solvents. Melt electrospinning is more environmentally friendly, but is also technically challenging due to the low electrical conductivity and high viscosity of the polymer melt. Here we describe the use of colorants as additives to improve the electrical conductivity of polylactic acid (PLA). The addition of colorants increased the viscosity of the melt by >100%, but reduced the electrical resistance by >80% compared to pure PLA (5 GΩ). The lowest electrical resistance of 50 MΩ was achieved using a composite containing 3% (w/w) indigo. However, the thinnest fibers (52.5 µm, 53% thinner than pure PLA fibers) were obtained by adding 1% (w/w) alizarin. Scanning electron microscopy revealed that fibers containing indigo featured polymer aggregates that inhibited electrical conductivity, and thus increased the fiber diameter. With further improvements to avoid aggregation, the proposed melt electrospinning process could complement or even replace industrial solution electrospinning and dyeing.
Collapse
|
13
|
Abstract
Regenerative engineering is powerfully emerging as a successful strategy for the regeneration of complex tissues and biological organs using a convergent approach that integrates several fields of expertise. This innovative and disruptive approach has spurred the demands for more choice of biomaterials with distinctive biological recognition properties. An ideal biomaterial is one that closely mimics the hierarchical architecture and features of the extracellular matrices (ECM) of native tissues. Nanofabrication technology presents an excellent springboard for the development of nanofiber scaffolds that can have positive interactions in the immediate cellular environment and stimulate specific regenerative cascades at the molecular level to yield healthy tissues. This paper systematically reviews the electrospinning process technology and its utility in matrix-based regenerative engineering, focusing mainly on musculoskeletal tissues. It briefly outlines the electrospinning/three-dimensional printing system duality and concludes with a discussion on the technology outlook and future directions of nanofiber matrices.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering,
University of Connecticut, Storrs, CT 06269, USA
- Connecticut Convergence Institute, University of
Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering,
University of Connecticut, Storrs, CT 06269, USA
- Connecticut Convergence Institute, University of
Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of
Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of
Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering,
University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Koenig K, Balakrishnan N, Hermanns S, Langensiepen F, Seide G. Biobased Dyes as Conductive Additives to Reduce the Diameter of Polylactic Acid Fibers during Melt Electrospinning. MATERIALS 2020; 13:ma13051055. [PMID: 32120806 PMCID: PMC7084231 DOI: 10.3390/ma13051055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Electrospinning is widely used for the manufacture of fibers in the low-micrometer to nanometer range, allowing the fabrication of flexible materials with a high surface area. A distinction is made between solution and melt electrospinning. The former produces thinner fibers but requires hazardous solvents; whereas the latter is more environmentally sustainable because solvents are not required. However, the viscous melt requires high process temperatures and its low conductivity leads to thicker fibers. Here, we describe the first use of the biobased dyes alizarin; hematoxylin and quercetin as conductive additives to reduce the diameter of polylactic acid (PLA) fibers produced by melt electrospinning; combined with a biobased plasticizer to reduce the melt viscosity. The formation of a Taylor cone followed by continuous fiber deposition was observed for all PLA compounds; reducing the fiber diameter by up to 77% compared to pure PLA. The smallest average fiber diameter of 16.04 µm was achieved by adding 2% (w/w) hematoxylin. Comparative analysis revealed that the melt-electrospun fibers had a low degree of crystallinity compared to drawn filament controls—resembling partially oriented filaments. Our results form the basis of an economical and environmentally friendly process that could ultimately, provide an alternative to industrial solution electrospinning
Collapse
|
15
|
Weng CJ, Lee D, Ho J, Liu SJ. Doxycycline-Embedded Nanofibrous Membranes Help Promote Healing of Tendon Rupture. Int J Nanomedicine 2020; 15:125-136. [PMID: 32021169 PMCID: PMC6966150 DOI: 10.2147/ijn.s217697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background Despite recent advancements in surgical techniques, the repair of tendon rupture remains a challenge for surgeons. The purpose of this study was to develop novel doxycycline-loaded biodegradable nanofibrous membranes and evaluate their efficacy for the repair of Achilles tendon rupture in a rat model. Materials and Methods The drug-loaded nanofibers were prepared using the electrospinning process and drug release from the prepared membranes was investigated both in vitro and in vivo. Furthermore, the safety and efficacy of the drug-loaded nanofibrous membranes were evaluated in rats that underwent tendon surgeries. An animal behavior cage was employed to monitor the post-surgery activity of the animals. Results The experimental results demonstrated that poly(D,L-lactide-co-glycolide) (PLGA) nanofibers released effective concentrations of doxycycline for more than 40 days post-surgery, and the systemic plasma drug concentration was low. Rats receiving implantation of doxycycline-loaded nanofibers also showed greater activities and stronger tendons post-operation. Conclusion Nanofibers loaded with doxycycline may have great potential in the repair of Achilles tendon rupture.
Collapse
Affiliation(s)
- Chun-Jui Weng
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Jui Ho
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
Song W, Ma Z, Wang C, Li H, He Y. Pro-chondrogenic and immunomodulatory melatonin-loaded electrospun membranes for tendon-to-bone healing. J Mater Chem B 2019; 7:6564-6575. [PMID: 31588948 DOI: 10.1039/c9tb01516g] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reconstructing the native structure of the tendon-to-bone insertion site (enthesis) in rotator cuff repair has always been a great challenge for orthopedic surgeons. Difficulty arises mainly due to the limited enthesis regenerative capability and severe inflammatory cell infiltration, which result in fibrovascular scar formation instead of native cartilage-like enthesis. Therefore, tissue engineering scaffolds with pro-chondrogenic and immunomodulatory capabilities may offer a new strategy for native enthesis regeneration. In this study, melatonin-loaded aligned polycaprolactone (PCL) electrospun fibrous membranes were fabricated. The sustained release of melatonin from this membrane significantly promoted the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in a long-term chondroid pellet model. After the membranes were implanted in a rat acute rotator cuff tear model, melatonin-loaded PCL membranes inhibited macrophage infiltration in the tendon-to-bone interface at the early healing phase, increasing chondroid zone formation, promoting collagen maturation, decreasing fibrovascular tissue formation and eventually improving the biomechanical strength of the regenerated enthesis. Taken together, melatonin-loaded PCL membranes possess great clinical application potential for tendon-to-bone healing.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Zhijie Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China. and Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| |
Collapse
|
17
|
Ali IH, Khalil IA, El-Sherbiny IM. Phenytoin/sildenafil loaded poly(lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration. Int J Biol Macromol 2019; 136:154-164. [DOI: 10.1016/j.ijbiomac.2019.06.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/30/2019] [Accepted: 06/09/2019] [Indexed: 01/15/2023]
|
18
|
Mitroulia A, Gavriiloglou M, Athanasiadou P, Bakopoulou A, Poulopoulos A, Panta P, Patil S, Andreadis D. Salivary Gland Stem Cells and Tissue Regeneration: An Update on Possible Therapeutic Application. J Contemp Dent Pract 2019; 20:978-986. [PMID: 31797858 DOI: 10.5005/jp-journals-10024-2620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The aim of this review is to combine literature and experimental data concerning the impact of salivary gland (SG) stem cells (SCs) and their therapeutic prospects in tissue regeneration. So far, SCs were isolated from human and rodent major and minor SGs that enabled their regeneration. Several scaffolds were also combined with "SCs" and different "proteins" to achieve guided differentiation, although none have been proven as ideal. A new aspect of SC therapy aims to establish a vice versa relationship between SG and other ecto- or endodermal organs such as the pancreas, liver, kidneys, and thyroid. SC therapy could be a cheap and simple, non-traumatic, and individualized therapy for medically challenging cases like xerostomia and major organ failures. Functional improvement has been achieved in these organs, but till date, the whole organ in vivo regeneration was not achieved. Concerns about malignant formations and possible failures are yet to be resolved. In this review article, we highlight the basic embryology of SGs, existence of SG SCs with a detailed exploration of various cellular markers, scaffolds for tissue engineering, and, in the later part, cover potential therapeutic applications with a special focus on the pancreas and liver. Keywords: Salivary gland stem cells, Stem cell therapy, Tissue regeneration.
Collapse
Affiliation(s)
- Aikaterini Mitroulia
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Marianna Gavriiloglou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Poluxeni Athanasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics and Implantology-Tissue Regeneration Unit, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India, Phone: +91 9701806830, e-mail:
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
19
|
Koenig K, Beukenberg K, Langensiepen F, Seide G. A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers. Biomater Res 2019; 23:10. [PMID: 30976458 PMCID: PMC6440082 DOI: 10.1186/s40824-019-0159-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022] Open
Abstract
Sub-microfibers and nanofibers have a high surface-to-volume ratio, which makes them suitable for diverse applications including environmental remediation and filtration, energy production and storage, electronic and optical sensors, tissue engineering, and drug delivery. However, the use of such materials is limited by the low throughput of established manufacturing technologies. This short report provides an overview of current production methods for sub-microfibers and nanofibers and then introduces a new melt-electrospinning prototype based on a spinneret with 600 nozzles, thereby providing an important step towards larger-scale production. The prototype features an innovative collector that achieves the optimal spreading of the fiber due to its uneven surface, as well as a polymer inlet that ensures even polymer distribution to all nozzles. We prepared a first generation of biobased fibers with diameters ranging from 1.000 to 7.000 μm using polylactic acid and 6% (w/w) sodium stearate, but finer fibers could be produced in the future by optimizing the prototype and the composition of the raw materials. Melt electrospinning using the new prototype is a promising method for the production of high-quality sub-microfibers and nanofibers.
Collapse
Affiliation(s)
- Kylie Koenig
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Konrad Beukenberg
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Fabian Langensiepen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Gunnar Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
20
|
Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 2019; 121:38-54. [DOI: 10.1016/j.ijbiomac.2018.10.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
21
|
Vigani B, Rossi S, Milanesi G, Bonferoni MC, Sandri G, Bruni G, Ferrari F. Electrospun Alginate Fibers: Mixing of Two Different Poly(ethylene oxide) Grades to Improve Fiber Functional Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E971. [PMID: 30477265 PMCID: PMC6315736 DOI: 10.3390/nano8120971] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
The aim of the present work was to investigate how the molecular weight (MW) of poly(ethylene oxide) (PEO), a synthetic polymer able to improve alginate (ALG) electrospinnability, could affect ALG-based fiber morphology and mechanical properties. Two PEO grades, having different MWs (high, h-PEO, and low, l-PEO) were blended with ALG: the concentrations of both PEOs in each mixture were defined so that each h-PEO/l-PEO combination would show the same viscosity at high shear rate. Seven ALG/h-PEO/l-PEO mixtures were prepared and characterized in terms of viscoelasticity and conductivity and, for each mixture, a complex parameter rH/rL was calculated to better identify which of the two PEO grades prevails over the other in terms of exceeding the critical entanglement concentration. Thereafter, each mixture was electrospun by varying the process parameters; the fiber morphology and mechanical properties were evaluated. Finally, viscoelastic measurements were performed to verify the formation of intermolecular hydrogen bonds between the two PEO grades and ALG. rH/rL has been proved to be the parameter that better explains the effect of the electrospinning conditions on fiber dimension. The addition of a small amount of h-PEO to l-PEO was responsible for a significant increase in fiber mechanical resistance, without affecting the nano-scale fiber size. Moreover, the mixing of h-PEO and l-PEO improved the interaction with ALG, resulting in an increase in chain entanglement degree that is functional in the electrospinning process.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Giulia Milanesi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | | | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy.
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
22
|
Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A, Gervaso F. Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:3651480. [PMID: 30538809 PMCID: PMC6260544 DOI: 10.1155/2018/3651480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
This work explored the use of chitosan (Cs) and poly(ethylene oxide) (PEO) blends for the fabrication of electrospun fiber-orientated meshes potentially suitable for engineering fiber-reinforced soft tissues such as tendons, ligaments, or meniscus. To mimic the fiber alignment present in native tissue, the CS/PEO blend solution was electrospun using a traditional static plate, a rotating drum collector, and a rotating disk collector to get, respectively, random, parallel, circumferential-oriented fibers. The effects of the different orientations (parallel or circumferential) and high-speed rotating collector influenced fiber morphology, leading to a reduction in nanofiber diameters and an improvement in mechanical properties.
Collapse
Affiliation(s)
- Paola Nitti
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Lara Natta
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
- Ghimas S.p.A. c/o Dhitech Scarl, Lecce 73100, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| |
Collapse
|
23
|
Vigani B, Rossi S, Sandri G, Bonferoni MC, Milanesi G, Bruni G, Ferrari F. Coated electrospun alginate-containing fibers as novel delivery systems for regenerative purposes. Int J Nanomedicine 2018; 13:6531-6550. [PMID: 30410337 PMCID: PMC6198875 DOI: 10.2147/ijn.s175069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim The aim of the present work was to develop biodegradable alginate (ALG)-containing fibrous membranes intended for tissue repair, acting as both drug delivery systems and cell growth guidance. Methods Membranes were prepared by electrospinning. Since ALG can be electrospun only when blended with other spinnable polymers, dextran (DEX) and polyethylene oxide (PEO) were investigated as process adjuvants. ALG/DEX mixtures, characterized by different rheological and conductivity properties, were prepared in phosphate buffer or deionized water; surfactants were added to modulate polymer solution surface tension. The Design of Experiments (DoE) approach (full factorial design) was used to investigate the role of polymer solution features (rheological properties, surface tension, and conductivity) on electrospun fiber morphology. A high viscosity at 1,000 s-1 (1.3-1.9 Pa.s) or a high pseudoplasticity index (≥1.7), combined with a low surface tension (30-32 mN/m) and a low conductivity (800-1,000 μS/cm), was responsible for the production of ALG/DEX homogeneous fibers. Such ranges were successfully employed for the preparation of ALG-containing fibers, using PEO, instead of DEX, as process adjuvant. ALG/DEX and ALG/PEO fibers were subsequently subjected to cross-linking/coating processes to make them slowly biodegradable in aqueous medium. In particular, ALG/PEO fibers were cross-linked and coated with CaCl2/chitosan solutions in water/ethanol mixtures. Due to DEX high content, ALG/DEX fibers were soaked in a polylactide-co-glycolide (PLGA) solution in ethyl acetate. Results Both cross-linking and coating processes made fibers insoluble in physiological medium and produced an increase in their mechanical resistance, assessed by means of a tensile test. PLGA-coated ALG/DEX and chitosan-coated ALG/PEO fibers were biocompatible and able to support fibroblast adhesion. Conclusion The DoE approach allowed to draw up guidelines useful for the preparation of homogeneous fibers, starting from mixtures of ALG and non-ionic polymers. Such fibers, upon coating, resulted to be good cell substrates, allowing cell adhesion and growth.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy,
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy,
| | | | | | - Giulia Milanesi
- Department of Drug Sciences, University of Pavia, Pavia, Italy,
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Pavia, Italy,
| |
Collapse
|
24
|
Casanellas I, García-Lizarribar A, Lagunas A, Samitier J. Producing 3D Biomimetic Nanomaterials for Musculoskeletal System Regeneration. Front Bioeng Biotechnol 2018; 6:128. [PMID: 30294596 PMCID: PMC6159749 DOI: 10.3389/fbioe.2018.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human musculoskeletal system is comprised mainly of connective tissues such as cartilage, tendon, ligaments, skeletal muscle, and skeletal bone. These tissues support the structure of the body, hold and protect the organs, and are responsible of movement. Since it is subjected to continuous strain, the musculoskeletal system is prone to injury by excessive loading forces or aging, whereas currently available treatments are usually invasive and not always effective. Most of the musculoskeletal injuries require surgical intervention facing a limited post-surgery tissue regeneration, especially for widespread lesions. Therefore, many tissue engineering approaches have been developed tackling musculoskeletal tissue regeneration. Materials are designed to meet the chemical and mechanical requirements of the native tissue three-dimensional (3D) environment, thus facilitating implant integration while providing a good reabsorption rate. With biological systems operating at the nanoscale, nanoengineered materials have been developed to support and promote regeneration at the interprotein communication level. Such materials call for a great precision and architectural control in the production process fostering the development of new fabrication techniques. In this mini review, we would like to summarize the most recent advances in 3D nanoengineered biomaterials for musculoskeletal tissue regeneration, with especial emphasis on the different techniques used to produce them.
Collapse
Affiliation(s)
- Ignasi Casanellas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Andrea García-Lizarribar
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Networking Biomedical Research Center (CIBER), Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center (CIBER), Madrid, Spain
| |
Collapse
|
25
|
Tsiapla AR, Karagkiozaki V, Bakola V, Pappa F, Gkertsiou P, Pavlidou E, Logothetidis S. Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1986-1994. [PMID: 30116690 PMCID: PMC6071698 DOI: 10.3762/bjnano.9.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
There is, as a matter of fact, an ever increasing number of patients requiring total hip replacement (Pabinger, C.; Geissler, A. Osteoarthritis Cartilage2014,22, 734-741). Implant-associated acute inflammations after an invasive orthopedic surgery are one of the major causes of implant failure. In addition, there are instability, aseptic loosening, infection, metallosis and fracture (Melvin, J. S.; Karthikeyan, T.; Cope, R.; Fehring, T. K. J. Arthroplasty2014,29, 1285-1288). In this work, a drug-delivery nanoplatform system consisting of polymeric celluloce acetate (CA) scaffolds loaded with dexamethasone was fabricated through electrospinning. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated the successful fabrication of these structures. Cytotoxicity studies were performed by using MTT assay, methylene-blue staining and SEM fixation and showed very good cell adhesion and proliferation, indicating the cytocompatibility of these fibrous scaffolds. Drug-release kinetics was measured for the evaluation of a controllable and sustained release of anti-inflammatory drug onto the engineered implants and degradation study was conducted in order to assess the mass loss of polymers. This drug-delivery nanoplatform as coating on titanium implants may be a promising approach not only to alleviate but also to prevent implant-associated acute inflammations along with a simultaneous controlled release of the drug.
Collapse
Affiliation(s)
- Aikaterini-Rafailia Tsiapla
- Lab for “Thin Films - Nanosystems & Nanometrology”, Nanomedicine Group, Department of Physics, Aristotle University of Thessaloniki, Greece
| | - Varvara Karagkiozaki
- Lab for “Thin Films - Nanosystems & Nanometrology”, Nanomedicine Group, Department of Physics, Aristotle University of Thessaloniki, Greece
- BL NanoBiomed P.C. Thessaloniki, Greece
| | - Veroniki Bakola
- Lab for “Thin Films - Nanosystems & Nanometrology”, Nanomedicine Group, Department of Physics, Aristotle University of Thessaloniki, Greece
- BL NanoBiomed P.C. Thessaloniki, Greece
| | - Foteini Pappa
- Lab for “Thin Films - Nanosystems & Nanometrology”, Nanomedicine Group, Department of Physics, Aristotle University of Thessaloniki, Greece
| | - Panagiota Gkertsiou
- Lab for “Thin Films - Nanosystems & Nanometrology”, Nanomedicine Group, Department of Physics, Aristotle University of Thessaloniki, Greece
| | - Eleni Pavlidou
- Department of Physics, Aristotle University of Thessaloniki, Greece
| | - Stergios Logothetidis
- Lab for “Thin Films - Nanosystems & Nanometrology”, Nanomedicine Group, Department of Physics, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
26
|
Brennan DA, Conte AA, Kanski G, Turkula S, Hu X, Kleiner MT, Beachley V. Mechanical Considerations for Electrospun Nanofibers in Tendon and Ligament Repair. Adv Healthc Mater 2018; 7:e1701277. [PMID: 29603679 DOI: 10.1002/adhm.201701277] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Indexed: 12/22/2022]
Abstract
Electrospun nanofibers possess unique qualities such as nanodiameter, high surface area to volume ratio, biomimetic architecture, and tunable chemical and electrical properties. Numerous studies have demonstrated the potential of nanofibrous architecture to direct cell morphology, migration, and more complex biological processes such as differentiation and extracellular matrix (ECM) deposition through topographical guidance cues. These advantages have created great interest in electrospun fibers for biomedical applications, including tendon and ligament repair. Electrospun nanofibers, despite their nanoscale size, generally exhibit poor mechanical properties compared to larger conventionally manufactured polymer fiber materials. This invites the question of what role electrospun polymer nanofibers can play in tendon and ligament repair applications that have both biological and mechanical requirements. At first glance, the strength and stiffness of electrospun nanofiber grafts appear to be too low to fill the rigorous loading conditions of these tissues. However, there are a number of strategies to enhance and tune the mechanical properties of electrospun nanofiber grafts. As researchers design the next-generation electrospun tendon and ligament grafts, it is critical to consider numerous physiologically relevant mechanical criteria and to evaluate graft mechanical performance in conditions and loading environments that reflect in vivo conditions and surgical fixation methods.
Collapse
Affiliation(s)
- David A. Brennan
- Department of Biomedical Engineering Rowan University 201 Mullica Hill Road, Rowan Hall Glassboro NJ 08028 USA
| | - Adriano A. Conte
- Department of Biomedical Engineering Rowan University 201 Mullica Hill Road, Rowan Hall Glassboro NJ 08028 USA
| | - Gregory Kanski
- Cooper Bone and Joint Institute and Cooper Medical School, Rowan University 3 Cooper Plaza Camden NJ 08103 USA
| | - Stefan Turkula
- Cooper Bone and Joint Institute and Cooper Medical School, Rowan University 3 Cooper Plaza Camden NJ 08103 USA
| | - Xiao Hu
- Department of Biomedical Engineering Rowan University 201 Mullica Hill Road, Rowan Hall Glassboro NJ 08028 USA
- Department of Physics and Astronomy Rowan University 201 Mullica Hill Road, Rowan Hall Glassboro NJ 08028 USA
| | - Matthew T. Kleiner
- Cooper Bone and Joint Institute and Cooper Medical School, Rowan University 3 Cooper Plaza Camden NJ 08103 USA
| | - Vince Beachley
- Department of Biomedical Engineering Rowan University 201 Mullica Hill Road, Rowan Hall Glassboro NJ 08028 USA
| |
Collapse
|
27
|
Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, Xie J. Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration. Adv Healthc Mater 2018; 7:e1701415. [PMID: 29498244 PMCID: PMC6317907 DOI: 10.1002/adhm.201701415] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Indexed: 12/30/2022]
Abstract
An ideal synthetic bone graft is a combination of the porous and nanofibrous structure presented by natural bone tissue as well as osteoinductive biochemical factors such as bone morphogenetic protein 2 (BMP-2). In this work, ultralight 3D hybrid nanofiber aerogels composed of electrospun PLGA-collagen-gelatin and Sr-Cu codoped bioactive glass fibers with incorporation of heptaglutamate E7 domain specific BMP-2 peptides have been developed and evaluated for their potential in cranial bone defect healing. The nanofiber aerogels are surgically implanted into 8 mm × 1 mm (diameter × thickness) critical-sized defects created in rat calvariae. A sustained release of E7-BMP-2 peptide from the degradable hybrid aerogels significantly enhances bone healing and defect closure over 8 weeks in comparison to unfilled defects. Histomorphometry and X-ray microcomputed tomography (µ-CT) analysis reveal greater bone volume and bone formation area in case of the E7-BMP-2 peptide loaded hybrid nanofiber aerogels. Further, histopathology data divulged a near complete nanofiber aerogel degradation along with enhanced vascularization of the regenerated tissue. Together, this study for the first time demonstrates the fabrication of 3D hybrid nanofiber aerogels from 2D electrospun fibers and their loading with therapeutic osteoinductive BMP-2 mimicking peptide for cranial bone tissue regeneration.
Collapse
Affiliation(s)
- Lin Weng
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Matthew J. Teusink
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Franklin D. Shuler
- Department of Orthopaedic Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
28
|
Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P. Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 2017. [DOI: 10.1002/app.45271] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li Chen
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Zhenxu Wu
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Yulai Zhou
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| | - Yue Chen
- School of Pharmaceutical Sciences; Jilin University; Changchun 130021 People's Republic of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100039 People's Republic of China
| |
Collapse
|
29
|
Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, Das D. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 2016; 7:188. [PMID: 28038681 PMCID: PMC5203716 DOI: 10.1186/s13287-016-0440-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The functionality of stem cells is tightly regulated by cues from the niche, comprising both intrinsic and extrinsic cell signals. Besides chemical and growth factors, biophysical signals are important components of extrinsic signals that dictate the stem cell properties. The materials used in the fabrication of scaffolds provide the chemical cues whereas the shape of the scaffolds provides the biophysical cues. The effect of the chemical composition of the scaffolds on stem cell fate is well researched. Biophysical signals such as nanotopography, mechanical forces, stiffness of the matrix, and roughness of the biomaterial influence the fate of stem cells. However, not much is known about their role in signaling crosstalk, stem cell maintenance, and directed differentiation. Among the various techniques for scaffold design, nanotechnology has special significance. The role of nanoscale topography in scaffold design for the regulation of stem cell behavior has gained importance in regenerative medicine. Nanotechnology allows manipulation of highly advanced surfaces/scaffolds for optimal regulation of cellular behavior. Techniques such as electrospinning, soft lithography, microfluidics, carbon nanotubes, and nanostructured hydrogel are described in this review, along with their potential usage in regenerative medicine. We have also provided a brief insight into the potential signaling crosstalk that is triggered by nanomaterials that dictate a specific outcome of stem cells. This concise review compiles recent developments in nanoscale architecture and its importance in directing stem cell differentiation for prospective therapeutic applications.
Collapse
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chaitra Jayadev
- Vitreoretina Services, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - S S Khora
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.
| |
Collapse
|
30
|
Locke RC, Abraham AC, Killian ML. Orthopedic Interface Repair Strategies Based on Native Structural and Mechanical Features of the Multiscale Enthesis. ACS Biomater Sci Eng 2016; 3:2633-2643. [PMID: 32832593 DOI: 10.1021/acsbiomaterials.6b00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enthesis is an organ that connects a soft, aligned tissue (tendon/ligament) to a hard, amorphous tissue (bone) via a fibrocartilage interface. Mechanically, the enthesis sustains a dynamic loading environment that includes tensile, compressive, and shear forces. The structural components of the enthesis act to minimize stress concentrations and control stretch at the interface. Current surgical repair of the enthesis, such as in rotator cuff repair and anterior cruciate ligament reconstruction, aim to bridge the gap between the injured ends via reattachment of soft-to-hard tissues or graft replacement. In this review, we discuss the multiscale, morphological, and mechanical characteristics of the fibrocartilage attachment. Additionally, we review historical and recent clinical approaches to treating enthesis injury. Lastly, we explore new technological advancements in tissue-engineered biomaterials that have shown promise in preclinical studies.
Collapse
Affiliation(s)
- Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Adam C Abraham
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York 10032, United States
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
31
|
Shooto ND, Dikio CW, Wankasi D, Sikhwivhilu LM, Mtunzi FM, Dikio ED. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution. NANOSCALE RESEARCH LETTERS 2016; 11:414. [PMID: 27644240 PMCID: PMC5028355 DOI: 10.1186/s11671-016-1631-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/10/2016] [Indexed: 05/08/2023]
Abstract
Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (ΔH°) and entropy (ΔS°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.
Collapse
Affiliation(s)
- Ntaote David Shooto
- Applied Chemistry and Nano-Science Laboratory, Department of Chemistry, Vaal University of Technology, P.O. Box X021, Vanderbijlpark, 1900 South Africa
| | - Charity Wokwu Dikio
- Applied Chemistry and Nano-Science Laboratory, Department of Chemistry, Vaal University of Technology, P.O. Box X021, Vanderbijlpark, 1900 South Africa
| | - Donbebe Wankasi
- Applied Chemistry and Nano-Science Laboratory, Department of Chemistry, Vaal University of Technology, P.O. Box X021, Vanderbijlpark, 1900 South Africa
| | - Lucky Mashudu Sikhwivhilu
- Advanced Materials Division, Mintek, Nanotechnology Innovation Centre, Private Bag X3015, Randburg, 2125 South Africa
| | - Fanyana Moses Mtunzi
- Applied Chemistry and Nano-Science Laboratory, Department of Chemistry, Vaal University of Technology, P.O. Box X021, Vanderbijlpark, 1900 South Africa
| | - Ezekiel Dixon Dikio
- Applied Chemistry and Nano-Science Laboratory, Department of Chemistry, Vaal University of Technology, P.O. Box X021, Vanderbijlpark, 1900 South Africa
| |
Collapse
|
32
|
Gao X, Song J, Zhang Y, Xu X, Zhang S, Ji P, Wei S. Bioinspired Design of Polycaprolactone Composite Nanofibers as Artificial Bone Extracellular Matrix for Bone Regeneration Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27594-27610. [PMID: 27690143 DOI: 10.1021/acsami.6b10417] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The design and development of functional biomimetic systems for programmed stem cell response is a field of topical interest. To mimic bone extracellular matrix, we present an innovative strategy for constructing drug-loaded composite nanofibrous scaffolds in this study, which could integrate multiple cues from calcium phosphate mineral, bioactive molecule, and highly ordered fiber topography for the control of stem cell fate. Briefly, inspired by mussel adhesion mechanism, a polydopamine (pDA)-templated nanohydroxyapatite (tHA) was synthesized and then surface-functionalized with bone morphogenetic protein-7-derived peptides via catechol chemistry. Afterward, the resulting peptide-loaded tHA (tHA/pep) particles were blended with polycaprolactone (PCL) solution to fabricate electrospun hybrid nanofibers with random and aligned orientation. Our research demonstrated that the bioactivity of grafted peptides was retained in composite nanofibers. Compared to controls, PCL-tHA/pep composite nanofibers showed improved cytocompatibility. Moreover, the incorporated tHA/pep particles in nanofibers could further facilitate osteogenic differentiation potential of human mesenchymal stem cells (hMSCs). More importantly, the aligned PCL-tHA/pep composite nanofibers showed more osteogenic activity than did randomly oriented counterparts, even under nonosteoinductive conditions, indicating excellent performance of biomimetic design in cell fate decision. After in vivo implantation, the PCL-tHA/pep composite nanofibers with highly ordered structure could significantly promote the regeneration of lamellar-like bones in a rat calvarial critical-sized defect. Accordingly, the presented strategy in our work could be applied for a wide range of potential applications in not only bone regeneration application but also pharmaceutical science.
Collapse
Affiliation(s)
- Xiang Gao
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Jinlin Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Yancong Zhang
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
| | - Xiao Xu
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
| | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Shicheng Wei
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| |
Collapse
|
33
|
Patel S, Gualtieri AP, Lu HH, Levine WN. Advances in biologic augmentation for rotator cuff repair. Ann N Y Acad Sci 2016; 1383:97-114. [PMID: 27750374 DOI: 10.1111/nyas.13267] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon-bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue are discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing are covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon-bone interface and improve delivery of biological factors for enhanced integrative repair.
Collapse
Affiliation(s)
- Sahishnu Patel
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Anthony P Gualtieri
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - William N Levine
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| |
Collapse
|
34
|
Biazar E. Application of polymeric nanofibers in medical designs, part III: Musculoskeletal and urological tissues. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
35
|
Guler Z, Silva JC, Sarac AS. Enhanced osteogenesis on biofunctionalized poly(ɛ-caprolactone)/poly(m-anthranilic acid) nanofibers. J Biomater Appl 2016; 31:743-754. [PMID: 27440863 DOI: 10.1177/0885328216660379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biofunctionalized nanofibers with a desired biological function can be used as a tissue engineering scaffold due to their small fiber diameters and porous structure. In the present study, poly(ɛ-caprolactone)/poly(m-anthranilic acid) nanofibers were biofunctionalized with covalent immobilization of bone morphogenetic protein-2 (BMP-2) through 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide activation. Fourier transform infrared analysis of the nanofiber surfaces confirmed the successful immobilization. The amount of immobilized BMP-2 was determined with bicinchoninic acid protein assay. The nanofibers before and after BMP-2 immobilization were non-cytotoxic and enhanced the attachment and proliferation of Saos-2 cells. Biofunctionalization of nanofibers with BMP-2 promoted in vitro osteogenic activity. The alkaline phosphatase activity and calcium mineralizatio of cells after 14 days of in vitro culture were enhanced on nanofibers with immobilized BMP-2.
Collapse
Affiliation(s)
- Zeliha Guler
- Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey I3N/Cenimat and Physics Department, Faculty of Science and Technology, Nova University of Lisbon, Caparica, Portugal
| | - Jorge C Silva
- I3N/Cenimat and Physics Department, Faculty of Science and Technology, Nova University of Lisbon, Caparica, Portugal
| | - Abdulkadir S Sarac
- Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey Department of Chemistry, Istanbul Technical University, Istanbul, Turkey Department of Polymer Science and Technology, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
36
|
Guler Z, Silva JC, Sezai Sarac A. RGD functionalized poly(ε-caprolactone)/poly(m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1190929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Timashev P, Kuznetsova D, Koroleva A, Prodanets N, Deiwick A, Piskun Y, Bardakova K, Dzhoyashvili N, Kostjuk S, Zagaynova E, Rochev Y, Chichkov B, Bagratashvili V. Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine (Lond) 2016; 11:1041-53. [PMID: 27078220 DOI: 10.2217/nnm-2015-0022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the properties of 3D biodegradable scaffolds fabricated from novel star-shaped poly(D,L-lactide) (SSL) materials for bone tissue regeneration. MATERIALS & METHODS The SSL polymer was synthesized using an optimized synthetic procedure and applied for scaffold fabrication by the two-photon polymerization technique. The osteogenic differentiation was controlled using human adipose-derived stem cells cultured for 28 days. The SSL scaffolds with or without murine MSCs were implanted into the cranial bone of C57/Bl6 mice. RESULTS The SSL scaffolds supported differentiation of human adipose-derived stem cells toward the osteogenic lineage in vitro. The SSL scaffolds with murine MSCs enhanced the mineralized tissue formation. CONCLUSION The SSL scaffolds provide a beneficial microenvironment for the osteogenic MSCs' differentiation in vitro and support de novo bone formation in vivo.
Collapse
Affiliation(s)
- Peter Timashev
- Institute of Photonic Technologies, Research Centrer of Crystallography and Photonics RAS, 108840, Troitsk, Moscow, Russia
| | | | | | | | - Andrea Deiwick
- Laser Zentrum Hannover e. V., Hollerithallee 8, 30419 Hannover, Germany
| | - Yuri Piskun
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Ksenia Bardakova
- Institute of Photonic Technologies, Research Centrer of Crystallography and Photonics RAS, 108840, Troitsk, Moscow, Russia
| | - Nina Dzhoyashvili
- National Centre for Biomedical Engineering Science, College of Science, National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Sergei Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Elena Zagaynova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Yuri Rochev
- I.M. Sechenov First Moscow State Medical University, Institute for Uronephrology and Reproductive Health, 119991 Moscow, Russia
| | - Boris Chichkov
- Institute of Photonic Technologies, Research Centrer of Crystallography and Photonics RAS, 108840, Troitsk, Moscow, Russia
| | - Viktor Bagratashvili
- Institute of Photonic Technologies, Research Centrer of Crystallography and Photonics RAS, 108840, Troitsk, Moscow, Russia
| |
Collapse
|
38
|
Fu LJ, Chen CS, Xie YZ, Yang JW, Sun XJ, Zhang P. Effect of a New Annular Incision on Biomechanical Properties of the Intervertebral Disc. Orthop Surg 2016; 8:68-74. [PMID: 27028383 DOI: 10.1111/os.12226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/15/2015] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To compare the biomechanical properties of a novel annular incision technique, an oblique incision made approximately 60° to the spinal column, with the traditional transverse and longitudinal annular slit incision in an ex vivo sheep lumbar spine model. METHODS Sixteen sheep lumbar spines were used for the current ex vivo biomechanical comparative study. Functional spine unit (FSU) specimens composed of two vertebrae and one disc in the middle was cut from the whole lumbar spine. Annular slit incisions of 5 mm were made in different directions with a 15-blade knife at the intervertebral disc, following which partial discectomy was performed to produce the following groups: control with no incision, transverse slit, longitudinal slit and oblique slit groups. The specimens were then subjected to flexion-extension, lateral bending, axial rotation and compression tests. RESULTS As expected, the control group showed the least range of motion (ROM) in the flexion-extension test. The oblique slit group showed a trend toward a smaller ROM than the transverse and longitudinal groups in 1, 2, 3 and 5 Nm flexion-extension tests; these differences were not statistically significant (P > 0.05). In addition, the transverse (5.80° ± 0.20°), longitudinal (5.77° ± 0.67°) and oblique (5.47° ± 0.43°) slit groups showed a significantly larger ROM than the control group (3.22° ± 0.28°) in 2 Nm lateral bending tests (P < 0.05). Compared with the transverse and longitudinal groups, the oblique group also showed a trend toward a smaller ROM in lateral bending tests (P > 0.05). Following increments in the axial torsion force, the ROM was greater in all four experimental groups than the ROM with 1 Nm axial torsion. Furthermore, a significantly smaller axial rotational ROM was found in the oblique than the transverse group for 1 and 5 Nm force (P < 0.05). With increase in the axial force to 5 Nm, the ROM in the oblique slit group (4.71° ± 0.52°) was significantly smaller than that in the transverse group (7.25° ± 0.46°, P < 0.05), but not significantly different from that of the longitudinal slit group (5.84° ± 0.23°, P > 0.05). Comparable ultimate loads to failure were found in the oblique, transverse and longitudinal groups; the highest ultimate load to failure being in the control group (P > 0.05). CONCLUSION The novel oblique slit annular incision to the intervertebral disc showed a trend toward better biomechanical properties than the traditional transverse and longitudinal slit incisions.
Collapse
Affiliation(s)
- Ling-jie Fu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang-sheng Chen
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
| | - You-zhuan Xie
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-wei Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-jiang Sun
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Lim KHC, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 2015; 44:790-814. [PMID: 25408245 DOI: 10.1039/c4cs00226a] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nanotechnology refers to the fabrication, characterization, and application of substances in nanometer scale dimensions for various ends. The influence of nanotechnology on the healthcare industry is substantial, particularly in the areas of disease diagnosis and treatment. Recent investigations in nanotechnology for drug delivery and tissue engineering have delivered high-impact contributions in translational research, with associated pharmaceutical products and applications. Over the past decade, the synthesis of nanofibers or nanoparticles via electrostatic spinning or spraying, respectively, has emerged as an important nanostructuring methodology. This is due to both the versatility of the electrospinning/electrospraying process and the ensuing control of nanofiber/nanoparticle surface parameters. Electrosprayed nanoparticles and electrospun nanofibers are both employed as natural or synthetic carriers for the delivery of entrapped drugs, growth factors, health supplements, vitamins, and so on. The role of nanofiber/nanoparticle carriers is substantiated by the programmed, tailored, or targeted release of their contents in the guise of tissue engineering scaffolds or medical devices for drug delivery. This review focuses on the nanoformulation of natural materials via the electrospraying or electrospinning of nanoparticles or nanofibers for tissue engineering or drug delivery/pharmaceutical purposes. Here, we classify the natural materials with respect to their animal/plant origin and macrocyclic, small molecule or herbal active constituents, and further categorize the materials according to their proteinaceous or saccharide nature.
Collapse
Affiliation(s)
- Radhakrishnan Sridhar
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576.
| | | | | | | | | | | |
Collapse
|
40
|
Jiang J, Carlson MA, Teusink MJ, Wang H, MacEwan MR, Xie J. Expanding Two-Dimensional Electrospun Nanofiber Membranes in the Third Dimension By a Modified Gas-Foaming Technique. ACS Biomater Sci Eng 2015; 1:991-1001. [DOI: 10.1021/acsbiomaterials.5b00238] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | - Matthew R. MacEwan
- Department
of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | | |
Collapse
|
41
|
Chitosan nanofibers fabricated by combined ultrasonic atomization and freeze casting. Carbohydr Polym 2015; 122:18-25. [DOI: 10.1016/j.carbpol.2014.12.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 11/22/2022]
|
42
|
Smith BD, Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 2015; 11:213-22. [DOI: 10.1038/nrrheum.2015.27] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|