1
|
Dastgheib ZS, Abolmaali SS, Farahavar G, Salmanpour M, Tamaddon AM. Gold nanostructures in melanoma: Advances in treatment, diagnosis, and theranostic applications. Heliyon 2024; 10:e35655. [PMID: 39170173 PMCID: PMC11336847 DOI: 10.1016/j.heliyon.2024.e35655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders. It begins by elucidating the potential of nanotechnology-driven approaches in cancer therapy, highlighting the unique physicochemical properties and versatility of GNPs in biomedical applications. Various therapeutic modalities, including photothermal therapy, photodynamic therapy, targeted drug delivery, gene delivery, and nanovaccines, are discussed in detail, along with insights from ongoing clinical trials. In addition, the utility of GNPs in melanoma imaging and theranostics is explored, showcasing their potential in diagnosis, treatment monitoring, and personalized medicine. Furthermore, safety considerations and potential toxicities associated with GNPs are addressed, underscoring the importance of comprehensive risk assessment in clinical translation. Finally, the review concludes by discussing current challenges and future directions, emphasizing the need for innovative strategies to maximize the clinical impact of GNPs in melanoma therapy.
Collapse
Affiliation(s)
- Zahra Sadat Dastgheib
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Mohsen Salmanpour
- Cellular and Molecular Biology Research Center, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| |
Collapse
|
2
|
Ahmadi M, Emzhik M, Mosayebnia M. Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging. Drug Deliv Transl Res 2023; 13:1546-1583. [PMID: 36811810 DOI: 10.1007/s13346-023-01291-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Abstract
Providing accurate molecular imaging of the body and biological process is critical for diagnosing disease and personalizing treatment with the minimum side effects. Recently, diagnostic radiopharmaceuticals have gained more attention in precise molecular imaging due to their high sensitivity and appropriate tissue penetration depth. The fate of these radiopharmaceuticals throughout the body can be traced using nuclear imaging systems, including single-photon emission computed tomography (SPECT) and positron emission tomography (PET) modalities. In this regard, nanoparticles are attractive platforms for delivering radionuclides into targets because they can directly interfere with the cell membranes and subcellular organelles. Moreover, applying radiolabeled nanomaterials can decrease their toxicity concerns because radiopharmaceuticals are usually administrated at low doses. Therefore, incorporating gamma-emitting radionuclides into nanomaterials can provide imaging probes with valuable additional properties compared to the other carriers. Herein, we aim to review (1) the gamma-emitting radionuclides used for labeling different nanomaterials, (2) the approaches and conditions adopted for their radiolabeling, and (3) their application. This study can help researchers to compare different radiolabeling methods in terms of stability and efficiency and choose the best way for each nanosystem.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Emzhik
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Niayesh Junction, Vali-E-Asr Ave, Tehran, 14155-6153, Iran.
| |
Collapse
|
3
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Bentivoglio V, Varani M, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: PET Use (Part 2). Biomolecules 2022; 12:1517. [PMID: 36291726 PMCID: PMC9599877 DOI: 10.3390/biom12101517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
The use of radiolabelled nanoparticles (NPs) is a promising nuclear medicine tool for diagnostic and therapeutic purposes. Thanks to the heterogeneity of their material (organic or inorganic) and their unique physical and chemical characteristics, they are highly versatile for their use in several medical applications. In particular, they have shown interesting results as radiolabelled probes for positron emission tomography (PET) imaging. The high variability of NP types and the possibility to use several isotopes in the radiolabelling process implies different radiolabelling methods that have been applied over the previous years. In this review, we compare and summarize the different methods for NP radiolabelling with the most frequently used PET isotopes.
Collapse
Affiliation(s)
- Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Daems N, Michiels C, Lucas S, Baatout S, Aerts A. Gold nanoparticles meet medical radionuclides. Nucl Med Biol 2021; 100-101:61-90. [PMID: 34237502 DOI: 10.1016/j.nucmedbio.2021.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Thanks to their unique optical and physicochemical properties, gold nanoparticles have gained increased interest as radiosensitizing, photothermal therapy and optical imaging agents to enhance the effectiveness of cancer detection and therapy. Furthermore, their ability to carry multiple medically relevant radionuclides broadens their use to nuclear medicine SPECT and PET imaging as well as targeted radionuclide therapy. In this review, we discuss the radiolabeling process of gold nanoparticles and their use in (multimodal) nuclear medicine imaging to better understand their specific distribution, uptake and retention in different in vivo cancer models. In addition, radiolabeled gold nanoparticles enable image-guided therapy is reviewed as well as the enhancement of targeted radionuclide therapy and nanobrachytherapy through an increased dose deposition and radiosensitization, as demonstrated by multiple Monte Carlo studies and experimental in vitro and in vivo studies.
Collapse
Affiliation(s)
- Noami Daems
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium.
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire-NARILIS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN)-NARILIS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Sarah Baatout
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - An Aerts
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
6
|
Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, Zhang T, Gao Y, Chen T, Chen Y, Yao X, Watanabe Y, Tian M, Zhang H. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging 2021; 48:1736-1758. [PMID: 33210241 DOI: 10.1007/s00259-020-05107-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
Abstract
Systematic imaging can be broadly defined as the systematic identification and characterization of biological processes at multiple scales and levels. In contrast to "classical" diagnostic imaging, systematic imaging emphasizes on detecting the overall abnormalities including molecular, functional, and structural alterations occurring during disease course in a systematic manner, rather than just one aspect in a partial manner. Concomitant efforts including improvement of imaging instruments, development of novel imaging agents, and advancement of artificial intelligence are warranted for achievement of systematic imaging. It is undeniable that scientists and radiologists will play a predominant role in directing this burgeoning field. This article introduces several recent developments in imaging modalities and nanoparticles-based imaging agents, and discusses how systematic imaging can be achieved. In the near future, systematic imaging which combines multiple imaging modalities with multimodal imaging agents will pave a new avenue for comprehensive characterization of diseases, successful achievement of image-guided therapy, precise evaluation of therapeutic effects, and rapid development of novel pharmaceuticals, with the final goal of improving human health-related outcomes.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Min Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Tingting Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ting Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yao Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xin Yao
- Department of Gastroenterology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Mei Tian
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
- The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021; 22:4804. [PMID: 33946583 PMCID: PMC8124553 DOI: 10.3390/ijms22094804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Edinburgh Molecular Imaging Ltd. (EMI), Edinburgh EH16 4UX, UK
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Ilona A. Dekkers
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Anke M. Smits
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Marie José T. H. Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
8
|
Jeng KS, Sheen IS, Lin SS, Leu CM, Chang CF. The Role of Endoglin in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063208. [PMID: 33809908 PMCID: PMC8004096 DOI: 10.3390/ijms22063208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Endoglin (CD105) is a type-1 integral transmembrane glycoprotein and coreceptor for transforming growth factor-β (TGF-β) ligands. The endoglin/TGF-β signaling pathway regulates hemostasis, cell proliferation/migration, extracellular matrix (ECM) synthesis and angiogenesis. Angiogenesis contributes to early progression, invasion, postoperative recurrence, and metastasis in hepatocellular carcinoma (HCC), one of the most widespread malignancies globally. Endoglin is overexpressed in newly formed HCC microvessels. It increases microvessel density in cirrhotic and regenerative HCC nodules. In addition, circulating endoglin is present in HCC patients, suggesting potential for use as a diagnostic or prognostic factor. HCC angiogenesis is dynamic and endoglin expression varies by stage. TRC105 (carotuximab) is an antibody against endoglin, and three of its clinical trials were related to liver diseases. A partial response was achieved when combining TRC105 with sorafenib. Although antiangiogenic therapy still carries some risks, combination therapy with endoglin inhibitors or other targeted therapies holds promise.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - I-Shyan Sheen
- Department of Hepatogastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taoyuan city 33305, Taiwan;
| | - Shu-Sheng Lin
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei city 11221, Taiwan;
| | - Chiung-Fang Chang
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
- Correspondence: ; Tel.: +886-2-7728-4564
| |
Collapse
|
9
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
10
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
11
|
Li L, Guo X, Peng X, Zhang H, Liu Y, Li H, He X, Shi D, Xiong B, Zhao Y, Zheng C, Yang X. Radiofrequency-responsive dual-valent gold nanoclusters for enhancing synergistic therapy of tumor ablation and artery embolization. NANO TODAY 2020; 35:100934. [DOI: 10.1016/j.nantod.2020.100934] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Datta P, Ray S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J Labelled Comp Radiopharm 2020; 63:333-355. [PMID: 32220029 DOI: 10.1002/jlcr.3839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Application of nanotechnology principles in drug delivery has created opportunities for treatment of several diseases. Nanotechnology offers the advantage of overcoming the adverse biopharmaceutics or pharmacokinetic properties of drug molecules, to be determined by the transport properties of the particles themselves. Through the manipulation of size, shape, charge, and type of nanoparticle delivery system, variety of distribution profiles may be obtained. However, there still exists greater need to derive and standardize definitive structure property relationships for the distribution profiles of the delivery system. When applied to radiopharmaceuticals, the delivery systems assume greater significance. For the safety and efficacy of both diagnostics and therapeutic radiopharmaceuticals, selective localization in target tissue is even more important. At the same time, the synthesis and fabrication reactions of radiolabelled nanoparticles need to be completed in much shorter time. Moreover, the extensive understanding of the several interesting optical and magnetic properties of materials in nanoscale provides for achieving multiple objectives in nuclear medicine. This review discusses the various nanoparticle systems, which are applied for radionuclides and analyses the important bottlenecks that are required to be overcome for their more widespread clinical adaptation.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | | |
Collapse
|
13
|
Daems N, Penninckx S, Nelissen I, Van Hoecke K, Cardinaels T, Baatout S, Michiels C, Lucas S, Aerts A. Gold nanoparticles affect the antioxidant status in selected normal human cells. Int J Nanomedicine 2019; 14:4991-5015. [PMID: 31371943 PMCID: PMC6635753 DOI: 10.2147/ijn.s203546] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose: This study evaluates the cytotoxicity of AuNPs coated with polyallylamine (AuNPs-PAA) and conjugated or not to the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab (AuNPs-PAA-Ctxb) in normal human kidney (HK-2), liver (THLE-2) and microvascular endothelial (TIME) cells, and compares it with two cancer cell lines that are EGFR-overexpressing (A431) or EGFR-negative (MDA-MB-453). Results: Conjugation of Cetuximab to AuNPs-PAA increased the AuNPs-PAA-Ctxb interactions with cells, but reduced their cytotoxicity. TIME cells exhibited the strongest reduction in viability after exposure to AuNPs-PAA(±Ctxb), followed by THLE-2, MDA-MB-453, HK-2 and A431 cells. This cell type-dependent sensitivity was strongly correlated to the inhibition of thioredoxin reductase (TrxR) and glutathione reductase (GR), and to the depolarization of the mitochondrial membrane potential. Both are suggested to initiate apoptosis, which was indeed detected in a concentration- and time-dependent manner. The role of oxidative stress in AuNPs-PAA(±Ctxb)-induced cytotoxicity was demonstrated by co-incubation of the cells with N-acetyl L-cysteine (NAC), which significantly decreased apoptosis and mitochondrial membrane depolarization. Conclusion: This study helps to identify the cells and tissues that could be sensitive to AuNPs and deepens the understanding of the risks associated with the use of AuNPs in vivo.
Collapse
Affiliation(s)
- Noami Daems
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK.CEN), Mol, Belgium
| | - Sébastien Penninckx
- Research Center for the Physics of Matter and Radiation-NARILIS, University of Namur, Namur, Belgium
| | - Inge Nelissen
- Health Department, Flemish Institute For Technological Research (VITO), Mol, Belgium
| | - Karen Van Hoecke
- Radiochemistry Expert Group, Institute for Nuclear Materials Science, Belgian Nuclear Research Centre (SCK.CEN), Mol, Belgium
| | - Thomas Cardinaels
- Radiochemistry Expert Group, Institute for Nuclear Materials Science, Belgian Nuclear Research Centre (SCK.CEN), Mol, Belgium.,Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Sarah Baatout
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK.CEN), Mol, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire-NARILIS, University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Research Center for the Physics of Matter and Radiation-NARILIS, University of Namur, Namur, Belgium
| | - An Aerts
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK.CEN), Mol, Belgium
| |
Collapse
|
14
|
Kasprzak A, Adamek A. Role of Endoglin (CD105) in the Progression of Hepatocellular Carcinoma and Anti-Angiogenic Therapy. Int J Mol Sci 2018; 19:E3887. [PMID: 30563158 PMCID: PMC6321450 DOI: 10.3390/ijms19123887] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
The liver is perfused by both arterial and venous blood, with a resulting abnormal microenvironment selecting for more-aggressive malignancies. Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, the sixth most common cancer globally, and the third leading cause of cancer-related mortality worldwide. HCC is characterized by its hypervascularization. Improving the efficiency of anti-angiogenic treatment and mitigation of anti-angiogenic drug resistance are the top priorities in the development of non-surgical HCC therapies. Endoglin (CD105), a transmembrane glycoprotein, is one of the transforming growth factor β (TGF-β) co-receptors. Involvement of that protein in angiogenesis of solid tumours is well documented. Endoglin is a marker of activated endothelial cells (ECs), and is preferentially expressed in the angiogenic endothelium of solid tumours, including HCC. HCC is associated with changes in CD105-positive ECs within and around the tumour. The large spectrum of endoglin effects in the liver is cell-type- and HCC- stage-specific. High expression of endoglin in non-tumour tissue suggests that this microenvironment might play an especially important role in the progression of HCC. Evaluation of tissue expression, as well as serum concentrations of this glycoprotein in HCC, tends to confirm its role as an important biomarker in HCC diagnosis and prognosis. The role of endoglin in liver fibrosis and HCC progression also makes it an attractive therapeutic target. Despite these facts, the exact molecular mechanisms of endoglin functioning in hepatocarcinogenesis are still poorly understood. This review summarizes the current data concerning the role and signalling pathways of endoglin in hepatocellular carcinoma development and progression, and provides an overview of the strategies available for a specific targeting of CD105 in anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Poznań 60-781, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Poznań 61-285, Poland.
| |
Collapse
|
15
|
Borran AA, Aghanejad A, Farajollahi A, Barar J, Omidi Y. Gold nanoparticles for radiosensitizing and imaging of cancer cells. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2018; 107:251-285. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Recent advances in the field of nanotechnology applications in nuclear medicine offer the promise of better diagnostic and therapeutic options. In recent years, increasing efforts have been focused on developing nanoconstructs that can be used as core platforms for attaching medical radionuclides with different strategies for the purposes of molecular imaging and targeted drug delivery. This review article presents an introduction to some commonly used nanomaterials with zero-dimensional, one-dimensional, two-dimensional, and three-dimensional structures, describes the various methods applied to radiolabeling of nanomaterials, and provides illustrative examples of application of the nanoscale radionuclides or radiolabeled nanocarriers in nuclear nanomedicine. Especially, the passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy was reviewed and summarized. The accurate and early diagnosis of cancer can lead to increased survival rates for different types of this disease. Although, the conventional single-modality diagnostic methods such as positron emission tomography/single photon emission computed tomography or MRI used for such purposes are powerful means; most of these are limited by sensitivity or resolution. By integrating complementary signal reporters into a single nanoparticulate contrast agent, multimodal molecular imaging can be performed as scalable images with high sensitivity, resolution, and specificity. The advent of radiolabeled nanocarriers or radioisotope-loaded nanomaterials with magnetic, plasmonic, or fluorescent properties has stimulated growing interest in the developing multimodality imaging probes. These new developments in nuclear nanomedicine are expected to introduce a paradigm shift in multimodal molecular imaging and thereby opening up an era of new diagnostic medical imaging agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 251-285, 2019.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Esmaeil Moassesi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | | |
Collapse
|
17
|
Nanomedicine for cancer diagnosis and therapy: advancement, success and structure-activity relationship. Ther Deliv 2018; 8:1003-1018. [PMID: 29061101 DOI: 10.4155/tde-2017-0062] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multifunctional nanoparticles (NPs), composed of organic and inorganic materials, have been explored as promising drug-delivery vehicles for cancer diagnosis and therapy. The success of nanosystems has been attributed to its smaller size, biocompatibility, selective tumor accumulation and reduced toxicity. The relationship among numbers of molecules in payload, NP diameter and encapsulation efficacy have crucial role in clinical translation. Advancement of bioengineering, and systematic fine-tuning of functional components to NPs have diversified their optical and theranostic properties. In this review, we summarize wide varieties of NPs, such as ultrasmall polymer-lipid hybrid NPs, dendrimers, liposomes, quantum dots, carbon nanotubes, gold NPs and iron oxide NPs. We also discuss their tumor targetability, tissue penetration, pharmacokinetics, and therapeutic and diagnostic properties. [Formula: see text].
Collapse
|
18
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
19
|
Abstract
The interest in zirconium-89 (89Zr) as a positron-emitting radionuclide has grown considerably over the last decade due to its standardized production, long half-life of 78.2 h, favorable decay characteristics for positron emission tomography (PET) imaging and its successful use in a variety of clinical and preclinical applications. However, to be utilized effectively in PET applications it must be stably bound to a targeting ligand, and the most successfully used 89Zr chelator is desferrioxamine B (DFO), which is commercially available as the iron chelator Desferal®. Despite the prevalence of DFO in 89Zr-immuno-PET applications, the development of new ligands for this radiometal is an active area of research. This review focuses on recent advances in zirconium-89 chelation chemistry and will highlight the rapidly expanding ligand classes that are under investigation as DFO alternatives.
Collapse
Affiliation(s)
- Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
20
|
Synthesis and Bioevaluation of Iodine-131 Directly Labeled Cyclic RGD-PEGylated Gold Nanorods for Tumor-Targeted Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6081724. [PMID: 29434531 PMCID: PMC5757100 DOI: 10.1155/2017/6081724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Introduction Radiolabeled gold nanoparticles play an important role in biomedical application. The aim of this study was to prepare iodine-131 (131I)-labeled gold nanorods (GNRs) conjugated with cyclic RGD and evaluate its biological characteristics for targeted imaging of integrin αvβ3-expressing tumors. Methods HS-PEG(5000)-COOH molecules were applied to replace CTAB covering the surface of bare GNRs for better biocompatibility, and c(RGDfK) peptides were conjugated onto the carboxyl terminal of GNR-PEG-COOH via EDC/NHS coupling reactions. The nanoconjugate was characterized, and 131I was directly tagged on the surface of GNRs via AuI bonds for SPECT/CT imaging. We preliminarily studied the characteristics of the probe and its feasibility for tumor-targeting SPECT/CT imaging. Results The [131I]GNR-PEG-cRGD probe was prepared in a simple and rapid manner and was stable in both PBS and fetal bovine serum. It targeted selectively and could be taken up by tumor cells mainly via integrin αvβ3-receptor-mediated endocytosis. In vivo imaging, biodistribution, and autoradiography results showed evident tumor uptake in integrin αvβ3-expressing tumors. Conclusions These promising results showed that this smart nanoprobe can be used for angiogenesis-targeted SPECT/CT imaging. Furthermore, the nanoprobe possesses a remarkable capacity for highly efficient photothermal conversion in the near-infrared region, suggesting its potential as a multifunctional theranostic agent.
Collapse
|
21
|
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
S Sibuyi NR, Thovhogi N, Gabuza KB, Meyer MD, Drah M, Onani MO, Skepu A, Madiehe AM, Meyer M. Peptide-functionalized nanoparticles for the selective induction of apoptosis in target cells. Nanomedicine (Lond) 2017. [PMID: 28635372 DOI: 10.2217/nnm-2017-0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM The study developed a prohibitin (PHB) targeted nanotherapy for selective induction of apoptosis in target cells. METHODS Gold nanoparticles (AuNPs) were bifunctionalized with adipose homing and proapoptotic peptides. The efficacy and mode of cell death induced by the AuNPs were investigated in vitro on three cancer cell lines. RESULTS The antiproliferative activity of PHB-targeted bifunctionalized AuNPs was more pronounced on cells that express the PHB receptor, and demonstrated receptor-mediated targeting and selectivity. The bifunctionalized AuNPs induced cell death by apoptosis. CONCLUSION The PHB-targeted nanotherapy under study could potentially be used for treatment of diseases that are characterized by overexpression of PHB. As such, further investigations will be conducted in vivo.
Collapse
Affiliation(s)
- Nicole Remaliah S Sibuyi
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Ntevheleni Thovhogi
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Kwazikwakhe B Gabuza
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Miche D Meyer
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Mustafa Drah
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Martin O Onani
- Organometallics & Nanomaterials, Department of Chemistry, UWC, Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Amanda Skepu
- DST/Mintek NIC, Biolabels Unit, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, 2125, Gauteng, South Africa
| | - Abram M Madiehe
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| |
Collapse
|
23
|
Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv Drug Deliv Rev 2017; 113:157-176. [PMID: 27521055 PMCID: PMC5299094 DOI: 10.1016/j.addr.2016.08.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.
| |
Collapse
|
24
|
Karmani L, Levêque P, Bouzin C, Bol A, Dieu M, Walrand S, Vander Borght T, Feron O, Grégoire V, Bonifazi D, Michiels C, Lucas S, Gallez B. Biodistribution of (125)I-labeled anti-endoglin antibody using SPECT/CT imaging: Impact of in vivo deiodination on tumor accumulation in mice. Nucl Med Biol 2016; 43:415-23. [PMID: 27179250 DOI: 10.1016/j.nucmedbio.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Radiolabeled antibodies directed against endoglin (CD105) are promising tools for imaging and antiangiogenic cancer therapy. To validate iodinated antibodies as reliable tracers, we investigated the influence of the radiolabeling method (direct or indirect) on their in vivo stability. METHODS Anti-CD105 mAbs were radioiodinated directly using chloramine-T ((125)I-anti-CD105-mAbs) or indirectly using D-KRYRR peptide as a linker ((125)I-KRYRR-anti-CD105-mAbs). The biodistribution was studied in B16 tumor-bearing mice via SPECT/CT imaging. RESULTS Radioiodinated mAbs were stable in vitro. In vivo, thyroid showed the most important increase of uptake after 24h for (125)I-anti-CD105-mAbs (91.9±4.0%ID/ml) versus(125)I-KRYRR-anti-CD105-mAbs (4.4±0.6%ID/ml). Tumor uptake of (125)I-anti-CD105-mAbs (0.9±0.3%ID/ml) was significantly lower than that of (125)I-KRYRR-anti-CD105-mAbs (4.7±0.2%ID/ml). CONCLUSIONS An accurate characterization of the in vivo stability of radioiodinated mAbs and the choice of an appropriate method for the radioiodination are required, especially for novel targets. The indirect radioiodination of internalizing anti-CD105 mAbs leads to more stable tracer by decreasing in vivo deiodination and improves the tumor retention of radioiodinated mAbs. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE To date, the only antiangiogenic antibody approved for clinical indications is bevacizumab. There is a need to develop more antibodies that have targets highly expressed on tumor endothelium. CD105 represents a promising marker of angiogenesis, but its therapeutic relevance in cancer needs to be further investigated. In this context, this study suggests the potential use of indirectly iodinated anti-CD105 mAbs for tumor imaging and for therapeutic purposes.
Collapse
Affiliation(s)
- Linda Karmani
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Philippe Levêque
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Caroline Bouzin
- Pharmacology and Therapeutics Unit (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Mounier 53, 1200, Brussels, Belgium
| | - Anne Bol
- Centre for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Hippocrate 54, 1200, Brussels, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stephan Walrand
- Centre for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Hippocrate 54, 1200, Brussels, Belgium
| | - Thierry Vander Borght
- Centre for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Hippocrate 54, 1200, Brussels, Belgium
| | - Olivier Feron
- Pharmacology and Therapeutics Unit (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Mounier 53, 1200, Brussels, Belgium
| | - Vincent Grégoire
- Centre for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Hippocrate 54, 1200, Brussels, Belgium
| | - Davide Bonifazi
- Namur Research College and Department of Chemistry (NARC), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stéphane Lucas
- Research Centre for the Physics of Matter and Radiation (PMR), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Avenue Mounier 73, 1200, Brussels, Belgium.
| |
Collapse
|
25
|
Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015; 73:214-30. [PMID: 26410788 DOI: 10.1016/j.biomaterials.2015.09.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/26/2023]
Abstract
Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Hengte Ke
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 Jiangsu, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
26
|
Abou DS, Pickett JE, Thorek DLJ. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. Br J Radiol 2015; 88:20150185. [PMID: 26133075 PMCID: PMC4730968 DOI: 10.1259/bjr.20150185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Molecular imaging provides considerable insight into biological processes for greater understanding of health and disease. Numerous advances in medical physics, chemistry and biology have driven the growth of this field in the past two decades. With exquisite sensitivity, depth of detection and potential for theranostics, radioactive imaging approaches have played a major role in the emergence of molecular imaging. At the same time, developments in materials science, characterization and synthesis have led to explosive progress in the nanoparticle (NP) sciences. NPs are generally defined as particles with a diameter in the nanometre size range. Unique physical, chemical and biological properties arise at this scale, stimulating interest for applications as diverse as energy production and storage, chemical catalysis and electronics. In biomedicine, NPs have generated perhaps the greatest attention. These materials directly interface with life at the subcellular scale of nucleic acids, membranes and proteins. In this review, we will detail the advances made in combining radioactive imaging and NPs. First, we provide an overview of the NP platforms and their properties. This is followed by a look at methods for radiolabelling NPs with gamma-emitting radionuclides for use in single photon emission CT and planar scintigraphy. Next, utilization of positron-emitting radionuclides for positron emission tomography is considered. Finally, recent advances for multimodal nuclear imaging with NPs and efforts for clinical translation and ongoing trials are discussed.
Collapse
Affiliation(s)
- D S Abou
- 1 Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J E Pickett
- 1 Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D L J Thorek
- 1 Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,2 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015; 204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
|
28
|
Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 2015; 36:236-52. [PMID: 25799457 DOI: 10.1016/j.tips.2015.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.
Collapse
|