1
|
El Cheikh J, Hamed F, Rifi H, Dakroub AH, Eid AH. Genetic polymorphisms influencing antihypertensive drug responses. Br J Pharmacol 2025; 182:929-950. [PMID: 39627167 DOI: 10.1111/bph.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension is a major contributor to cardiovascular disease and its associated morbidity and mortality. The low efficacy observed with some anti-hypertensive therapies has been attributed partly to inter-individual genetic variability. This paper reviews the major findings regarding these genetic variabilities that modulate responses to anti-hypertensive therapies such as angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), diuretics, calcium channel blockers (CCBs) and β-adrenoceptor blockers. The importance of studying these genetic polymorphisms stems from the goal to optimise anti-hypertensive therapy for each individual patient, aiming for the highest efficacy and lowest risk of adverse effects. It is important to recognise that environmental and epigenetic factors can contribute to the observed variations in drug responses. Owing to the multigenic and multifactorial nature of drug responses, further research is crucial for translating these findings into clinical practice and the establishment of reliable recommendations.
Collapse
Affiliation(s)
- Jana El Cheikh
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Fouad Hamed
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Hana Rifi
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Ali H Dakroub
- Blavatnik Family Research Institute, Departments of Cardiology and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Walton M, Wagner JB. Pediatric Beta Blocker Therapy: A Comprehensive Review of Development and Genetic Variation to Guide Precision-Based Therapy in Children, Adolescents, and Young Adults. Genes (Basel) 2024; 15:379. [PMID: 38540438 PMCID: PMC10969836 DOI: 10.3390/genes15030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Beta adrenergic receptor antagonists, known as beta blockers, are one of the most prescribed medications in both pediatric and adult cardiology. Unfortunately, most of these agents utilized in the pediatric clinical setting are prescribed off-label. Despite regulatory efforts aimed at increasing pediatric drug labeling, a majority of pediatric cardiovascular drug agents continue to lack pediatric-specific data to inform precision dosing for children, adolescents, and young adults. Adding to this complexity is the contribution of development (ontogeny) and genetic variation towards the variability in drug disposition and response. In the absence of current prospective trials, the purpose of this comprehensive review is to illustrate the current knowledge gaps regarding the key drivers of variability in beta blocker drug disposition and response and the opportunities for investigations that will lead to changes in pediatric drug labeling.
Collapse
Affiliation(s)
- Mollie Walton
- Ward Family Heart Center, Kansas City, MO 64108, USA
| | - Jonathan B. Wagner
- Ward Family Heart Center, Kansas City, MO 64108, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, 2401 Gillham Road, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
3
|
Castaño-Amores C, Antúnez-Rodríguez A, Pozo-Agundo A, García-Rodríguez S, Martínez-González LJ, Dávila-Fajardo CL. Genetic polymorphisms in ADRB1, ADRB2 and CYP2D6 genes and response to beta-blockers in patients with acute coronary syndrome. Biomed Pharmacother 2023; 169:115869. [PMID: 37952358 DOI: 10.1016/j.biopha.2023.115869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Betablockers (BBs) are prescribed for ischaemia in patients with acute coronary syndrome (ACS). In Spain, bisoprolol and carvedilol are the most prescribed BBs, but patients often had to discontinue them due to adverse effects. Single nucleotide polymorphisms (SNPs) in ADRB1, ADRB2 and CYP2D6 genes have strong evidence of pharmacogenetic association with BBs in heart failure or hypertension, but the evidence in ACS is limited. Therefore, our study focuses on investigating how these genes influence the response to BBs in ACS patients. We analysed the association between SNPs in ADRB1 Gly389Arg (rs1801253) and Ser49Gly (rs1801252), ADRB2 Gly16Arg (rs1042713) and Glu27Gln (rs1042714), and CYP2D* 6 (*2- rs1080985, *4- rs3892097, *10 - rs1065852) and the occurrence of bradycardia/hypotension events during one year of follow-up. We performed an observational study and included 285 ACS-PCI-stent patients. A first analysis including patients treated with bisoprolol and a second analysis including patients treated with other BBs were performed. We found that the presence of the G allele (Glu) of the ADRB2 gene (rs1042714; Glu27Gln) conferred a protective effect against hypotension-induced by BBs; OR (CI 95%) = 0,14 (0,03-0,60), p < 0.01. The ADRB2 (rs1042713; Gly16Arg) GG genotype could also prevent hypotensive events; OR (CI 95%) = 0.49 (0.28-0.88), p = 0015. SNPs in ADRB1 and CYP2D6 * 2, CYP2D6 * 4 weren´t associated with primary events. The effect of CYP2D6 * 10 does not seem to be relevant for the response to BBs. According to our findings, SNPs in ADRB2 (rs1042713, rs1042714) could potentially affect the response and tolerance to BBs in ACS-patients. Further studies are necessary to clarify the impact of ADRB2 polymorphisms.
Collapse
Affiliation(s)
| | - Alba Antúnez-Rodríguez
- GENYO, Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - Ana Pozo-Agundo
- GENYO, Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - Sonia García-Rodríguez
- GENYO, Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - Luis Javier Martínez-González
- University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain
| | - Cristina Lucía Dávila-Fajardo
- Pharmacy Department, Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospital Universitario Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
4
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Pharmacogenomics of Hypertension Treatment. Int J Mol Sci 2020; 21:ijms21134709. [PMID: 32630286 PMCID: PMC7369859 DOI: 10.3390/ijms21134709] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Hypertension is one of the strongest modifiable cardiovascular risk factors, affecting an increasing number of people worldwide. Apart from poor medication adherence, the low efficacy of some therapies could also be related to inter-individual genetic variability. Genetic studies of families revealed that heritability accounts for 30% to 50% of inter-individual variation in blood pressure (BP). Genetic factors not only affect blood pressure (BP) elevation but also contribute to inter-individual variability in response to antihypertensive treatment. This article reviews the recent pharmacogenomics literature concerning the key classes of antihypertensive drugs currently in use (i.e., diuretics, β-blockers, ACE inhibitors, ARB, and CCB). Due to the numerous studies on this topic and the sometimes-contradictory results within them, the presented data are limited to several selected SNPs that alter drug response. Genetic polymorphisms can influence drug responses through genes engaged in the pathogenesis of hypertension that are able to modify the effects of drugs, modifications in drug–gene mechanistic interactions, polymorphisms within drug-metabolizing enzymes, genes related to drug transporters, and genes participating in complex cascades and metabolic reactions. The results of numerous studies confirm that genotype-based antihypertension therapies are the most effective and may help to avoid the occurrence of major adverse events, as well as decrease the costs of treatment. However, the genetic heritability of drug response phenotypes seems to remain hidden in multigenic and multifactorial complex traits. Therefore, further studies are required to analyze all associations and formulate final genome-based treatment recommendations.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence:
| |
Collapse
|
5
|
Van Driest SL, Sleeper LA, Gelb BD, Morris SA, Dietz HC, Forbus GA, Goldmuntz E, Hoskoppal A, James J, Lee TM, Levine JC, Li JS, Loeys BL, Markham LW, Meester JAN, Mital S, Mosley JD, Olson AK, Renard M, Shaffer CM, Sharkey A, Young L, Lacro RV, Roden DM. Variants in ADRB1 and CYP2C9: Association with Response to Atenolol and Losartan in Marfan Syndrome. J Pediatr 2020; 222:213-220.e5. [PMID: 32586526 PMCID: PMC7323908 DOI: 10.1016/j.jpeds.2020.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To test whether variants in ADRB1 and CYP2C9 genes identify subgroups of individuals with differential response to treatment for Marfan syndrome through analysis of data from a large, randomized trial. STUDY DESIGN In a subset of 250 white, non-Hispanic participants with Marfan syndrome in a prior randomized trial of atenolol vs losartan, the common variants rs1801252 and rs1801253 in ADRB1 and rs1799853 and rs1057910 in CYP2C9 were analyzed. The primary outcome was baseline-adjusted annual rate of change in the maximum aortic root diameter z-score over 3 years, assessed using mixed effects models. RESULTS Among 122 atenolol-assigned participants, the 70 with rs1801253 CC genotype had greater rate of improvement in aortic root z-score compared with 52 participants with CG or GG genotypes (Time × Genotype interaction P = .005, mean annual z-score change ± SE -0.20 ± 0.03 vs -0.09 ± 0.03). Among participants with the CC genotype in both treatment arms, those assigned to atenolol had greater rate of improvement compared with the 71 of the 121 assigned to losartan (interaction P = .002; -0.20 ± 0.02 vs -0.07 ± 0.02; P < .001). There were no differences in atenolol response by rs1801252 genotype or in losartan response by CYP2C9 metabolizer status. CONCLUSIONS In this exploratory study, ADRB1-rs1801253 was associated with atenolol response in children and young adults with Marfan syndrome. If these findings are confirmed in future studies, ADRB1 genotyping has the potential to guide therapy by identifying those who are likely to have greater therapeutic response to atenolol than losartan.
Collapse
Affiliation(s)
- Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynn A. Sleeper
- Department of Cardiology, Boston Children’s Hospital; and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shaine A. Morris
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Harry C. Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Geoffrey A. Forbus
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Department of Pediatrics University of Pennsylvania Perlman School of Medicine, Philadelphia, PA, USA
| | - Arvind Hoskoppal
- Departments of Pediatrics and Internal Medicine, University of Utah and Intermountain Healthcare, Salt Lake City, UT, USA
| | - Jeanne James
- Department of Pediatrics, Section of Cardiology, Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI, USA
| | - Teresa M. Lee
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jami C. Levine
- Department of Cardiology, Boston Children’s Hospital; and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jennifer S. Li
- Department of Pediatrics, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Bart L. Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Larry W. Markham
- Department of Pediatrics, Division of Pediatric Cardiology, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Josephina A. N. Meester
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Seema Mital
- Department of Pediatrics, Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jonathan D. Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron K. Olson
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA, USA
| | - Marjolijn Renard
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian M. Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela Sharkey
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Luciana Young
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Ronald V. Lacro
- Department of Cardiology, Boston Children’s Hospital; and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Departments of Pharmacology and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, Lacchini R. Pharmacogenomics And Hypertension: Current Insights. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:341-359. [PMID: 31819590 PMCID: PMC6878918 DOI: 10.2147/pgpm.s230201] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
Hypertension is a multifactorial disease that affects approximately one billion subjects worldwide and is a major risk factor associated with cardiovascular events, including coronary heart disease and cerebrovascular accidents. Therefore, adequate blood pressure control is important to prevent these events, reducing premature mortality and disability. However, only one third of patients have the effective control of blood pressure, despite several classes of antihypertensive drugs available. These disappointing outcomes may be at least in part explained by interpatient variability in drug response due to genetic polymorphisms. To address the effects of genetic polymorphisms on blood pressure responses to the antihypertensive drug classes, studies have applied candidate genes and genome wide approaches. More recently, a third approach that considers gene-gene interactions has also been applied in hypertension pharmacogenomics. In this article, we carried out a comprehensive review of recent findings on the pharmacogenomics of antihypertensive drugs, including diuretics, β-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, and calcium channel blockers. We also discuss the limitations and inconsistences that have been found in hypertension pharmacogenomics and the challenges to implement this valuable approach in clinical practice.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sherliane C Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
7
|
Sy RG, Nevado JB, Llanes EJB, Magno JDA, Ona DID, Punzalan FER, Reganit PFM, Santos LEG, Tiongco RHP, Aherrera JAM, Abrahan LL, Agustin CF, Aman AYCL, Bejarin AJP, Cutiongco-de la Paz EMC. The Klotho Variant rs36217263 Is Associated With Poor Response to Cardioselective Beta-Blocker Therapy Among Filipinos. Clin Pharmacol Ther 2019; 107:221-226. [PMID: 31350855 DOI: 10.1002/cpt.1585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023]
Abstract
A common drug used for hypertension among Filipinos is beta-blockers. Variable responses to beta-blockers are observed, and genetic predisposition is suggested. This study investigated the association of genetic variants with poor response to beta-blockers among Filipinos. A total of 76 Filipino adult hypertensive participants on beta-blockers were enrolled in an unmatched case-control study. Genotyping was done using DNA from blood samples. Candidate variants were correlated with clinical data using χ2 and logistic regression analysis. The deletion of at least one copy of allele A of rs36217263 near Klotho showed statistically significant association with poor response to beta-blockers (dominant; odds ratio (OR) = 3.89; P = 0.017), adjusted for diabetes and dyslipidemia. This association is observed among participants using cardioselective beta-blockers (crude OR = 5.60; P = 0.008) but not carvedilol (crude OR = 2.56; P = 0.67). The genetic variant rs36217263 is associated with poor response to cardioselective beta-blockers, which may become a potential marker to aid in the management of hypertension.
Collapse
Affiliation(s)
- Rody G Sy
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Jose B Nevado
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Elmer Jasper B Llanes
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Jose Donato A Magno
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Deborah Ignacia D Ona
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Felix Eduardo R Punzalan
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Paul Ferdinand M Reganit
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Lourdes Ella G Santos
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Richard Henry P Tiongco
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Jaime Alfonso M Aherrera
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Lauro L Abrahan
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Charlene F Agustin
- Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Aimee Yvonne Criselle L Aman
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines.,Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| | - Adrian John P Bejarin
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines.,Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| | - Eva Maria C Cutiongco-de la Paz
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines.,Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| |
Collapse
|
8
|
Wang L, Cheng F, Hu J, Wang H, Tan N, Li S, Wang X. Pathway-based gene-gene interaction network modelling to predict potential biomarkers of essential hypertension. Biosystems 2018; 172:18-25. [PMID: 30110599 DOI: 10.1016/j.biosystems.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
Essential hypertension (EH) is a major risk factor for cardiovascular disease. Despite considerable efforts to elucidate the pathogenesis of EH, there is an imperious need for novel indicators of EH. This study aimed to develop a method to predict potential biomarkers of EH from the point of view of network. A pathway-based gene-gene interaction (GGI) network model was constructed and analyzed, containing 116 nodes and 1272 connections. The nodes represented EH-related genes, and that connections represented their interactions. The network showed a small-world property and uneven degree distribution, suggesting that a few highly interconnected hubs played a vital role in EH. An inherent hierarchy and assortative mixing pattern were also observed in the network. GNAS, GNB3, PF4 and PPBP showed the highest values of degrees and centrality indices, and were chosen as potential biomarkers of EH. A two-mode network model based on the potential biomarkers demonstrated that hemostasis and GPCR ligand binding pathway were key pathways contributing to EH. Results of this study improve our current understanding of the molecular mechanisms driving EH. The selected genes and pathways have the potential to be used in the diagnosis and treatment of EH. Moreover, the combination of pathway analysis and complex network methodology provides a novel strategy for searching new genetic indicators of complex diseases.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Fuhong Cheng
- Department of Orthopedics, Weinan Central Hospital, Shaanxi, 714000, China
| | - Jingbo Hu
- College of Electronic and Electrical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China; Center for Nonlinear Complex Systems, Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming, 650091, China
| | - Huan Wang
- College of Computer Science and Technology, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Nana Tan
- Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Shaokang Li
- Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Xiaoling Wang
- Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| |
Collapse
|
9
|
Influence of P2Y12 polymorphisms on platelet activity but not ex-vivo antiplatelet effect of ticagrelor in healthy Chinese male subjects. Blood Coagul Fibrinolysis 2016; 26:874-81. [PMID: 26083990 DOI: 10.1097/mbc.0000000000000308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activation of platelet implicated a series of signal conduction including outside-in and inside-out related receptor-mediated signaling pathways. Ticagrelor is the first reversible P2Y12 receptor antagonist that exhibits rapid antiplatelet effect. Given that platelet aggregation varies among individuals, genetic polymorphisms in P2Y12 and subsequent signal molecular such as the G-protein beta 3 subunit (GNB3) are supposed to influence the antiplatelet effect of ticagrelor. The aim of this study was to determine whether genetic polymorphisms in P2Y12 and GNB3 genes influence ex-vivo antiplatelet activity of ticagrelor in healthy Chinese subjects. A total of 196 healthy Chinese male individuals were recruited. ADP-induced platelet aggregation was determined by using light transmittance aggregometry at baseline and after incubation of the platelet-rich plasma with 15 and 50 μmol/l ticagrelor, respectively. Nine single-nucleotide polymorphisms (SNPs) in P2Y12 and the GNB3 rs5443 polymorphism were genotyped by PCR-direct sequencing. P2Y12 haplotypes were inferred. Baseline platelet aggregation was increased in carriers of the common alleles of P2Y12 SNPs (rs1907637, rs2046934, and rs6809699) and rs6787801 TC heterozygotes (P < 0.05 for all). Results of the haplotype analyses were consistent with those of the single SNPs. Ticagrelor at both concentrations of 15 and 50 μmol/l decreased ADP-induced platelet aggregation significantly (P < 0.05, respectively). Neither single SNPs nor haplotypes of P2Y12 affected ticagrelor-induced ex-vivo inhibition of platelet aggregation. P2Y12 and GNB3 polymorphisms have no effect on the ex-vivo antiplatelet activity of ticagrelor in healthy Chinese male subjects.
Collapse
|
10
|
Byrd JB. Personalized medicine and treatment approaches in hypertension: current perspectives. Integr Blood Press Control 2016; 9:59-67. [PMID: 27103841 PMCID: PMC4827884 DOI: 10.2147/ibpc.s74320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the US, hypertension affects one in three adults. Current guideline-based treatment of hypertension involves little diagnostic testing. A more personalized approach to the treatment of hypertension might be of use. Several methods of personalized treatment have been proposed and vetted to varying degrees. The purpose of this narrative review is to discuss the rationale for personalized therapy in hypertension, barriers to its development and implementation, some influential examples of proposed personalization measures, and a view of future efforts.
Collapse
Affiliation(s)
- James Brian Byrd
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Eadon MT, Chapman AB. A Physiologic Approach to the Pharmacogenomics of Hypertension. Adv Chronic Kidney Dis 2016; 23:91-105. [PMID: 26979148 DOI: 10.1053/j.ackd.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypertension is a multifactorial condition with diverse physiological systems contributing to its pathogenesis. Individuals exhibit significant variation in their response to antihypertensive agents. Traditional markers, such as age, gender, diet, plasma renin level, and ethnicity, aid in drug selection. However, this review explores the contribution of genetics to facilitate antihypertensive agent selection and predict treatment efficacy. The findings, reproducibility, and limitations of published studies are examined, with emphasis placed on candidate genetic variants affecting drug metabolism, the renin-angiotensin system, adrenergic signalling, and renal sodium reabsorption. Single-nucleotide polymorphisms identified and replicated in unbiased genome-wide association studies of hypertension treatment are reviewed to illustrate the evolving understanding of the disease's complex and polygenic pathophysiology. Implementation efforts at academic centers seek to overcome barriers to the broad adoption of pharmacogenomics in the treatment of hypertension. The level of evidence required to support the implementation of pharmacogenomics in clinical practice is considered.
Collapse
|
12
|
Orun O. Roles of catecholamine related polymorphisms in hypertension. World J Hypertens 2016; 6:41-52. [DOI: 10.5494/wjh.v6.i1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
The objective of this review is to summarize current data obtained so far in catecholamine-essential hypertension (EH) relationships on a genetic basis. As the major elements driving the sympathetic system’s actions, catecholamines modulate a variety of physiological processes and mutations related to the system. This could generate serious disorders, such as severe mental illnesses, stress-induced disorders, or impaired control of blood pressure or motor pathways. EH is idiopathic, and the genetic basis of its causes and substantial interindividual discrepancies in response to different types of treatments are the focus of interest. Susceptibility to disease or efficacy of treatments are thought to reflect genomic variabilities among individuals. Therefore, outlining the available knowledge in functional genetic polymorphisms linked to EH will make the picture clearer and will help to establish future prospects in the field.
Collapse
|
13
|
Lupoli S, Salvi E, Barcella M, Barlassina C. Pharmacogenomics considerations in the control of hypertension. Pharmacogenomics 2015; 16:1951-64. [PMID: 26555875 DOI: 10.2217/pgs.15.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The response to antihypertensive therapy is very heterogeneous and the need by the physicians to account for it has driven much interest in pharmacogenomics of antihypertensive drugs. The Human Genome Project and the initiatives in genomics that followed, generated a huge number of genetic data that furnished the tools to explore the genotype-phenotype association in candidate genes and at genome-wide level. In spite of the efforts and the great number of publications, pharmacogenomics of antihypertensive drugs is far from being used in clinical practice. In this review, we analyze the main findings available in PubMed from 2010 to 2015, in relation to the major classes of antihypertensive drugs. We also describe a new Phase II drug that targets two specific hypertension predisposing mechanisms.
Collapse
Affiliation(s)
- Sara Lupoli
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| | - Erika Salvi
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| | - Matteo Barcella
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| | - Cristina Barlassina
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| |
Collapse
|
14
|
Association of common polymorphisms in β1-adrenergic receptor with antihypertensive response to carvedilol. J Cardiovasc Pharmacol 2015; 64:306-9. [PMID: 25291495 DOI: 10.1097/fjc.0000000000000119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Marked interpatient variability exists in the blood pressure response to carvedilol, a nonselective β-blocker. Here we evaluated the influence of 4 common polymorphisms in genes of the β-adrenergic receptor on the antihypertensive efficacy of carvedilol in patients in a double-blinded monotherapy study. METHODS Eighty-seven subjects with uncomplicated essential hypertensive (49% men; age = 52.2 ± 11.1 years) from Jilin province of China were enrolled in the study, and 5 of them discontinued the treatment due to adverse effects. Both systolic and diastolic blood pressures (DBPs) were measured before and after 7 days of treatment with carvedilol (10 mg/d). Genotypes of the β1-adrenergic receptor (ADRB1 Ser49Gly and Arg389Gly) and β2-adrenergic receptor (ADRB2 Gly16Arg and Glu27Gln) were determined by polymerase chain reaction with restriction fragment length polymorphism. RESULTS Patients homozygous for ADRB1 Arg389 had an approximately 4-fold greater reduction in DBPs than those homozygous for ADRB1 Gly389 (10.61 vs. 2.62 mm Hg, P = 0.013). The ADRB1 haplotype was also a significant predictor of response, as patients with the Gly49Arg389/Ser49Arg389 haplotype pair had a 5.7-fold greater reduction in DBPs than those homozygous for the Ser49Gly389 haplotype (16.11 vs. 2.83 mm Hg, P = 0.0055). An association was not found between ADRB2 polymorphism and carvedilol responsiveness in antihypertensive therapy. CONCLUSIONS This study provides the first evidence to support that ADRB1 polymorphisms play an important role in the DBPs response to carvedilol treatment in patients with essential hypertension.
Collapse
|
15
|
Chaudhary R, Singh B, Kumar M, Gakhar SK, Saini AK, Parmar VS, Chhillar AK. Role of single nucleotide polymorphisms in pharmacogenomics and their association with human diseases. Drug Metab Rev 2015; 47:281-90. [PMID: 25996670 DOI: 10.3109/03602532.2015.1047027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Global statistical data shed light on an alarming trend that every year thousands of people die due to adverse drug reactions as each individual responds in a different way to the same drug. Pharmacogenomics has come up as a promising field in drug development and clinical medication in the past few decades. It has emerged as a ray of hope in preventing patients from developing potentially fatal complications due to adverse drug reactions. Pharmacogenomics also minimizes the exposure to drugs that are less/non-effective and sometimes even found toxic for patients. It is well reported that drugs elicit different responses in different individuals due to variations in the nucleotide sequences of genes encoding for biologically important molecules (drug-metabolizing enzymes, drug targets and drug transporters). Single nucleotide polymorphisms (SNPs), the most common type of polymorphism found in the human genome is believed to be the main reason behind 90% of all types of genetic variations among the individuals. Therefore, pharmacogenomics may be helpful in answering the question as to how inherited differences in a single gene have a profound effect on the mobilization and biological action of a drug. In the present review, we have discussed clinically relevant examples of SNP in associated diseases that can be utilized as markers for "better management of complex diseases" and attempted to correlate the drug response with genetic variations. Attention is also given towards the therapeutic consequences of inherited differences at the chromosomal level and how associated drug disposition and/or drug targets differ in various diseases as well as among the individuals.
Collapse
Affiliation(s)
| | | | | | - Surendra K Gakhar
- b Centre for Medical Biotechnology, Maharshi Dayanand University , Rohtak , Haryana , India
| | - Adesh K Saini
- c Department of Biotechnology , Shoolini University of Biotechnology and Management Sciences , Solan , Himachal Pradesh , India , and
| | - Virinder S Parmar
- d Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India
| | | |
Collapse
|
16
|
An update on the pharmacogenetics of treating hypertension. J Hum Hypertens 2014; 29:283-91. [PMID: 25355012 DOI: 10.1038/jhh.2014.76] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/24/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
Hypertension is a leading cause of cardiovascular mortality, but only one third of patients achieve blood pressure goals despite antihypertensive therapy. Genetic polymorphisms may partially account for the interindividual variability and abnormal response to antihypertensive drugs. Candidate gene and genome-wide approaches have identified common genetic variants associated with response to antihypertensive drugs. However, there is no currently available pharmacogenetic test to guide hypertension treatment in clinical practice. In this review, we aimed to summarize the recent findings on pharmacogenetics of the most commonly used antihypertensive drugs in clinical practice, including diuretics, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, beta-blockers and calcium channel blockers. Notably, only a small percentage of the genetic variability on response to antihypertensive drugs has been explained, and the vast majority of the genetic variants associated with antihypertensives efficacy and toxicity remains to be identified. Despite some genetic variants with evidence of association with the variable response related to these most commonly used antihypertensive drug classes, further replication is needed to confirm these associations in different populations. Further studies on epigenetics and regulatory pathways involved in the responsiveness to antihypertensive drugs might provide a deeper understanding of the physiology of hypertension, which may favor the identification of new targets for hypertension treatment and genetic predictors of antihypertensive response.
Collapse
|
17
|
Abstract
Cardiovascular disease is a leading cause of death worldwide. Many pharmacologic therapies are available that aim to reduce the risk of cardiovascular disease but there is significant inter-individual variation in drug response, including both efficacy and toxicity. Pharmacogenetics aims to personalize medication choice and dosage to ensure that maximum clinical benefit is achieved whilst side effects are minimized. Over the past decade, our knowledge of pharmacogenetics in cardiovascular therapies has increased significantly. The anticoagulant warfarin represents the most advanced application of pharmacogenetics in cardiovascular medicine. Prospective randomized clinical trials are currently underway utilizing dosing algorithms that incorporate genetic polymorphisms in cytochrome P450 (CYP)2C9 and vitamin k epoxide reductase (VKORC1) to determine warfarin dosages. Polymorphisms in CYP2C9 and VKORC1 account for approximately 40 % of the variance in warfarin dose. There is currently significant controversy with regards to pharmacogenetic testing in anti-platelet therapy. Inhibition of platelet aggregation by aspirin in vitro has been associated with polymorphisms in the cyclo-oxygenase (COX)-1 gene. However, COX-1 polymorphisms did not affect clinical outcomes in patients prescribed aspirin therapy. Similarly, CYP2C19 polymorphisms have been associated with clopidogrel resistance in vitro, and have shown an association with stent thrombosis, but not with other cardiovascular outcomes in a consistent manner. Response to statins has been associated with polymorphisms in the cholesterol ester transfer protein (CETP), apolipoprotein E (APOE), 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, calmin (CLMN) and apolipoprotein-CI (APOC1) genes. Although these genes contribute to the variation in lipid levels during statin therapy, their effects on cardiovascular outcomes requires further investigation. Polymorphisms in the solute carrier organic anion transporter 1B1 (SLCO1B1) gene is associated with increased statin exposure and simvastatin-induced myopathy. Angiotensin-converting enzyme (ACE) inhibitors and β-adrenoceptor antagonists (β-blockers) are medications that are important in the management of hypertension and heart failure. Insertion and deletion polymorphisms in the ACE gene are associated with elevated and reduced serum levels of ACE, respectively. No significant association was reported between the polymorphism and blood pressure reduction in patients treated with perindopril. However, a pharmacogenetic score incorporating single nucleotide polymorphisms (SNPs) in the bradykinin type 1 receptor gene and angiotensin-II type I receptor gene predicted those most likely to benefit and suffer harm from perindopril therapy. Pharmacogenetic studies into β-blocker therapy have focused on variations in the β1-adrenoceptor gene and CYP2D6, but results have been inconsistent. Pharmacogenetic testing for ACE inhibitor and β-blocker therapy is not currently used in clinical practice. Despite extensive research, no pharmacogenetic tests are currently in clinical practice for cardiovascular medicines. Much of the research remains in the discovery phase, with researchers struggling to demonstrate clinical utility and validity. This is a problem seen in many areas of therapeutics and is because of many factors, including poor study design, inadequate sample sizes, lack of replication, and heterogeneity amongst patient populations and phenotypes. In order to progress pharmacogenetics in cardiovascular therapies, researchers need to utilize next-generation sequencing technologies, develop clear phenotype definitions and engage in multi-center collaborations, not only to obtain larger sample sizes but to replicate associations and confirm results across different ethnic groups.
Collapse
|
18
|
Hersch M, Peter B, Kang HM, Schüpfer F, Abriel H, Pedrazzini T, Eskin E, Beckmann JS, Bergmann S, Maurer F. Mapping genetic variants associated with beta-adrenergic responses in inbred mice. PLoS One 2012; 7:e41032. [PMID: 22859963 PMCID: PMC3409184 DOI: 10.1371/journal.pone.0041032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/16/2012] [Indexed: 01/11/2023] Open
Abstract
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β1-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10−8). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10−6). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Collapse
Affiliation(s)
- Micha Hersch
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bastian Peter
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hyun Min Kang
- Department of Computer Science and Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fanny Schüpfer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Hugues Abriel
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Eleazar Eskin
- Department of Computer Science and Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fabienne Maurer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Kamide K, Kawano Y, Rakugi H. Pharmacogenomic approaches to study the effects of antihypertensive drugs. Hypertens Res 2012; 35:796-9. [DOI: 10.1038/hr.2012.82] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Chan SW, Hu M, Tomlinson B. The pharmacogenetics of β-adrenergic receptor antagonists in the treatment of hypertension and heart failure. Expert Opin Drug Metab Toxicol 2012; 8:767-90. [DOI: 10.1517/17425255.2012.685157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Abstract
Individual response to medication is highly variable. For many drugs, a substantial proportion of patients show suboptimal response at standard doses, whereas others experience adverse drug reactions (ADRs). Pharmacogenomics aims to identify genetic factors underlying this variability in drug response, providing solutions to improve drug efficacy and safety. We review recent advances in pharmacogenomics of cardiovascular drugs and cardiovascular ADRs, including warfarin, clopidogrel, β-blockers, renin-angiotensin-aldosterone system inhibitors, drug-induced long QT syndrome, and anthracycline-induced cardiotoxicity. We particularly focus on the applicability of pharmacogenomic findings to pediatric patients in whom developmental changes in body size and organ function may affect drug pharmacokinetics and pharmacodynamics. Solid evidence supports the importance of gene variants in CYP2C9 and VKORC1 for warfarin dosing and in CYP2C19 for clopidogrel response in adult patients. For the other cardiovascular drugs or cardiovascular ADRs, further studies are needed to replicate or clarify genetic associations before considering uptake of pharmacogenetic testing in clinical practice. With the exception of warfarin and anthracycline-induced cardiotoxicity, there is lack of pharmacogenomic studies on cardiovascular drug response or ADRs aimed specifically at children or adolescents. The first pediatric warfarin pharmacogenomic study indeed indicates differences from adults, pointing out the importance and need for pediatric-focused pharmacogenomic studies.
Collapse
|
22
|
Landau R, Bollag LA, Kraft JC. Pharmacogenetics and anaesthesia: the value of genetic profiling. Anaesthesia 2012; 67:165-79. [DOI: 10.1111/j.1365-2044.2011.06918.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
The GNB3 C825T polymorphism as a pharmacogenetic marker in the treatment of hypertension, obesity, and depression. Pharmacogenet Genomics 2011; 21:594-606. [PMID: 21709600 DOI: 10.1097/fpc.0b013e3283491153] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heterotrimeric guanine-binding proteins (G proteins) transmit signals from the cell surface to intracellular signal cascades. The β3-subunit encoded by the gene GNB3 is widely expressed and, therefore, involved in various physiological and pathophysiological processes. A C825T polymorphism located in exon 10 of GNB3 was described in 1998 and the T allele was associated with alternative splicing and with increased signal transduction in human cells and tissues. In several disease-association studies, the 825T allele could be linked to hypertension, obesity, and depression. Meta-analysis available for hypertension and depression confirmed association with these phenotypes. On the basis of these findings, subsequent studies investigated whether the C825T polymorphism serves as a pharmacogenetic marker. Most pharmacogenetic investigations have focused on the treatment of hypertension, obesity, and depression. In this study, we will comprehensively describe and discuss these studies.
Collapse
|
24
|
Verschuren JJW, Trompet S, Wessels JAM, Guchelaar HJ, de Maat MPM, Simoons ML, Jukema JW. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart J 2011; 33:165-75. [PMID: 21804109 DOI: 10.1093/eurheartj/ehr239] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pharmacogenetics is the search for heritable genetic polymorphisms that influence responses to drug therapy. The most important application of pharmacogenetics is to guide choosing agents with the greatest potential of efficacy and smallest risk of adverse drug reactions. Many studies focusing on drug-gene interactions have been published in recent years, some of which led to adaptation of FDA recommendations, indicating that we are on the verge of the clinical application of genetic information in drug therapy. This systematic review provides a comprehensive overview of the current knowledge on pharmacogenetics of all major drug classes currently used in the treatment of cardiovascular diseases.
Collapse
|
25
|
Johnson JA, Liggett SB. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther 2011; 89:366-78. [PMID: 21289619 PMCID: PMC3110683 DOI: 10.1038/clpt.2010.315] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the targets for many drugs, and genetic variation in coding and noncoding regions is apparent in many such receptors. In this superfamily, adrenergic receptors (ARs) were among the first in which single-nucleotide polymorphisms (SNPs) were discovered, and studies including in vitro mutagenesis, genetically modified mouse models, human ex vivo and in vitro studies and pharmacogenetic association studies were conducted. The signal transduction in these receptors includes amplification steps, desensitization, crosstalk, and redundancies, enabling potential mitigation of the size of the clinical effect for a single variant in a single gene. Nevertheless, convincing evidence has emerged that several variants have an impact on therapy, with certain caveats as to how the results are to be interpreted. Here we review these results for selected ARs and associated regulatory kinases relative to the pharmacogenomics of β-blocker treatment for hypertension and heart failure. We emphasize the linking of clinical results to molecular mechanisms, discuss study design limitations, and offer some recommendations for future directions.
Collapse
Affiliation(s)
- J A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA.
| | | |
Collapse
|