1
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
2
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Kim YH, Cho HS, Yoo K, Ham KM, Kang H, Pham XH, Jun BH. High-Throughput Synthesis of Nanogap-Rich Gold Nanoshells Using Dual-Channel Infusion System. Int J Mol Sci 2024; 25:1649. [PMID: 38338926 PMCID: PMC10855030 DOI: 10.3390/ijms25031649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Gold nanoshells have been actively applied in industries beyond the research stage because of their unique optical properties. Although numerous methods have been reported for gold nanoshell synthesis, the labor-intensive and time-consuming production process is an issue that must be overcome to meet industrial demands. To resolve this, we report a high-throughput synthesis method for nanogap-rich gold nanoshells based on a core silica support (denoted as SiO2@Au NS), affording a 50-fold increase in scale by combining it with a dual-channel infusion pump system. By continuously dropping the reactant solution through the pump, nanoshells with closely packed Au nanoparticles were prepared without interparticle aggregation. The thickness of the gold nanoshells was precisely controlled at 2.3-17.2 nm by regulating the volume of the reactant solution added dropwise. Depending on the shell thickness, the plasmonic characteristics of SiO2@Au NS prepared by the proposed method could be tuned. Moreover, SiO2@Au NS exhibited surface-enhanced Raman scattering activity comparable to that of gold nanoshells prepared by a previously reported low-throughput method at the same reactant ratio. The results indicate that the proposed high-throughput synthesis method involving the use of a dual-channel infusion system will contribute to improving the productivity of SiO2@Au NS with tunable plasmonic characteristics.
Collapse
Affiliation(s)
- Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| |
Collapse
|
4
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Zeghoud S, Chandran D, Amor IB, Hemmami H, Mohankumar P, Emran TB. Nanotechnology and nanomaterials in the treatment and diagnosis of cancer: Correspondence. Ann Med Surg (Lond) 2023; 85:2258-2260. [PMID: 37228949 PMCID: PMC10205278 DOI: 10.1097/ms9.0000000000000677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Pran Mohankumar
- School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The existing diagnosis and treatment modalities have major limitations related to their precision and capability to understand several stages of disease development. A superior therapeutic system consists of a multifunctional approach in early diagnosis of the disease with a simultaneous progressive cure, using a precise medical approach towards complex treatment. These challenges can be addressed via nanotheranostics and explore suitable approaches to improve health care. Nanotechnology in combination with theranostics as an unconventional platform paved the way for developing novel strategies and modalities leading to diagnosis and therapy for complex disease conditions, ranging from acute to chronic levels. Among the metal nanoparticles, gold nanoparticles are being widely used for theranostics due to their inherent non-toxic nature and plasmonic properties. The unique optical and chemical properties of plasmonic metal nanoparticles along with theranostics have led to a promising era of plausible early detection of disease conditions, and they enable real-time monitoring with enhanced non-invasive or minimally invasive imaging of several ailments. This review aims to highlight the improvement and advancement brought to nanotheranostics by gold nanoparticles in the past decade. The clinical use of the metal nanoparticles in nanotheranostics is explained, along with the future perspectives on addressing the key applications related to diagnostics and therapeutics, respectively. The scope of gold nanoparticles and their realistic potential to design a sophisticated theranostic system is discussed in detail, along with their implications in clinical advancements which are the needs of the hour. The review concluded with the challenges, opportunities, and implications on translational potential of using gold nanoparticles in nanotheranostics.
Collapse
|
7
|
Zhou Y, Ma W, Sun R, Liu B, Zhang X, Yang H. Upconverting nanoparticles based nanodevice for DNAzymes amplified miRNAs detection and artificially controlled chemo-gene therapy. Biosens Bioelectron 2022; 214:114549. [PMID: 35820255 DOI: 10.1016/j.bios.2022.114549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
Despite the great promise of cancer theranostic platforms, accurate diagnosis and effective treatment are still highly challenging. In this work, nanodevice for intracellular miRNAs detection and artificially controlled drug releasement was developed based on upconverting nanoparticles (UCNPs). For analysis aspect, DNAzymes amplified miRNA-21 detection was carried out, giving excellent sensitivity with detection limits of 1.8 × 10-11 M. Moreover, intracellular fluorescence imaging permitted in situ diagnoses of miRNA-21 expression in living cells. Once the test identifies tumor markers, treatment can be performed. Here, artificially controlled chemo-gene synergetic therapy nanodevice was obtained by integrating UCNPs with photocleavable linkers (PC-linkers). In vitro and in vivo experiments verified the potential application of prepared nanodevice in cancer theranostics.
Collapse
Affiliation(s)
- Yanmei Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, And College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenxiao Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, And College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruijiao Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, And College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Bo Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, And College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, And College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
8
|
Kher C, Kumar S. The Application of Nanotechnology and Nanomaterials in Cancer Diagnosis and Treatment: A Review. Cureus 2022; 14:e29059. [PMID: 36259014 PMCID: PMC9564559 DOI: 10.7759/cureus.29059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer is one of the deadliest diseases worldwide in present times, with its incidence on a tremendous rise. It is caused by uncontrolled cell growth. Cancer therapies have advanced substantially, but there is a need for improvement in specificity and fear of systemic toxicity. Early detection is critical in improving patients' prognosis and quality of life, and recent advancements in technology, especially in dealing with biomaterials, have aided in that surge. Nanotechnology possesses the key to solving many of the downsides of traditional pharmaceutical formulations. Indeed, significant progress has been made in using customized nanomaterials for cancer diagnosis and treatment with high specificity, sensitivity, and efficacy. Nanotechnology is the integration of nanoscience into medicine by the use of nanoparticles. The advent of nanoscience in cancer diagnosis and treatment will help clinicians better assess and manage patients and improve the healthcare system and services. This review article gives an account of the clinical applications of nanoscience in the modern management of cancer, the different modalities of nanotechnology used, and the limitations and possible side effects of this new tool.
Collapse
|
9
|
Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022; 14:204. [PMID: 35057099 PMCID: PMC8780449 DOI: 10.3390/pharmaceutics14010204] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review's next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.
Collapse
Affiliation(s)
- María Gabriela Montiel Schneider
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Jessica Otarola
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Ekaterina Vakarelska
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
10
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Shang L, Zhou X, Zhang J, Shi Y, Zhong L. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer. Molecules 2021; 26:molecules26216532. [PMID: 34770941 PMCID: PMC8588551 DOI: 10.3390/molecules26216532] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide, which seriously threatens women’s physical and mental health. In recent years, photodynamic therapy (PDT) has shown significant advantages in cancer treatment. PDT involves activating photosensitizers with appropriate wavelengths of light, producing transient levels of reactive oxygen species (ROS). Compared with free photosensitizers, the use of nanoparticles in PDT shows great advantages in terms of solubility, early degradation, and biodistribution, as well as more effective intercellular penetration and targeted cancer cell uptake. Under the current circumstances, researchers have made promising efforts to develop nanocarrier photosensitizers. Reasonably designed photosensitizer (PS) nanoparticles can be achieved through non-covalent (self-aggregation, interfacial deposition, interfacial polymerization or core-shell embedding and physical adsorption) or covalent (chemical immobilization or coupling) processes and accumulate in certain tumors through passive and/or active targeting. These PS loading methods provide chemical and physical stability to the PS payload. Among nanoparticles, metal nanoparticles have the advantages of high stability, adjustable size, optical properties, and easy surface functionalization, making them more biocompatible in biological applications. In this review, we summarize the current development and application status of photodynamic therapy for breast cancer, especially the latest developments in the application of metal nanocarriers in breast cancer PDT, and highlight some of the recent synergistic therapies, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results.
Collapse
Affiliation(s)
- Liang Shang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Xinglu Zhou
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin 150081, China;
| | - Jiarui Zhang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Yujie Shi
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Correspondence:
| |
Collapse
|
12
|
Granja A, Pinheiro M, Sousa CT, Reis S. Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Biochem Pharmacol 2021; 190:114639. [PMID: 34077740 DOI: 10.1016/j.bcp.2021.114639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Due to the limitations of the current therapeutics, new treatment options are needed. Hyperthermia is a promising approach to improve breast cancer therapy, particularly when combined with chemo and radiotherapy. This area has gained more attention following association with nanotechnology, with the emergence of modalities, such as photothermal therapy (PTT). PTT is a simple, minimally invasive technique that requires a near infrared (NIR) light source and a PTT agent. Gold nanostructures are excellent PTT agents as they offer biocompatibility, versatility, high photothermal conversion efficiency, imaging contrast and an easily-modified surface. In this review, we describe the molecular basis and the current clinical aspects of hyperthermia-based therapies. The emergent area of nanoparticle-induced hyperthermia will be explored, in particular gold nanostructure-mediated PTT, focusing on recent preclinical studies for breast cancer management.
Collapse
Affiliation(s)
- Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia T Sousa
- IFIMUP and Dep. Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169 - 007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Emamzadeh M, Pasparakis G. Polymer coated gold nanoshells for combinational photochemotherapy of pancreatic cancer with gemcitabine. Sci Rep 2021; 11:9404. [PMID: 33931720 PMCID: PMC8087785 DOI: 10.1038/s41598-021-88909-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies with limited therapeutic options and dismal prognosis. Gemcitabine is the front-line drug against pancreatic cancer however with limited improvement of therapeutic outcomes. In this study we envisaged the integration of GEM with gold nanoshells which constitute an interesting class of nanomaterials with excellent photothermal conversion properties. Nanoshells were coated with thiol-capped poly(ethylene glycol) methacrylate polymers of different molecular weight via Au-S attachment. It was found that the molecular weight of the polymers affects the in vitro performance of the formulations; more importantly we demonstrate that the EC50 of nanoshell loaded GEM can be suppressed but fully restored and even improved upon laser irradiation. Our proposed nanoformulations outperformed the cytotoxicity of the parent drug and showed confined synergism under the tested in vitro conditions.
Collapse
Affiliation(s)
- Mina Emamzadeh
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - George Pasparakis
- School of Pharmacy, University College London, London, WC1N 1AX, UK.
- Department of Chemical Engineering, University of Patras, Patras, Greece.
| |
Collapse
|
14
|
He P, Han W, Bi C, Song W, Niu S, Zhou H, Zhang X. Many Birds, One Stone: A Smart Nanodevice for Ratiometric Dual-Spectrum Assay of Intracellular MicroRNA and Multimodal Synergetic Cancer Therapy. ACS NANO 2021; 15:6961-6976. [PMID: 33820415 DOI: 10.1021/acsnano.0c10844] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of a theragnostic platform integrating precise diagnosis and effective treatment is significant but still extremely challenging. Herein, an integrated smart nanodevice composed of Au@Cu2-xS@polydopamine nanoparticles (ACSPs) and fuel DNA-conjugated tetrahedral DNA nanostructures (fTDNs) was constructed, in which the ACSP nanoprobe played multiple key roles in antitumor therapy as well as in situ monitoring of microRNAs (miRNAs) in cancer cells. Regarding the analysis, the ACSP probe contained two optical properties: excellent surface-enhanced Raman scattering (SERS) enhancement and high fluorescence (FL) quenching performance. Employing the ACSPs as the high-efficiency detection substrate combined with the fTDN-assisted DNA walking nanomachines as the superior amplification strategy, a SERS-FL dual-spectrum biosensor was constructed, which achieved an ultralow background signal and excellent sensitivity with detection limits of 0.11 pM and 4.95 aM by FL and SERS, respectively. Moreover, the rapid FL imaging and precise SERS quantitative detection for miRNA in cancer cells were also achieved by dual-signal ratio strategy, improving the accuracy of diagnosis. Regarding the therapeutic application, due to the high reactive oxygen species generation ability and excellent photothermal conversion efficiency, the ACSPs can also act as an all-in-one nanoagent for multimodal collaborative tumor therapy. Significantly, both in vivo and in vitro experiments confirmed its high biological safety and strong anticancer effect, indicating its promising theragnostic applications.
Collapse
Affiliation(s)
- Peng He
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Wenhao Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Cheng Bi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Shuyan Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
15
|
Farahavar G, Abolmaali SS, Nejatollahi F, Safaie A, Javanmardi S, Khajeh Zadeh H, Yousefi R, Nadgaran H, Mohammadi-Samani S, Tamaddon AM, Ahadian S. Single-chain antibody-decorated Au nanocages@liposomal layer nanoprobes for targeted SERS imaging and remote-controlled photothermal therapy of melanoma cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112086. [PMID: 33947576 DOI: 10.1016/j.msec.2021.112086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
The development of theranostic platforms combining surface-enhanced Raman spectroscopy (SERS) imaging with NIR-stimulated photothermal therapy (PTT) is of utmost importance for the precise diagnosis and selective treatment of cancers, especially in superficial solid tumors. For this purpose, a versatile theranostic nanoprobe of liposomal layer-coated Au nanocages (AuNCs) was decorated with an anti-MUC18 single-chain antibody (scFv). 4-mercapto benzoic acid (p-MBA)-labeled AuNCs (p-AuNCs) were coated by a liposomal layer (p-AuNCs@lip), followed by conjugating anti-MUC18 scFv via post-insertion method to form immuno-liposomal layer-coated AuNCs (p-AuNCs@scFv-lip). Physicochemical characterizations of the p-AuNCs@scFv-lip were investigated by transmission electron microscopy (TEM) and UV-vis and Raman spectroscopy. Furthermore, the targeting ability and theranostic efficiency of the nanoprobe were evaluated for specific diagnosis and treatment of cancerous melanoma cells by flow cytometry, SERS mapping, and live/dead assay. The formation of lipid layer on p-AuNCs surface was confirmed by TEM imaging. After decorating the liposomal layer with scFv, a relevant red shift was observed in the UV-vis spectrum. Moreover, p-AuNCs@lip presented characteristic peaks in the Raman spectrum, which exhibited only a minor change after scFv conjugation (p-AuNCs@scFv-lip). Interestingly, the cellular uptake of AuNCs@scFv-lip by A375 cell line (MUC18+) showed a 24-fold enhancement compared with SKBR3 cells (MUC18-). AuNCs@scFv-lip specifically identified A375 cells from SKBR cells via SERS mapping and effectively killed A375 cells through the PTT mechanism. Taken together, this theranostic platform can provide a promising tool for both in situ diagnosis and remote-controlled thermal ablation of cancer cells.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Foroogh Nejatollahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Safaie
- Faculty of Science, Department of Physics, Shiraz University, Shiraz 71454, Iran.
| | - Sanaz Javanmardi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Hamid Nadgaran
- Faculty of Science, Department of Physics, Shiraz University, Shiraz 71454, Iran.
| | - Soliman Mohammadi-Samani
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
17
|
De Matteis V, Cascione M, Toma CC, Rinaldi R. Engineered Gold Nanoshells Killing Tumor Cells: New Perspectives. Curr Pharm Des 2020; 25:1477-1489. [PMID: 31258061 DOI: 10.2174/1381612825666190618155127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
The current strategies to treat different kinds of cancer are mainly based on chemotherapy, surgery and radiation therapy. Unfortunately, these approaches are not specific and rather invasive as well. In this scenario, metal nano-shells, in particular gold-based nanoshells, offer interesting perspectives in the effort to counteract tumor cells, due to their unique ability to tune Surface Plasmon Resonance in different light-absorbing ranges. In particular, the Visible and Near Infrared Regions of the electromagnetic spectrum are able to penetrate through tissues. In this way, the light absorbed by the gold nanoshell at a specific wavelength is converted into heat, inducing photothermal ablation in treated cancer cells. Furthermore, inert gold shells can be easily functionalized with different types of molecules in order to bind cellular targets in a selective manner. This review summarizes the current state-of-art of nanosystems embodying gold shells, regarding methods of synthesis, bio-conjugations, bio-distribution, imaging and photothermal effects (in vitro and in vivo), providing new insights for the development of multifunctional antitumor drugs.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica "E. De Giorgi", Universita del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Dipartimento di Scienze Biomediche e Oncologia Umana, Universita degli Studi di Bari "Aldo Moro", p.zza G. Cesare, c/o Policlinico, 70124 Bari, Italy
| | - Chiara C Toma
- Dipartimento di Matematica e Fisica "E. De Giorgi", Universita del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "E. De Giorgi", Universita del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
18
|
Abed Z, Beik J, Laurent S, Eslahi N, Khani T, Davani ES, Ghaznavi H, Shakeri-Zadeh A. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J Cancer Res Clin Oncol 2019; 145:1213-1219. [PMID: 30847551 DOI: 10.1007/s00432-019-02870-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Recent efforts in the area of photothermal therapy (PTT) follow two important aims: (i) selective targeting of plasmonic nanoparticles to the tumor and (ii) real-time guidance of PTT operation through employing multimodal imaging modalities. In the present study, we utilized a multifunctional theranostic nanoplatform constructed from iron (III) oxide-gold (Fe2O3@Au) core-shell nanoparticles to fulfill these aims. The Au shell exhibits surface plasmon resonance, a property that is exploited to realize PTT. The magnetic core enables Fe2O3@Au to be employed as a magnetic resonance imaging (MRI) contrast agent. Furthermore, the magnetic core has the potential to establish a magnetic drug targeting strategy through which Fe2O3@Au can be directed to the tumor site by means of magnetic field. To test these potentials, Balb/c mice bearing CT26 colorectal tumor model were intravenously injected with Fe2O3@Au. Immediately after injection, a magnet was placed on the tumor site for 3 h to concentrate nanoparticles, followed by the near infrared (NIR) laser irradiation. MRI study confirmed the accumulation of nanoparticles within the tumor due to T2 enhancement capability of Fe2O3@Au. The in vivo thermometry results demonstrated that the tumors in magnetic targeting group had a significantly higher temperature elevation rate upon NIR irradiation than non-targeted group (~ 12 °C vs. 8.5 °C). The in vivo antitumor assessment revealed that systemic injection of Fe2O3@Au in combination with magnetic targeting and NIR irradiation resulted in complete remission of tumor growth. Therefore, Fe2O3@Au can establish a targeted PTT strategy for efficient eradication of tumor cells under the guidance of MRI.
Collapse
Affiliation(s)
- Ziaeddin Abed
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Jaber Beik
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Neda Eslahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Tahereh Khani
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elnaz S Davani
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
19
|
Das P, Fatehbasharzad P, Colombo M, Fiandra L, Prosperi D. Multifunctional Magnetic Gold Nanomaterials for Cancer. Trends Biotechnol 2019; 37:995-1010. [PMID: 30862388 DOI: 10.1016/j.tibtech.2019.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
The integration of multiple imaging and therapeutic agents into a customizable nanoplatform for accurate identification and rapid prevention of cancer is attracting great attention. Among the available theranostic nanosystems, magnetic gold nanoparticles are particularly promising as they exhibit unique physicochemical properties that can support multiple functions, including cancer diagnosis by magnetic resonance imaging, X-ray computed tomography, Raman and photoacoustic imaging, drug delivery, and plasmonic photothermal and photodynamic therapies. This review gives an overview of recent advances in the fabrication of multifunctional gold nanohybrids with magnetic and optical properties and their successful demonstration in multimodal imaging and therapy of cancer. Concerns around toxicity of these nanomaterials are also discussed in view of an imminent transition to clinical practice.
Collapse
Affiliation(s)
- Pradip Das
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Parisa Fatehbasharzad
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Nizza 52, 10126 Torino, Italy
| | - Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Luisa Fiandra
- Dipartimento di Scienze dell'Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Davide Prosperi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; Nanomedicine Laboratory, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
20
|
Wen S, Miao X, Fan GC, Xu T, Jiang LP, Wu P, Cai C, Zhu JJ. Aptamer-Conjugated Au Nanocage/SiO 2 Core-Shell Bifunctional Nanoprobes with High Stability and Biocompatibility for Cellular SERS Imaging and Near-Infrared Photothermal Therapy. ACS Sens 2019; 4:301-308. [PMID: 30624040 DOI: 10.1021/acssensors.8b00682] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of surface-enhanced Raman scattering (SERS) imaging technology with near-infrared (NIR) light-triggered photothermal therapy is of utmost importance to develop novel theranostic platforms. Herein, an aptamer-conjugated Au nanocage/SiO2 (AuNC/SiO2/Apt) core-shell Raman nanoprobe has been rationally designed as the bifunctional theranostic platform to fulfill this task. In this theranostic system, the Raman-labeled Au nanocage (AuNC) was encapsulated into a bioinert shell of SiO2, followed by conjugating aptamer AS1411 as the target-recognition moiety. AuNC served as the SERS-active and photothermal substrate due to its large free volume, built-in plasmon effect, and NIR photothermal capacity, while the SiO2 coating endowed the nanoprobes with good stability and biocompatibility, as well as abundant anchoring sites for surface functionalization. Considering their prominent SERS and photothermal properties, the application potential of the AuNC/SiO2/Apt nanoprobes was investigated. The proposed nanoprobes could be applied to targeted detection and SERS imaging of nucleolin-overexpressing cancer cells (MCF-7 cells as the model) from normal cells and also exhibited acceptable photothermal efficacy without systematic toxicity. This theranostic nanoplatform provided a possible opportunity for in situ diagnosis and noninvasive treatment of cancer cells by SERS imaging-guided photothermal therapy.
Collapse
Affiliation(s)
- Shengping Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuran Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tingting Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
21
|
Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805875. [PMID: 30556205 DOI: 10.1002/adma.201805875] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Photoacoustic (PA) imaging as a fast-developing imaging technique has great potential in biomedical and clinical applications. It is a noninvasive imaging modality that depends on the light-absorption coefficient of the imaged tissue and the injected PA-imaging contrast agents. Furthermore, PA imaging provides superb contrast, super spatial resolution, and high penetrability and sensitivity to tissue functional characteristics by detecting the acoustic wave to construct PA images. In recent years, a series of PA-imaging contrast agents are developed to improve the PA-imaging performance in biomedical applications. Here, recent progress of PA contrast agents and their biomedical applications are outlined. PA contrast agents are classified according to their components and function, and gold nanocrystals, gold-nanocrystal assembly, transition-metal chalcogenides/MXene-based nanomaterials, carbon-based nanomaterials, other inorganic imaging agents, small organic molecules, semiconducting polymer nanoparticles, and nonlinear PA-imaging contrast agents are discussed. The applications of PA contrast agents as biosensors (in the sensing of metal ions, pH, enzymes, temperature, hypoxia, reactive oxygen species, and reactive nitrogen species) and in bioimaging (lymph nodes, vasculature, tumors, and brain tissue) are discussed in detail. Finally, an outlook on the future research and investigation of PA-imaging contrast agents and their significance in biomedical research is presented.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Wang S, Fu L, Xin J, Wang S, Yao C, Zhang Z, Wang J. Photoacoustic response induced by nanoparticle-mediated photothermal bubbles beyond the thermal expansion for potential theranostics. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 30552757 DOI: 10.1117/1.jbo.23.12.125002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Photoacoustic responses induced by laser-excited photothermal bubbles (PTBs) in colloidal gold solutions are relevant to the theranostics quality in biomedical applications. Confined to the complexity of nonstationary, multiscale events, and multiphysical parameters of PTBs, systematic studies of the photoacoustic effects remain obscure. Photoacoustic effects mediated by PTB dynamics and a physical mechanism are studied based on a proof-of-principle multimodal platform integrating side-scattering imaging, time-resolved optical response, and acoustic detection. Results show excitation energy, nanoparticle (NP) size, and NP concentration have strong influence on photoacoustic responses. Under the characteristic enhancement regime, the photoacoustic signal amplitude increases linearly with excitation energy and increases quadratically with the NP diameter. As for the effects of the NP concentration (characterized by absorption coefficient), a higher photoacoustic signal amplitude is generally induced by a dense NP distribution. However, with an increase in the NP size, the shielding effect of NP swarm prevents the increase of photoacoustic responses. This study presents experimental evidence of some key physical phenomena governing the PTB-induced photoacoustic signal generation in gold NP suspensions, which may help enrich theranostic approaches in clinical applications by rationalizing operation parameters.
Collapse
Affiliation(s)
- Siqi Wang
- Xi'an Jiaotong University, School of Life Science and Technology, Key Laboratory of Biomedical Infor, China
| | - Lei Fu
- Xi'an Jiaotong University, School of Life Science and Technology, Key Laboratory of Biomedical Infor, China
| | - Jing Xin
- Xi'an Jiaotong University, School of Life Science and Technology, Key Laboratory of Biomedical Infor, China
| | - Sijia Wang
- Xi'an Jiaotong University, School of Life Science and Technology, Key Laboratory of Biomedical Infor, China
| | - Cuiping Yao
- Xi'an Jiaotong University, School of Life Science and Technology, Key Laboratory of Biomedical Infor, China
| | - Zhenxi Zhang
- Xi'an Jiaotong University, School of Life Science and Technology, Key Laboratory of Biomedical Infor, China
| | - Jing Wang
- Xi'an Jiaotong University, School of Life Science and Technology, Key Laboratory of Biomedical Infor, China
| |
Collapse
|
23
|
Marin R, Skripka A, Besteiro LV, Benayas A, Wang Z, Govorov AO, Canton P, Vetrone F. Highly Efficient Copper Sulfide-Based Near-Infrared Photothermal Agents: Exploring the Limits of Macroscopic Heat Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803282. [PMID: 30334374 DOI: 10.1002/smll.201803282] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/21/2018] [Indexed: 05/24/2023]
Abstract
Among the foreseeable therapeutic approaches at the cellular level, nanoplatform-driven photothermal therapy is a thriving tool for the selective eradication of malignant tissues with minimal side effects to healthy ones. Hence, chemically versatile, near-infrared absorbing plasmonic nanoparticles are distinctly appealing and most sought after as efficient photothermal agents. In this work, a straightforward method to synthesize monodisperse PEGylated copper sulfide nanoparticles of pure covellite (CuS) phase, featuring strong localized surface plasmonic resonance absorption in the near-infrared and flexible surface chemistry, imparted by monomethyl ether polyethylene glycol molecules, is developed and optimized. These nanoparticles show a remarkable photothermal heat conversion efficiency (HCE) of 71.4%, which is among the highest for CuS systems and rivals that of plasmonic noble metal nanostructures. Moreover, through critical evaluation and mathematical modeling of the material's properties and measurement methodology, it is assessed that the calculated HCE values drastically depend on experimental conditions such as wavelength-dependent solvent absorption properties, sol concentration, and optical path. These findings are of paramount relevance to the photothermal community, since they call for a standardization of the procedure for the evaluation of the HCE of proposed photothermal agents, in order to make the reported values universally and reliably comparable.
Collapse
Affiliation(s)
- Riccardo Marin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155/B, 30170, Venezia-Mestre, Italy
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Artiom Skripka
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Lucas V Besteiro
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Antonio Benayas
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Patrizia Canton
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155/B, 30170, Venezia-Mestre, Italy
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
- Centre for Self-Assembled Chemical Structures, McGill University, Montréal, Québec, H3A 2K6, Canada
| |
Collapse
|
24
|
Xu H, Yuan R, Liu X, Li X, Qiao G, Li C, Gedanken A, Lin X. Zn-doped CuO nanocomposites inhibit tumor growth by NF-κB pathway cross-linked autophagy and apoptosis. Nanomedicine (Lond) 2018; 14:131-149. [PMID: 30394176 DOI: 10.2217/nnm-2018-0366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM To investigate the antitumor effects and action mechanism of Zn-doped CuO nanocomposites (Zn-CuONPs). MATERIALS & METHODS Therapeutic effects and mechanisms of Zn-CuONPs were investigated both in vitro and in vivo. RESULTS Zn-CuONPs could inhibit tumor growth both in vitro and in vivo significantly. Zn-CuONPs treatment resulted in cytotoxicity, reactive oxygen species (ROS) production, DNA damage, apoptosis and autophagy. ROS scavenger N-acetylcysteine attenuated all of the above effects induced by Zn-CuONPs. N-acetylcysteine also restored the effects of Zn-CuONPs on protein expressions related to apoptosis, autophagy and NF-κB pathways. NF-κB pathway inhibitor pyrrolidine dithiocarbamate significantly attenuated Zn-CuONPs induced apoptosis and autophagy. CONCLUSION Our data demonstrated that Zn-CuONPs could inhibit tumor growth both in vitro and in vivo by ROS-dependent apoptosis and autophagy cross-linked by NF-κB pathways.
Collapse
Affiliation(s)
- Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ru Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiao Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Gan Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Cong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Aharon Gedanken
- Department of Chemistry & Nanomaterials, Bar-Ilan University Center for Advanced Materialsand Nanotechnology, Ramat-Gan 52900, Israel
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
25
|
Shen S, Li Y, Xiao Y, Zhao Z, Zhang C, Wang J, Li H, Liu F, He N, Yuan Y, Lu Y, Guo S, Wang Y, Liao W, Liao Y, Chen Y, Bin J. Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion. Biomaterials 2018; 181:293-306. [PMID: 30096563 DOI: 10.1016/j.biomaterials.2018.07.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
Abstract
With the rapid development of cancer-targeted nanotechnology, a variety of nanoparticle-based drug delivery systems have clinically been employed in cancer therapy. However, multidrug resistance significantly impacts the therapeutic efficacy. Physical non-drug therapy has emerged as a new and promising strategy. This study aimed to determine whether novel folate-nanobubbles (F-NBs), combined with therapeutic ultrasound (US), could act as a safe and effective physical targeted cancer therapy. Using folate-conjugated N-palmitoyl chitosan (F-PLCS), we developed novel F-NBs and characterised their physicochemical properties, internalization mechanism, targeting ability, therapeutic effects, and killing mechanism. The results showed that the novel F-NBs selectively accumulated in FR-positive endothelial cells and tumour cells via FR coupled with clathrin- and caveolin-mediated endocytosis in vitro and in vivo. In addition, the F-NBs killed target cells by an intracellular explosion under US irradiation. Hoechst/PI staining demonstrated that apoptosis and necrosis accounted for a large proportion of cell death in vivo. F-NBs combined with US therapy significantly inhibited tumour growth and improved the overall survival of tumour-bearing mice. Under US irradiation, the novel F-NBs selectively killed FR-positive tumour cells in vitro and in vivo via intracellular explosion and therefore is a promising alternative for targeted cancer treatment.
Collapse
Affiliation(s)
- Shuxin Shen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ying Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yunbin Xiao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zonglei Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuanxi Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junfen Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hairui Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nvqin He
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Yuan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongkang Lu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengcun Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanmei Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Koohi SR, Derakhshan MA, Faridani F, Muhammad Nejad S, Amanpour S, Tajerian R, Yarmahmoodi M, Faridi‐Majidi R. Plasmonic photothermal therapy of colon cancer cells utilising gold nanoshells: an in vitro study. IET Nanobiotechnol 2017; 12:196-200. [PMCID: PMC8676656 DOI: 10.1049/iet-nbt.2017.0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 11/04/2023] Open
Abstract
In this study, gold nanoshell (GNS) were synthesised utilising the Halas method. The obtained nanoparticles (NPs) were characterised by Fourier‐transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy and dynamic light scattering. FTIR spectra demonstrated the successful functionalisation of silica NP with 3‐aminopropyl trimethoxysilane. SEM and TEM images showed the morphology and diameter of the synthesised silica NPs (137 ± 26 nm) and GNS. UV–Vis spectrum illustrated the maximum absorbance of the resultant GNS and their average hydrodynamic diameter was 159 nm. For in vitro study, HCT‐116 cells were exposed to gold nanoshells and intense pulsed light in different experiment groups. The results showed that exposing the cells to nanoshells and 30 s irradiation would efficiently decrease the viability percentage of the cells to about 30% compared with the control. A continued exposure of 4 min decreased the viability of the cancer cells to 20%. The results demonstrated that photothermal therapy would be promising in treatment of colon cancer cells utilising gold nanoshells.
Collapse
Affiliation(s)
- Samira Rasouli Koohi
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Derakhshan
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Faramarz Faridani
- Research Center of Sciences and Technologies in MedicineImam Khomeini HospitalTehranIran
| | - Samad Muhammad Nejad
- Cancer Research CenterCancer Institute, Tehran University of Medical SciencesTehranIran
| | - Saeid Amanpour
- Cancer Biology Research CenterCancer Institute, Tehran University of Medical SciencesTehranIran
| | - Roksana Tajerian
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Masood Yarmahmoodi
- Research Centre of Biomedical Technology and Robotics (RCBTR)Tehran University of Medical SciencesTehranIran
| | - Reza Faridi‐Majidi
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
27
|
Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017; 12:6131-6152. [PMID: 28883725 PMCID: PMC5574664 DOI: 10.2147/ijn.s140772] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of multifunctional nanomaterials, one of the most interesting and advanced research areas in the field of nanotechnology, is anticipated to revolutionize cancer diagnosis and treatment. Gold nanoparticles (AuNPs) are now being widely utilized in bio-imaging and phototherapy due to their tunable and highly sensitive optical and electronic properties (the surface plasmon resonance). As a new concept, termed "theranostics," multifunctional AuNPs may contain diagnostic and therapeutic functions that can be integrated into one system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. In this review, the important properties of AuNPs relevant to diagnostic and phototherapeutic applications such as structure, shape, optics, and surface chemistry are described. Barriers for translational development of theranostic AuNPs and recent advances in the application of AuNPs for cancer diagnosis, photothermal, and photodynamic therapy are discussed.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | - Yan He
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Lin-Lin Li
- The First Hospital of Jilin University, Changchun, China
| | - Justin D Holmes
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
28
|
White SB, Kim DH, Guo Y, Li W, Yang Y, Chen J, Gogineni VR, Larson AC. Biofunctionalized Hybrid Magnetic Gold Nanoparticles as Catalysts for Photothermal Ablation of Colorectal Liver Metastases. Radiology 2017; 285:809-819. [PMID: 28707960 DOI: 10.1148/radiol.2017161497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose To demonstrate that anti-MG1 conjugated hybrid magnetic gold nanoparticles (HNPs) act as a catalyst during photothermal ablation (PTA) of colorectal liver metastases, and thus increase ablation zones. Materials and Methods All experiments were performed with approval of the institutional animal care and use committee. Therapeutic and diagnostic multifunctional HNPs conjugated with anti-MG1 monoclonal antibodies were synthesized, and the coupling efficiency was determined. Livers of 19 Wistar rats were implanted with 5 × 106 rat colorectal liver metastasis cell line cells. The rats were divided into three groups according to injection: anti-MG1-coupled HNPs (n = 6), HNPs only (n = 6), and cells only (control group, n = 7). Voxel-wise R2 and R2* magnetic resonance (MR) imaging measurements were obtained before, immediately after, and 24 hours after injection. PTA was then performed with a fiber-coupled near-infrared (808 nm) diode laser with laser power of 0.56 W/cm2 for 3 minutes, while temperature changes were measured. Tumors were assessed for necrosis with hematoxylin-eosin staining. Organs were analyzed with inductively coupled plasma mass spectrometry to assess biodistribution. Therapeutic efficacy and tumor necrosis area were compared by using a one-way analysis of variance with post hoc analysis for statistically significant differences. Results The coupling efficiency was 22 μg/mg (55%). Significant differences were found between preinfusion and 24-hour postinfusion measurements of both T2 (repeated measures analysis of variance, P = .025) and T2* (P < .001). Significant differences also existed for T2* measurements between the anti-MG1 HNP and HNP-only groups (P = .034). Mean temperature ± standard deviation with PTA in the anti-MG1-coated HNP, HNP, and control groups was 50.2°C ± 7.8, 51°C ± 4.4, and 39.5°C ± 2.0, respectively. Inductively coupled plasma mass spectrometry revealed significant tumor targeting and splenic sequestration. Mean percentages of tumor necrosis in the anti-MG1-coated HNP, HNP, and control groups were 38% ± 29, 14% ± 17, and 7% ± 8, respectively (P = .043). Conclusion Targeted monoclonal antibody-conjugated HNPs can serve as a catalyst for photothermal ablation of colorectal liver metastases by increasing ablation zones. © RSNA, 2017.
Collapse
Affiliation(s)
- Sarah B White
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Dong-Hyun Kim
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Yang Guo
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Weiguo Li
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Yihe Yang
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Jeane Chen
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Venkateswara R Gogineni
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Andrew C Larson
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| |
Collapse
|
29
|
Cova E, Inghilleri S, Pandolfi L, Morosini M, Magni S, Colombo M, Piloni D, Finetti C, Ceccarelli G, Benedetti L, Cusella MG, Agozzino M, Corsi F, Allevi R, Mrakic-Sposta S, Moretti S, De Gregori S, Prosperi D, Meloni F. Bioengineered gold nanoparticles targeted to mesenchymal cells from patients with bronchiolitis obliterans syndrome does not rise the inflammatory response and can be safely inhaled by rodents. Nanotoxicology 2017; 11:534-545. [PMID: 28415888 DOI: 10.1080/17435390.2017.1317862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The use of gold nanoparticles (GNPs) as drug delivery system represents a promising issue for diseases without effective pharmacological treatment due to insufficient local drug accumulation and excessive systemic toxicity. Bronchiolitis obliterans syndrome (BOS) represents about 70% of cases of chronic lung allograft dysfunction, the main challenge to long-term lung transplantation. It is believed that due to repeated insults to epithelial bronchiolar cells local inflammatory response creates a milieu that favors epithelial-mesenchymal transition and activation of local mesenchymal cells (MCs) leading to airway fibro-obliteration. In a previous work, we engineered GNPs loaded with the mammalian target of rapamycin inhibitor everolimus, specifically decorated with an antibody against CD44, a surface receptor expressed by primary MCs isolated from bronchoalveolar lavage of BOS patients. We proved in vitro that these GNPs (GNP-HCe) were able to specifically inhibit primary MCs without affecting the bronchial epithelial cell. In the present work, we investigated the effect of these bioengineered nanoconstructs on inflammatory cells, given that a stimulating effect on macrophages, neutrophils or lymphocytes is strongly unwanted in graft airways since it would foster fibrogenesis. In addition, we administered GNP-HCe by the inhalatory route to normal mice for a preliminary assessment of their pulmonary and peripheral (liver, spleen and kidney) uptake. By these experiments, an evaluation of tissue toxicity was also performed. The present study proves that our bioengineered nanotools do not rise an inflammatory response and, under the tested inhalatory conditions that were used, are non-toxic.
Collapse
Affiliation(s)
- Emanuela Cova
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Simona Inghilleri
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Laura Pandolfi
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Monica Morosini
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Sara Magni
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Miriam Colombo
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Davide Piloni
- c Dipartimento di Medicina Interna, Unità di Pneumologia , Università degli Studi di Pavia , Pavia , Italy
| | - Chiara Finetti
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Gabriele Ceccarelli
- d Istituto di Anatomia Umana, Dipartimento di Salute Pubblica, Medicina Sperimentale e Forense , Università degli Studi di Pavia , Pavia , Italy
| | - Laura Benedetti
- d Istituto di Anatomia Umana, Dipartimento di Salute Pubblica, Medicina Sperimentale e Forense , Università degli Studi di Pavia , Pavia , Italy
| | - Maria Gabriella Cusella
- d Istituto di Anatomia Umana, Dipartimento di Salute Pubblica, Medicina Sperimentale e Forense , Università degli Studi di Pavia , Pavia , Italy
| | - Manuela Agozzino
- e Centro per le Malattie Cardiovascolari Ereditarie , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Fabio Corsi
- f Dipartimento di Scienze Biomediche e Cliniche L. Sacco , Università degli Studi di Milano , Pavia , Italy.,g Chirurgia Senologica , ICS Maugeri S.p.A. SB , Pavia , Italy
| | - Raffaele Allevi
- f Dipartimento di Scienze Biomediche e Cliniche L. Sacco , Università degli Studi di Milano , Pavia , Italy
| | - Simona Mrakic-Sposta
- h Istituto di Bioimmagini e Fisiologia Molecolare , Consiglio Nazionale delle Ricerche (CNR) , Segrate , Milano , Italia
| | - Sarah Moretti
- h Istituto di Bioimmagini e Fisiologia Molecolare , Consiglio Nazionale delle Ricerche (CNR) , Segrate , Milano , Italia
| | - Simona De Gregori
- i S.S.di Farmacocinetica Clinica e Sperimentale , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Davide Prosperi
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Federica Meloni
- c Dipartimento di Medicina Interna, Unità di Pneumologia , Università degli Studi di Pavia , Pavia , Italy
| |
Collapse
|
30
|
Jatana S, Palmer BC, Phelan SJ, Gelein R, DeLouise LA. In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Part Fibre Toxicol 2017; 14:12. [PMID: 28410606 PMCID: PMC5391571 DOI: 10.1186/s12989-017-0191-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm2 UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model. RESULTS Results indicate that QDs can penetrate mouse skin, regardless of UVR exposure, as evidenced by the increased cadmium in the local lymph nodes of all QD treated mice. The average % recovery for all treatment groups was 69.68% with ~66.84% of the applied dose recovered from the skin (both epicutaneous and intracutaneous). An average of 0.024% of the applied dose was recovered from the lymph nodes across various treatment groups. When QDs are applied 4 days post UV irradiation, at the peak of the skin barrier defect and LC migration to the local lymph node, there is an increased cellular presence of QD in the lymph node; however, AAS analysis of local lymph nodes display no difference in cadmium levels due to UVR treatment. CONCLUSIONS Our data suggests that Langerhans cells (LCs) can engulf QDs in skin, but transport to the lymph node may occur by both cellular (dendritic and macrophage) and non-cellular mechanisms. It is interesting that these specific nanoparticles were retained in skin similarly regardless of UVR barrier disruption, but the observed skin immune cell interaction with nanoparticles suggest a potential for immunomodulation, which we are currently examining in a murine model of skin allergy.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
| | - Brian C. Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Sarah J. Phelan
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
- Department of Dermatology, University of Rochester Medical Center, Dermatology and Biomedical Engineering, 601 Elmwood Avenue, Box 697, Rochester, NY 14642 USA
| |
Collapse
|
31
|
Liu A, Wang G, Wang F, Zhang Y. Gold nanostructures with near-infrared plasmonic resonance: Synthesis and surface functionalization. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Wang F, Xu L, Zhang Y, Petrenko VA, Liu A. An efficient strategy to synthesize a multifunctional ferroferric oxide core@dye/SiO2@Au shell nanocomposite and its targeted tumor theranostics. J Mater Chem B 2017; 5:8209-8218. [DOI: 10.1039/c7tb02004j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regular spheric magnetic ferroferric oxide nanoclusters have been developed and used for the targeted photothermal therapy of colorectal cancer cells after conjugation with SW620-specific phage fusion proteins.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Biosensing, and College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
- Jecho Biopharmaceuticals Co. Ltd
| | - Lijun Xu
- Institute for Biosensing, and College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
- School of Pharmacy
| | - Yang Zhang
- Institute for Biosensing, and College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
- School of Pharmacy
| | | | - Aihua Liu
- Institute for Biosensing, and College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
- School of Pharmacy
| |
Collapse
|
33
|
Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B 2017; 5:5690-5713. [DOI: 10.1039/c7tb01065f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocomposites engineered by incorporating versatile nanoparticles into different bioactive β-glucan matrices display effective therapeutic functions.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- College of Chemical and Environmental Engineering
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
34
|
Chen W, Zhang S, Yu Y, Zhang H, He Q. Structural-Engineering Rationales of Gold Nanoparticles for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8567-8585. [PMID: 27461909 DOI: 10.1002/adma.201602080] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Personalized theranostics of cancer is increasingly desired, and can be realized by virtue of multifunctional nanomaterials with possible high performances. Gold nanoparticles (GNPs) are a type of especially promising candidate for cancer theranostics, because their synthesis and modification are facile, their structures and physicochemical properties are flexibly controlled, and they are also biocompatible. Especially, the localized surface plasmon resonance and multivalent coordination effects on the surface endow them with NIR light-triggered photothermal imaging and therapy, controlled drug release, and targeted drug delivery. Although the structure, properties, and theranostic application of GNPs are considerably plentiful, no expert review systematically explains the relationships among their structure, property. and application and induces the engineering rationales of GNPs for cancer theranostics. Hence, there are no clear rules to guide the facile construction of optimal GNP structures aiming at a specific theranostic application. A series of structural-engineering rationales of GNPs for cancer theranostics is proposed through digging out the deep relationships between the structure and properties of GNPs. These rationales will be inspiring for guiding the engineering of specific and advanced GNPs for personalized cancer theranostics.
Collapse
Affiliation(s)
- Wenwen Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Shaohua Zhang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongdajie, Beijing, 100071, P. R. China
| | - Yangyang Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Huisheng Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
35
|
Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y. Radiolabeled theranostics: magnetic and gold nanoparticles. BIOIMPACTS 2016; 6:169-181. [PMID: 27853680 PMCID: PMC5108989 DOI: 10.15171/bi.2016.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
![]()
Introduction: Growing advances in nanotechnology have facilitated the applications of newly emerged nanomaterials in the field of biomedical/pharmaceutical sciences. Following this trend, the multifunctional nanoparticles (NPs) play a significant role in development of advanced drug delivery systems (DDSs) such as diapeutics/theranostics used for simultaneous diagnosis and therapy. Multifunctional radiolabeled NPs with capability of detecting, visualizing and destroying diseased cells with least side effects have been considered as an emerging filed in presentation of the best choice in solving the therapeutic problems. Functionalized magnetic and gold NPs (MNPs and GNPs, respectively) have produced the potential of nanoparticles as sensitive multifunctional probes for molecular imaging, photothermal therapy and drug delivery and targeting.
Methods: In this study, we review the most recent works on the improvement of various techniques for development of radiolabeled magnetic and gold nanoprobes, and discuss the methods for targeted imaging and therapies.
Results: The receptor-specific radiopharmaceuticals have been developed to localized radiotherapy in disease sites. Application of advanced multimodal imaging methods and related modality imaging agents labeled with various radioisotopes (e.g., 125I, 111In, 64Cu, 68Ga, 99mTc) and MNPs/GNPs have significant effects on treatment and prognosis of cancer therapy. In addition, the surface modification with biocompatible polymer such as polyethylene glycol (PEG) have resulted in development of stealth NPs that can evade the opsonization and immune clearance. These long-circulating agents can be decorated with homing agents as well as radioisotopes for targeted imaging and therapy purposes.
Conclusion: The modified MNPs or GNPs have wide applications in concurrent diagnosis and therapy of various malignancies. Once armed with radioisotopes, these nanosystems (NSs) can be exploited for combined multimodality imaging with photothermal/photodynamic therapy while delivering the loaded drugs or genes to the targeted cells/tissues. These NSs will be a game changer in combating various cancers.
Collapse
Affiliation(s)
- Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Molecular Medicine, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7030019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-794-5387
| |
Collapse
|
37
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016; 7:E19. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7020019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
| |
Collapse
|
38
|
Obaid G, Broekgaarden M, Bulin AL, Huang HC, Kuriakose J, Liu J, Hasan T. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology. NANOSCALE 2016; 8:12471-503. [PMID: 27328309 PMCID: PMC4956486 DOI: 10.1039/c5nr08691d] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tayyaba Hasan
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Science and Technology, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Genchi GG, Marino A, Rocca A, Mattoli V, Ciofani G. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine. NANOTECHNOLOGY 2016; 27:232001. [PMID: 27145888 DOI: 10.1088/0957-4484/27/23/232001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | | | | | | | | |
Collapse
|
40
|
Pang B, Zhao Y, Luehmann H, Yang X, Detering L, You M, Zhang C, Zhang L, Li ZY, Ren Q, Liu Y, Xia Y. ⁶⁴Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment. ACS NANO 2016; 10:3121-31. [PMID: 26824412 DOI: 10.1021/acsnano.5b07968] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy.
Collapse
Affiliation(s)
- Bo Pang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, P. R. China
| | - Yongfeng Zhao
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Xuan Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Meng You
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Chao Zhang
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Lei Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States
| | - Zhi-Yuan Li
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, P. R. China
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool? NANOMATERIALS 2015; 5:1853-1879. [PMID: 28347100 PMCID: PMC5304792 DOI: 10.3390/nano5041853] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/04/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022]
Abstract
Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial—nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.
Collapse
Affiliation(s)
- Pedro Pedrosa
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Raquel Vinhas
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Alexandra Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
42
|
Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, De A. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. NANO LETTERS 2015; 15:842-8. [PMID: 25554860 DOI: 10.1021/nl5045378] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report biodegradable plasmon resonant liposome gold nanoparticles (LiposAu NPs) capable of killing cancer cells through photothermal therapy. The pharmacokinetic study of LiposAu NPs performed in a small animal model indicates in situ degradation in hepatocytes and further getting cleared through the hepato-biliary and renal route. Further, the therapeutic potential of LiposAu NPs tested in mouse tumor xenograft model using NIR laser (750 nm) illumination resulted in complete ablation of the tumor mass, thus prolonging disease-free survival.
Collapse
Affiliation(s)
- Aravind Kumar Rengan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
43
|
|